
Quantum glasses, and quantum optimization by quantum annealing

This text was written for my CNRS evaluation in February 2011, and is based on a submitted (and  
rejected) ERC Starting Grant project.

This part of my research activity was devoted to the development of analytical and numerical methods to 
describe a wide class of  strongly interacting quantum disordered systems, in which the interplay between 
quantum fluctuations and disorder/frustration plays a key role. This project was motivated by the potentially 
numerous applications  of  the techniques  that  we developed,  that  range from quantum computing to the 
physics of localization in condensed matter systems. The basic methodology is that of developing a mean 
field treatment of these systems that allows for a full analytical solution, at the same time keeping track of 
local fluctuations which are essential in the study of disordered phases and localization effects. This project 
was realized in close collaboration with F.Krzakala (ESPCI), A.Rosso (CNRS), G.Semerjian (ENS), and 
M.Tarzia (Univ. Paris 6). It was originally conceived as an ANR “Jeunes Chercheurs” grant request for the 
2008 and 2009 calls, and was rejected in both cases. I then improved the project and submitted it to the ERC 
Starting Grant calls in 2010 and 2011; the project was classified as eligible for funding but not financed in 
2010, and it was rejected in 2011. Despite failure in raising funds, we were able to carry on the project and 
reach most of the original goals (yes, theoretical physicists don't need money to work!). Part of the project 
was the subject of the PhD thesis of Laura Foini and of Giuseppe Carleo, that worked on these topics under 
my supervision.

In the following I will:
A) begin by a short description of these problems, explaining what are their common ingredients and why 
they can be treated by similar methods;
B)  explain  what  are  the  challenges  that  one  meets  when  studying  these  problems;  then  explain  the 
methodology that we used to solve them, and the key physical ideas beyond it;
C) for each application, make a short list of concrete results that we obtained using this method.

A. Overview of the physical problems
The method we developed allowed to obtain interesting results in the following areas:
(i)  Adiabatic quantum computing:  The theoretical  research on quantum computing is  motivated by the 
exciting  perspective  of  computers  that  take  intrinsically  advantage  of  the  laws  of  quantum  mechanics. 
Besides the great effort of research towards the physical realization of these devices, a lot of activity has 
been devoted to the development of “softwares”, that is algorithms that could use the specific properties of 
quantum computers to achieve a faster velocity in performing computational tasks with respect to classical 
devices, for instance minimizing irregularly shaped cost functions. In this context the frustration comes from 
the large number of contradictory constraints that have to be simultaneously satisfied. Thanks to the analogy 
between these problems and spin-glasses, the Hamiltonian of the quantum computer is akin to a quantum 
spin glass, where the quantum character arises typically from the inclusion of a transverse magnetic field. 
One of the aims of this project was precisely to study quantitatively the phase diagrams of quantum spin 
glasses in a transverse field. Solving these models resulted in a better understanding of the performances of a 
class of quantum algorithms for solving difficult optimization problems.
(ii) Superfluidity and superconductivity in disordered systems: In this context there is a wide number of open 
problems where the interplay between quantum fluctuations and disorder is important: for instance in cases 
where localization drives the formation of a quantum glassy phase, such as the Bose glass, or for disordered 
solid phases, such as the recently proposed superglass phase. These exotic phases are observed in Helium 4 
when  disorder  is  introduced  by  absorbing  it  in  porous  media  or  by  producing  “dirty”  crystals  by  fast 
quenches from the liquid phase. Moreover, they have very recently been observed in cold atoms assemblies 
subjected  to  disordered  potentials.  These  problems  are  also  relevant  for  the  superconductor-insulator 
transition in disordered electron systems, where it has been proposed that (Bosonic) Cooper pairs form a 
Bose  glass.  A paradigmatic  example  of  a  quantum strongly-interacting  particle  system displaying  these 
phenomena is the (Bosonic or Fermionic) Hubbard model, in which particles can hop between neighboring 
sites of a lattice and interact via short-range potentials.
(iii)  Stochastic dynamics of disordered systems: It is well known that the master equation describing the 
stochastic  dynamics  of  a  classical  system can  be  mapped onto a  quantum Hamiltonian.  Hence,  similar 
methods can be used to tackle both problems. Dynamical problems involving a large number of interacting 
entities in presence of disorder are encountered in a wide class of applications: examples are the analysis of 



