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We study the first-passage time, the distribution of the maximum, and the absorption probability of fractional
Brownian motion of Hurst parameter H with both a linear and a non-linear drift. The latter appears naturally
when applying non-linear variable transformations. Via a perturbative expansion in ε = H − 1/2, we give
the first-order corrections to the classical result for Brownian motion analytically. Using a recently introduced
adaptive bisection algorithm, which is much more efficient than the standard Davies-Harte algorithm, we test
our predictions for the first-passage time on grids of effective sizes up to Neff = 228 ≈ 2.7 × 108 points. The
agreement between theory and simulations is excellent, and by far exceeds in precision what can be obtained by
scaling alone.

I. INTRODUCTION

Understanding the extreme-value statistics of random pro-
cesses is important in a variety of contexts. Examples are
records [1], e.g. in climate change [2], equivalent to depinning
[3], in quantitative trading [4], or for earthquakes [5]. While
much is known for Markov processes, and especially for
Brownian motion [6–12], much less is known for correlated,
i.e. non-Markovian processes, of which fractional Brownian
motion (fBm) is the simplest scale-free version [13–20].

FBm is important as it successfully models a variety of
natural processes [21]: a tagged particle in single-file dif-
fusion (H = 0.25) [22, 23], the integrated current in diffu-
sive transport (H = 0.25) [24], polymer translocation through
a narrow pore (H ' 0.4) [25–27], anomalous diffusion [28],
values of the log return of a stock (H ' 0.6 to 0.8) [14,
29, 31, 41], hydrology (H ' 0.72 to 0.87) [32], a tagged
monomer in a polymer (H = 0.25) [33], solar flare activity
(H ' 0.57 to 0.86) [34], the price of electricity in a lib-
erated market (H ' 0.41) [35], telecommunication networks
(H ' 0.78 to 0.86) [36], telomeres inside the nucleus of
human cells (H ' 0.18 to 0.35) [37], or diffusion inside
crowded fluids (H ' 0.4) [38].

Recently, first-passage times of fBm have been investigated
[39, 40, 42–45]. Due to the non-Markovian nature of the pro-
cess, translating these results to a fBM with drift is far from
trivial, and even properly estimating the drift for H < 1/2 is
a challenge [46]. To our knowledge, no anaytical result for a
fBm with drift are known. It is this gap we intend to fill here.

As is discussed later, apart from a linear drift, a non-linear
drift may appear as well, leading us to consider the process,

zt := xt + µt+ νt2H . (1)

Here xt is a standard fractional Brownian motion (fBm) with
mean and variance

〈xt〉 = x0 = 0 , (2)
〈xt1xt2〉 = |t1|2H + |t2|2H − |t1 − t2|2H . (3)

The parameterH is the Hurst parameter. Since fBm is a Gaus-
sian process, the above equations uniquely and completely

specify it. Taking a derivative w.r.t. both t1 and t2 shows that
the increments of the process are correlated,

〈ẋt1 ẋt2〉 = 2H(2H − 1)|t1 − t2|2H−2 . (4)

Correlations are positive for H > 1/2, and negative for H <
1/2. The case H = 1/2 corresponds to Brownian motion,
with uncorrelated increments.

The parameters µ and ν are the strength of linear and non-
linear drift. While linear drift is a canonical choice, non-linear
drift appears as a consequence of non-linear variable transfor-
mations. As an example, consider the process

yt := ezt . (5)

The exponential transformation appears quite often, be it in
the Black-Sholes theory of the stock market where the log-
arithm of the portfolio price is treated as a random walk
[41, 47, 48], be it in non-linear surface growth of the Kardar-
Parisi-Zhang universality class [49–51], where the transfor-
mation is known as the Cole-Hopf transformation [52, 53], or
in the evaluation of the Pickands constant [54–61]. Like any
non-linear transform, this generates an effective drift known
from Itô-calculus. Computing the average of yt gives

〈yt〉 = 〈ezt〉 = exp

(
〈zt〉+

1

2

[〈
z2
t

〉
− 〈zt〉2

])
= exp

(
µt+ [ν + 1] t2H

)
. (6)

Thus even if initially there is no nonlinear drift, it is generated
by non-linear transformations. For this reason, we include it
into our model.

While for Brownian motion, equivalent to H = 1
2 , many

results can be obtained analytically [6–12], for fBm much less
is known. Recently, some of us developed a framework [62]
for a systematic expansion in

ε := H − 1

2
. (7)

It has since successfully been applied to obtain the distribu-
tion of the maximum and minimum of an fBm [43, 45], to
fBm bridges [63], evaluation of the Pickands constant [55],
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P probability
P = ∂xP probability density in x
P = ∂tP probability density in t
P = ∂yP probability density in y

TABLE I: Notations used for probabilities and their various densities.

the 2-sided exit problem [64] and the generalization of the
three classical arcsine laws [65]. It is also known that the
fractal dimension of the record set of an fBm is df = H [66].

This article is organized into four sections, the introduction,
theory in section II, and numerics in section III, followed by
conclusions in section IV.

