A new quantum glass phase: the superglass

Giulio Biroli, Claudio Chamon, and Francesco Zamponi*

*Laboratoire de Physique Théorique, Ecole Normale Supérieure,
24 Rue Lhomond, 75231 Paris Cedex 05

February 25, 2009
1 Motivations
 • Supersolidity of He4

2 The glass transition of classical liquids
 • Phenomenology
 • Mean field spin glass models for the glass transition

3 The quantum glass transition
 • Quantum p-spin and QREM
 • Helium 4: Monte Carlo results

4 A model for the superglass phase
 • Mapping on classical diffusive dynamics
 • The phase diagram
 • Quantum slow dynamics
 • Condensate fluctuations
 • Superfluid properties
 • Perspectives

5 Lattice models
 • Disordered Bose-Hubbard model: the Bose glass
 • Quantum Biroli-Mézard model: a superglass?
 • Solution of Bose-Hubbard models on the Bethe lattice
Motivations

1. Supersolidity of He^4

The glass transition of classical liquids

2. Phenomenology
3. Mean field spin glass models for the glass transition

The quantum glass transition

3. Quantum p-spin and QREM
4. Helium 4: Monte Carlo results

A model for the superglass phase

4. Mapping on classical diffusive dynamics
5. The phase diagram
6. Quantum slow dynamics
7. Condensate fluctuations
8. Superfluid properties
9. Perspectives

Lattice models

5. Disordered Bose-Hubbard model: the Bose glass
6. Quantum Biroli-Mézard model: a superglass?
7. Solution of Bose-Hubbard models on the Bethe lattice

Conclusions
Motivations: supersolidity of He4

Non-classical rotational inertia observed in solid He4 (Kim and Chan)

Possible interpretation: supersolidity

- Supersolidity excluded in perfect He4 crystals (Boninsegni, Ceperley et al.)
- Supersolidity strongly enhanced by fast quenches (Rittner and Reppy)
- History dependent response and some evidence for aging (Davis et al.)
Outline

1 Motivations
 - Supersolidity of He4

2 The glass transition of classical liquids
 - Phenomenology
 - Mean field spin glass models for the glass transition

3 The quantum glass transition
 - Quantum p-spin and QREM
 - Helium 4: Monte Carlo results

4 A model for the superglass phase
 - Mapping on classical diffusive dynamics
 - The phase diagram
 - Quantum slow dynamics
 - Condensate fluctuations
 - Superfluid properties
 - Perspectives

5 Lattice models
 - Disordered Bose-Hubbard model: the Bose glass
 - Quantum Biroli-Mézard model: a superglass?
 - Solution of Bose-Hubbard models on the Bethe lattice

Conclusions
Phenomenology

Classical particle system (e.g. Lennard-Jones like potential)
No external disorder

Huge increase of the viscosity (or density relaxation time) in a small range of temperature

Second order phase transition: jump in compressibility
First six decades of dynamic slowing down is well described by Mode-Coupling Theory (MCT)

- MCT predicts power-law divergence, $\tau \sim (T - T_c)^{-\gamma}$, with too large T_c
- The divergence is "activated" $\tau \sim \exp(A/(T - T_0))$ instead
- Activation is neglected in MCT (mean field theory)

Two steps relaxation:
1. Intra-cage vibrational motion (τ_β)
2. Structural relaxation (τ_α)
Mean field spin glass models

A mean field model for the glass transition: the *p-spin model*:

\[H = \sum_{i<j<k} J_{ijk} S_i S_j S_k \]

\(S_i \) Ising spins
\(J_{ijk} \) independent Gaussian random variables with zero average

- Liquid phase: dynamics is described by MCT-like equations
- "Activated" liquid phase: \(e^{N\Sigma} \) states are populated
- Glass phase: "condensation", finite number of ground states

In a suitable limit (infinite number of spin in each interaction) reduces to the **Random Energy Model (REM)**: \(2^N \) levels \(E_i \), i.i.d. Gaussian variables
Outline

1 Motivations
 • Supersolidity of He4

2 The glass transition of classical liquids
 • Phenomenology
 • Mean field spin glass models for the glass transition

3 The quantum glass transition
 • Quantum p-spin and QREM
 • Helium 4: Monte Carlo results

4 A model for the superglass phase
 • Mapping on classical diffusive dynamics
 • The phase diagram
 • Quantum slow dynamics
 • Condensate fluctuations
 • Superfluid properties
 • Perspectives

5 Lattice models
 • Disordered Bose-Hubbard model: the Bose glass
 • Quantum Biroli-Mézard model: a superglass?
 • Solution of Bose-Hubbard models on the Bethe lattice
Quantum p-spin and QREM

Quantum p-spin in a transverse field: (Goldschmidt; Cugliandolo et al.; Jorg et al.)

$$H = \sum_{i<j<k} J_{ijk} S_i^z S_j^z S_k^z - \Gamma \sum_i S_i^x$$

For infinite-body interaction: quantum REM, full spectrum
First order quantum phase transition (paramagnet → glass) at $T = 0$

At $T = 0$, slow dynamics in the glass but not in the paramagnet; no slowing down observed on approaching Γ_c from above.
Quantum Monte Carlo simulation of He4 at high pressure $P > 32$ bar
Quench from the liquid phase down in the solid phase (Boninsegni et al.)