stochastic  algorithms in computer  science and of  gene regulatory networks  in biology.  It  is  difficult  to 
exhaust here all the potential applications of the method is this context. At the beginning the project was 
more focused on applications to quantum problems; hence in the following I will discuss first the quantum 
case. The study of classical dynamics will be discussed at the end.

All  the  examples  above  belong  to  a  wider  class  of  problems  where  the  interplay  between  quantum 
fluctuations, strong interactions and disorder/frustration plays a key role. Indeed, the models that have been 
used to investigate these problems are strikingly similar. Typically, the quantum Hamiltonian is the sum of a 
“classical” part that contains strong interactions and disorder, and a term inducing the quantum fluctuations 
(hopping for particles, or a transverse field for spins). The “classical” part of the Hamiltonian can typically 
be reduced to a classically frustrated system, such as a Random Field Ising Model or a spin glass. Therefore, 
one  can  expect  that  these  problems  can  be  tackled  by  properly  translating  to  the  quantum world  our 
experience in the study of classically frustrated systems, as will be detailed in the next section.

B. Overview of our research methodology
The common way to attack these problem is to use a new method, the quantum version of the so-called 
“cavity method”, that has very recently been developed, first by a Princeton group, then by ourselves. Our 
main aim in this project was that of computing quantitatively, within reasonable approximation, the phase 
diagram of a given quantum strongly interacting disordered Hamiltonian. This is extremely difficult, mainly 
because due to the strong interactions, perturbation theory (that is the standard way of tackling difficult 
quantum problems) breaks down. Note that we are not interested here in the critical regime close to a phase 
transition, hence sophisticated techniques such as the Renormalization Group are of little help in this case. 
Apart from special cases (mainly one dimensional) where one can obtain exact solutions, two main strategies 
to tackle these problems have become standard nowadays: on the analytical side, one often resorts to mean-
field like theories; on the numerical side, one makes use of Quantum Monte Carlo simulation schemes. 
However, both methods, despite many successes, suffer from severe drawbacks when applied to disordered 
strongly interacting systems:
- Numerical simulations are  difficult  mostly  because in strongly disordered systems there are ergodicity 
problems, and additionally one has to consider very large samples in order to properly take into account rare 
realizations of the disorder, that are often relevant in determining the physical behavior of the system in the 
thermodynamic limit. The behavior of small systems is sometimes misleading, as the scaling with system 
size can change dramatically for larger systems. Striking examples of this  are the Bose glass phase and 
Griffiths  phases  in  quantum disordered  magnets.  Hence,  although  numerical  simulations  can  give  very 
precious indications, analytical methods that are capable of taking directly the thermodynamic limit and the 
average over the disorder are very much needed.
-  In  the  mean  field  approach,  one  assumes  that  the  behavior  of  the  system  can  be  captured  by  a 
“representative” degree of freedom subject to a “mean external field” which is averaged over the whole 
system. The latter is determined self-consistently by assuming that  the representative degree of freedom 
describes the environment of its neighbors. However, disordered systems are strongly heterogeneous, and 
each degree of freedom feels a very different local field coming from its local environment. The interplay of 
heterogeneity  and  quantum  fluctuations  is  at  the  basis  of  the  interesting  phenomena  observed  in  such 
systems. Another important ingredient that has to be taken into account by the theory is that frustration often 
induces the existence of a very large number of metastable states (i.e. local minima of a suitable free energy 
functional), each described by a different set of local fields.

Hence, solving these problems requires the development of a method capable to take into account the strong 
fluctuations of the local fields, while at the same time being analytically solvable in the thermodynamic 
limit, and being capable to perform the correct average over the disorder. In the classical case, this has been 
achieved by the so-called cavity method [Mézard, Parisi, EPJB 2001]. This method is an extension of older 
ideas (known as the “Bethe approximation” in condensed matter  or “Belief Propagation” in information 
theory) and is designed to tackle exactly this physical situation, where local fields display strong fluctuations 
from site to site, and from one metastable state to the other. Its more elaborate versions allow to deal with 
glassy phases that arise in frustrated spin models and which manifest themselves by the proliferation of the 
number  of  metastable  states.  This method has  been very successfully applied in the context  of  random 
combinatorial optimization, thanks to the analogy between these problems and finite connectivity mean-field 
spin-glasses. 

In summary, the cavity method can be seen as a “refined” mean-field like approximation (the so-called Bethe 
approximation) of models defined, for instance, on a square or cubic lattice. Yet, it has several important 
advantages:



1) It takes into account local spatial fluctuations of the environment, and the existence of many different 
states;  it  allows  to  take  the  thermodynamic  limit  and  in  this  limit  it  allows  to  compute  probability 
distributions of local observables with respect to disorder;
2) It is exact for models defined on random lattices (or Bethe lattices); this means that there is a class of 
concrete models, defined by a local Hamiltonian, of which the method gives the exact solution (for instance 
allowing for a direct comparison with Monte-Carlo simulations);
3) It can be formulated via a variational principle: in other words there is a suitable free energy functional 
whose minimization yields the cavity equations; this allows a direct access to the free energy of the system, 
and makes easy to devise variational approximations to the true solution.
4) It allows to define a distance between two spins as the number of interactions on a shortest path between 
them, leading to a consistent definition of a correlation length. 
More specifically, in the quantum case
5) It allows to study phenomena that are intrinsically related to the notion of distance, the most striking of 
them being Anderson localization [Abou-Chacra, Thouless, Anderson, J.Phys.C 1973], that can be studied on 
a Bethe lattice while it disappears in the standard mean field limit of infinite connectivity.

From a technical point of view the goal of our project was to develop a full generalization of the cavity 
method to quantum models, suitable to be applied to the diverse problems outlined above. This program was 
started  recently  and  is  based  on  a  discrete  imaginary  time  (Suzuki-Trotter)  path  integral  formulation 
[Laumann,  Scardicchio,  Sondhi,  PRB 2008]. We improved over this preliminary investigation in several 
ways, mainly by showing how to perform the continuum imaginary-time limit and by extending the method 
to Bosons, as will be detailed below.

It is important to stress at this point the relation between our formulation of the quantum cavity method and 
other attempts to go beyond the simplest mean-field theory for disordered quantum systems. Indeed, our 
formulation of the quantum cavity method is exact on sparse random graphs, and contains, as special limits, 
many different methods that have been very recently developed to investigate these problems. These all 
correspond to large connectivity limits, in particular:
1) The stochastic mean-field theory of [Bissbort, Hofstetter, EPL 2009] and the closely related method of 
[Ioffe, Mézard, PRL 2010] both correspond to the leading order in a large connectivity expansion of the 
cavity method, for bosons and spins respectively.
2) A certain class of extensions of the Fermionic DMFT [Dobrosavljevic, Kotliar, PRL 1997] correspond to 
the leading order in large connectivity of the cavity method for fermions.
3) The recently formulated Bosonic DMFT [Byczuk, Vollhardt, PRB 2008] and the original formulation of 
[Laumann,  Scardicchio,  Sondhi,  PRB  2008]  take  into  account  the  next-to-leading  order  in  the  same 
expansion for bosons and spins, respectively.
The fact that so many cavity-like approximations have been recently derived testifies the vitality of the 
method in the present moment.