Density-density correlations similar to the liquid (large Lindemann ratio)

ODLRO observed in the one-particle density matrix \rightarrow BEC, superfluidity
At $P = 32$ bar, $n_0 = 0.5\%$ and $\rho_s/\rho = 0.6$
Helium 4: Monte Carlo results

Amorphous condensate wavefunction: $n(r - r') \sim n_0 \phi(r)\phi(r')$

Plot of $\phi(x, y, z)$ on slices at fixed z

Many open problems

What is the nature of the transition?
Is it accompanied by slow dynamics in the liquid phase?
Where does superfluidity come from?
Outline

1. Motivations
 - Supersolidity of He4

2. The glass transition of classical liquids
 - Phenomenology
 - Mean field spin glass models for the glass transition

3. The quantum glass transition
 - Quantum p-spin and QREM
 - Helium 4: Monte Carlo results

4. A model for the superglass phase
 - Mapping on classical diffusive dynamics
 - The phase diagram
 - Quantum slow dynamics
 - Condensate fluctuations
 - Superfluid properties
 - Perspectives

5. Lattice models
 - Disordered Bose-Hubbard model: the Bose glass
 - Quantum Biroli-Mézard model: a superglass?
 - Solution of Bose-Hubbard models on the Bethe lattice
Mapping on classical diffusive dynamics

- General mapping: Quantum Hamiltonian \leftrightarrow Fokker-Planck operator
- Diffusive dynamics (Brownian motion, Langevin equation):
 \[
 \gamma_i \frac{dx_i}{dt} = -\frac{\partial}{\partial x_i} U_N(x_1, \ldots, x_N) + \eta_i(t), \quad i = 1, \ldots, N,
 \]
- Evolution of probability $P(x_i; t)$: Fokker-Planck eq. $\partial_t P = -H_{FP} P$
- Equilibrium distribution $P_G = \exp(-\beta U_N)/Z$, $H_{FP} P_G = 0$
 All other eigenvectors $H_{FP} P_E = E P_E$ such that $E > 0$
- Associated quantum (Hermitian) Hamiltonian: $H = P_G^{-1/2} H_{FP} P_G^{1/2}$
- Ground state $\Psi_G(x_i) = \sqrt{P_G(x_i)}$ is a Jastrow wavefunction
 Full spectrum of H equal to spectrum of $H_{FP} \Rightarrow$ access to real time quantum dynamics

Remarks:
- H has special properties! No inverse mapping in general...
- Jastrow wavefunctions are good variational ground states for He4
The phase diagram

We choose $U_N(x_i) = \sum_{i<j} V_{HS}(x_i - x_j)$ (classical Hard Spheres)
Quantum potential: sticky Hard Sphere + sticky three-body interactions
Glass transition on increasing density

Solid phases are ”classical”: small Lindemann ratio
Finite n_0 but very small in both crystal and glass phases
Slow dynamics approaching the glass phase

Density-density correlation function:
- \(F_{cl}(q, t) = \langle \rho_q(t) \rho_{-q}(0) \rangle = \int_0^\infty \frac{d\omega}{2\pi} \rho_q(\omega) e^{-\omega t} \)
- \(F_Q(q, t) = \langle 0 | \{ \rho_q(it), \rho_q(0) \} | 0 \rangle = \int_0^\infty \frac{d\omega}{2\pi} \rho_q(\omega) \cos(\omega t) \)

Separation of time scales: \(\rho_q(\omega) = \rho_\beta(\omega \tau_\beta) + \rho_\alpha(\omega \tau_\alpha) \) with \(\tau_\beta \ll \tau_\alpha \)
For \(\tau_\beta \ll t \ll \tau_\alpha \):
- the contribution of \(\rho_\beta(\omega \tau_\beta) \) decays to zero
- the contribution of \(\rho_\alpha(\omega \tau_\alpha) \) is the same since \(e^{-\omega t} \sim \cos(\omega t) \sim 1 \)
hence \(F_{cl}(q, t) \sim F_Q(q, t) \sim \int_0^\infty \frac{d\omega}{2\pi} \rho_\alpha(\omega \tau_\alpha) \Rightarrow \text{same plateau!} \)
Condensate fluctuation in the glass