C. Overview of the results
The cavity method is exact on random or Bethe lattices in the sense that it allows to reduce the solution of a 
problem involving a large number of interacting degrees of freedom to that of a single functional equation. 
However, the cavity equation is a complicated recurrence equation for the local effective action, and one has 
to find its fixed point. At variance with DMFT equations, in which only the leading Gaussian term is kept, in 
the cavity method one explicitly takes into account  all  many-points local  correlations in time, therefore 
having access to the full local effective action. However, the equations are difficult to handle. We obtained 
the following technical results that constitute the basis of all our results:

1. We introduced a new strategy to solve the quantum cavity equations, that consists in constructing a 
sample of spin trajectories from the local effective action and finding statistically a fixed point by 
iterating the cavity equation on this sample. We showed how to perform the continuum imaginary-
time limit and we applied the method to solve exactly the quantum Ising ferromagnet in a transverse 
field on a random regular lattice  [Krzakala, Rosso, Semerjian, Zamponi, PRB 2008].

2. In a subsequent paper we showed how to generalize the method to Bosonic systems [Semerjian, 
Tarzia, Zamponi, PRB 2009]. 

3. More recently, we included in the quantum cavity method some developments of the classical case 
(known  as  replica  symmetry  breaking  effects)  that  are  needed  to  treat  situations  where  many 
metastable states are present [Jorg, Krzakala, Semerjian, Zamponi, PRL 2010]. 

Therefore, we showed that our method works well for spin and Bosonic models where the matrix elements of 
the  Hamiltonian  in  the  Suzuki-Trotter  representation  are  all  positive  and  the  effective  action  is  then  a 



probability  distribution.  However,  this  method  is  limited  because  it  cannot  access  directly  the  zero-
temperature limit, and it does not work for cases (such as fermions or the real-time dynamics of bosons) 
where  a sign  problem arises.  It  would be desirable to  develop alternative  strategies  that  could address, 
possibly in an approximate way, these more complicated cases.

Having  developed  the  necessary  technical  tools,  we  applied  the  method  to  some  interesting  physical 
problems obtaining the following results:

(i) Failure of adiabatic quantum computing for some difficult problems - Some of the quantum algorithms 
proposed up to now have been written with a specific task in mind, for instance factoring a large integer 
[Shor,  SIAM  J.Comput.  1997];  the  quantum  adiabatic  algorithm  (QAA)  [Farhi  et  al.,  Science  2001; 
Kadowaki, Nishimori, PRE 1998] is, on the contrary, able to tackle a variety of optimization problems in a 
universal way. Its functioning is based on a slow interpolation between a simple Hamiltonian, such that the 
quantum computer can be easily initialized in its ground state, and the Hamiltonian (cost function) to be 
minimized. If the interpolation is slow enough the adiabatic theorem ensures that the system will remain at 
all times in the ground state of the interpolating Hamiltonian. At the end of the evolution, it will be in the 
ground state of the problem Hamiltonian which will be solved. However, physical intuition suggests that the 
time  needed  to  ensure  the  adiabaticity  condition  will  diverge  in  the  thermodynamic  limit  whenever  a 
quantum phase transition is encountered during the interpolation. Since the instantaneous Hamiltonian can 
typically be written as a spin glass model in a transverse field, the problem is turned into the problem of 
determining the phase diagram of a broad class of quantum spin glasses. 

At first, we studied the simplest optimization problem, namely the random XORSAT problem in a transverse 
field. The structure of the solution space of this problem in the classical case has been rigorously established, 
and  we  used  the  cavity  method  to  understand  how  this  structure  is  modified  when  adding  quantum 
fluctuations to the problem. We showed that this problem displays a first order quantum phase transition as a 
function of the quantum fluctuations intensity. This transition is accompanied by an exponentially small (in 
system size) gap in the thermodynamic limit,  which makes the QAA ineffective for this  problem [Jorg, 
Krzakala, Semerjian, Zamponi, PRL 2010]. 

An important ingredient that is missing in XORSAT is that classical combinatorial problems usually have an 
exponentially large (in the number of variables) degeneracy of their ground and excited states. In such a 
situation the relevant gap probably involves the excited states that are not continuously transformed to the 
degenerate classical ground states. Preliminary results pointing in this direction have been recently obtained 
[Altshuler et  al., Farhi et al., preprint 2009]. We formulated and investigated a toy model that is exactly 
solvable,  yet  which  presents  such  a  degeneracy  of  levels  [Foini,  Semerjian,  Zamponi,  PRL 2010].  We 
showed that entropy causes unexpected effects: in some situations, quantum fluctuations might promote the 
existence of a glass phase! 

(ii)  Superfluidity and superconductivity in disordered systems -  We focused on Bosonic systems, since the 
method does not work for Fermions. Still, the investigation of interacting Bosons is very timely since cold-
atoms experiments recently provided access to exotic phases of disordered Bosons  [Roati et al., Billy et al., 
Nature 2008]. We confirmed, by means of the cavity method, an earlier suggestion [Boninsegni, Prokof'ev, 
Svistunov, PRL 2006] that geometrical frustration alone can induce a "superglass" phase of bosons in which 
the system supports at the same time glassy ordering and superfluidity [Carleo, Tarzia, Zamponi, PRL 2009]. 
We also investigated quantum extensions of lattice glass models [Biroli, Mézard, PRL 2001] and established 
their phase diagram by the cavity method [Foini, Semerjian, Zamponi, PRB 2011]: the main outcome of this 
study was the existence of a first order superfluid-glass phase, therefore accompanied by the coexistence of 
the two phases,  which  could induce an heterogeneous “superglass”  phase in which some region would 
support the glassiness while other regions would support the superfluidity. Moreover, this study confirmed 
that quantum fluctuations promote glassiness at low enough temperature, a result  that was also recently 
obtained by mean of quantum Mode-Coupling Theory [Markland et al., Nature Physics 2011].

(iii) Perspectives:  Stochastic  dynamics  of  disordered  systems -  As  already discussed,  there  are  a  lot  of 
potential applications of the method in this context. We are now starting to investigate the potentialities of 
the method in this domain. In the following we discuss two examples of concrete problems that can be 
tackled with the cavity method, but we hope that many other interesting application will emerge during the 
development of the project. 
1. Classical optimization problems are often solved by mean of stochastic algorithms that perform a random 
walk in the space of configurations according to some local update rule. It can be proven in many cases that 
for  random  instances,  a  given  algorithm will  be  effective,  in  the  thermodynamic  limit,  up  to  a  given 



algorithmic threshold in the ratio of clauses to variables (which is a simple measure of the “difficulty” of a 
problem). Above the threshold the algorithm fails with very high probability. The analytical computation of 
algorithmic thresholds has been performed only in very simple cases; by mean of the dynamic cavity method 
we will able to compute them for a much wider class of algorithms, and hopefully we will obtain insight into 
the structural reasons that make these algorithms fail.
2. In many applications to chemistry and biology one is interested in the computation of  transition rates 
between different stable states of a network. For large systems, it is tempting to identify these states as 
metastable states. Hence, one would like to compute transition rates between different metastable states of 
the network. We expect this to be possible for sparse random networks by mean of the dynamic cavity 
method, combined with standard sampling methods like the one proposed in [Dellago,  Bolhuis,  Csajka, 
Chandler, JCP 1998].

Summary
This project  provided some new insight  into some difficult  open problems,  characterized by a common 
ingredient:  the  interplay  of  quantum  fluctuations,  disorder  and  frustration.  Nice  perspectives  of  future 
development of these ideas are offered by the application to the stochastic dynamic of classical systems, with 
potential applications in chemistry, biology and information theory. I have been invited to write a News & 
Views paper for Nature Physics,  that  reviews our results  and those of Markland et  al.  mentioned above 
[Zamponi, Nature Physics, 2011].