In the glass state $\tau_\alpha = \infty \rightarrow$; liquid freezes in many possible states
Amorphous density profile $\rho_\alpha(r)$ and condensate profile $\phi_\alpha(r)$

$$g_\phi(r - r') \propto \sum_\alpha p_\alpha \phi_\alpha(r) \phi_\alpha(r')$$
correlation function of condensate fluctuations
Superfluid properties

Superfluidity requires a linear spectrum ("phonons"): \(v_c \leq \min_k [\epsilon(k)/k] \)

In our model \(e(\rho) \equiv 0 \Rightarrow \) sound velocity \(c = \frac{d}{d\rho} \rho^2 \frac{de}{d\rho} = 0 \Rightarrow v_c = 0 \)

(follows from a special symmetry that allows to map \(H \) into a Fokker-Planck operator)

Introduce a perturbation \(\delta v(r) \); then \(\delta e(\rho) = \frac{\rho}{2} \int dr \ g(r) \ \delta v(r) \)

- sound velocity \(c \neq 0 \Rightarrow \rho_s \neq 0 \)
- first order transition at \(\rho_K \)

 [very weak jump in \(e'(\rho) = P/\rho^2 \)]
Perspectives

Weak points in the theory:

- "Classical"-like solids, small Lindemann ratio and superfluid fraction
- "Ad hoc" inclusion of phonons
- New quantum phase transition: first order with slow dynamics. How general?
- Quantitative computation for He\(^4\), cold atoms…
 \[\rho_K\text{ for He}\(^4\) is 10 times larger than the one of Boninsegni et al.\]
- What happens at finite temperature?

Possible strategies:

- Better variational wavefunctions: Shadow and Jastrow with three body interactions; should give larger Lindemann ratio and \(\rho_s\)
- Quantum Mode Coupling Theory (Reichmann and Miyazaki)
- Replica computation at finite temperature
- Leggett bound: relation between \(\rho(r)\) and \(\rho_s\), apply to superglass
 It seems that disorder does not help superfluidity
Outline

1 Motivations
 - Supersolidity of He$_4$

2 The glass transition of classical liquids
 - Phenomenology
 - Mean field spin glass models for the glass transition

3 The quantum glass transition
 - Quantum p-spin and QREM
 - Helium 4: Monte Carlo results

4 A model for the superglass phase
 - Mapping on classical diffusive dynamics
 - The phase diagram
 - Quantum slow dynamics
 - Condensate fluctuations
 - Superfluid properties
 - Perspectives

5 Lattice models
 - Disordered Bose-Hubbard model: the Bose glass
 - Quantum Biroli-Mézard model: a superglass?
 - Solution of Bose-Hubbard models on the Bethe lattice
Disordered Bose-Hubbard model: the Bose glass

\[H = -J \sum_{\langle i,j \rangle} (a_i^\dagger a_j + a_j^\dagger a_i) + \frac{U}{2} \sum_i n_i(n_i - 1) - \sum_i (\mu + \varepsilon_i)n_i \]

\[\varepsilon_i \in [-\Delta, \Delta] \text{ quenched external disorder} \]

- Mott insulator: one particle/site
 Strong localization \(\Rightarrow \) no BEC, \(\rho_s = 0 \)
 Zero compressibility

- Bose glass: additional defects
 Anderson localization
 Finite compressibility

No frustration, no RSB
No slow dynamics
Quantum Biroli-Mézard model: a superglass?

\[H = -J \sum_{<i,j>} (a_i^\dagger a_j + a_j^\dagger a_i) + \sum_{<i_1,\ldots,i_k>} V(n_{i_1}, \ldots, n_{i_k}) - \sum_i \mu n_i \]

Classical model \((J = 0)\): glass transition similarly to Hard Spheres
Self-generated disorder, RSB, slow dynamics

Add quantum fluctuations \((J \neq 0)\)
A quantum glass transition? Slow dynamics? Aging?
Nature of the transition (first or second order)?

Strategy: solve the model on the Bethe lattice
Solution of Bose-Hubbard models on the Bethe lattice

- Solution of functional recurrence equations for the local action
- Gives back DMFT for $Z \rightarrow \infty$
- Successfully tested on the ordered Bose-Hubbard

Work in progress... (with G. Semerjian and M. Tarzia)
Conclusions

Our results:

- A semi-realistic model for interacting Bosons displays a superglass phase
- First order quantum glass transition with real time slow dynamics
- Variational calculation for more realistic potentials
- Possibility of exact solution for Bethe lattice models

Related works:

- Quantum Mode Coupling Theory (Reichmann, Miyazaki)
- B-DMFT (Vollhardt, Hofstetter, et al.)
- Monte Carlo simulations (Boninsegni, Prokof’ev, Svistunov, et al.)