II. THEORY

In this section, we find the probability distribution of first-
passage times and running maxima of fBm with linear and
non-linear drift by way of a perturbation expansion around
simple Brownian motion. The key result of this section is the
scaling function (91) which together with the auxiliary func-
tions defined in Eqs. (94), (101) and (105) gives the distri-
bution of first-passage times. The majority of this section is
devoted to deriving these results.

A. Scaling dimensions

Before developing the perturbation theory, we consider the
scaling dimensions involved. This will be useful for later dis-
cussion of the scaling functions. For fBm as defined in Eq. (1),
there are four dimension-full quantities, x, t, µ, and ν. Scaling
functions will thus depend on three scaling variables, which
we now identify. We start with the terms without drift:

x ∼ tH ⇐⇒ t ∼ x 1
H , (8)

where the tilde means “same scaling dimension”. Thus (with-
out drift), any observable O(x, t) can be written as

O(x, t) = xdimx(O)fO(y) , y :=
x√
2tH

. (9)

The variable y is dimension free. In presence of a linear drift,
one has

x ∼ µt ⇐⇒ µ ∼ x

t
∼ x1− 1

H ∼ tH−1 . (10)

Thus the combination u = µx
1
H−1 is dimension free, as is

ũ := u
H

1−H = µ
H

1−H x. For non-linear drift, we have

x ∼ νt2H ⇐⇒ ν ∼ x

t2H
∼ 1

x
∼ 1

tH
. (11)

Another scaling variable therefore is v = νx. In conclusion,
any observable O can, in generalization of Eq. (9), be written

as

O(x, t, µ, ν) = xdimx(O)fO(y, u, v) , (12)

y =
x√
2tH

, (13)

u = µx
1
H−1, or ũ = µ

H
1−H x , (14)

v = νx . (15)

B. The first-passage time

The central result of our work is a perturbative expression
of the first-passage-time density of fBM with linear and non-
linear drift as introduced in Eq. (1). The first-passage time tFP

is defined as

tFP(m) := inf
t>0
{t, zt ≤ 0|zt=0 = m} , (16)

where m is the starting point of the process zt, and m > 0.
The first-passage-time density for Brownian motion with (lin-
ear) drift, see e.g. [6], and rederived below in Eq. (30), is

P0(tFP(m) = t) =
m

2
√
πt3/2

e
− 1

2

(
m√
2t

+µ
2

√
2t
)2
. (17)

This density in time is most naturally expressed in terms of
the scaling variable y introduced in Eq. (9), and which for
Brownian motion (H = 1/2) reads

y =
m√
2t

∣∣∣∣
t=tFP(m)

. (18)

For Brownian Motion the probability distribution of y takes
the simple form

P0(y;µ) =

√
2

π
e−F0(y;µ) , (19)

F0(y;µ) =
1

2

(
y +

µ

2

m

y

)2

. (20)

Note that the measure is dt in Eq. (17) (density in time),
whereas in Eq. (19) it is dy (density in y). To avoid confu-
sion, we use distinct symbols for probabilities P, densities P
in time t, densities P in y, and densities P in space x, inde-
pendent of the actual choice of variables. This is summarized
in table I.

We introduced the scaling function F0. Below we compute
its corrections to first order in ε, leading to a correction of the
first-passage density in y,

P(y;µ, ν) =
y

1
H−2

√
2π

e−F0(y;µ,ν)−εδF(y;µ,ν) +O(ε2) . (21)

The result is given in Eqs. (90)-(91). Two comments are in
order: (i) the exponential resummation is chosen for better
convergence for larger ε, as discussed in [64], section IV.C;
(ii) the distribution of first-passage times is related to the dis-
tribution of maxima.

Readers wishing to skip ahead will find the function δF
evaluated using path-integral methods, described in section
II E. For the explicit result, see section II L. A confirmation
by numerical simulations is shown in section III B.
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C. Summary of calculations to be done

In order to calculate the first-passage-time distribution, we
consider the process zt > 0 in the presence of an absorbing
boundary condition at z = 0 and restrict ourselves to zt >
0. The transition probability density of the process zt to pass
from z0 > 0 to z1 > 0 in time t, without being absorbed at
z = 0 is denoted Pµ,ν+ (z0, z1; t). The probability density of
first-passage times P

(
tFP(m) = t

)
can then be obtained as

P(tFP(m) = t) = ∂z1P
µ,ν
+ (m, z1, t)

∣∣
z1=0

. (22)

This relation holds since the derivative on the right-hand-side
picks out those trajectories which assume zt = 0 at time t for
the first time. The general strategy of this work is to compute
∂z1P

µ,ν
+ (m, z1, t)

∣∣
z1=0

and its perturbative corrections using
path-integral methods. In the subsequent section II D, we dis-
cuss the reference point of our expansion, simple Brownian
motion. In section II E, we introduce a perturbative expan-
sion around Brownian motion, based on a path-integral for-
malism. This yields a diagrammatic expansion (section II F),
with three diagrams, listed in section II G, evaluated in sec-
tions II H to II J, and regrouped in section II K. The final result
is given in section II L. Contrary to the drift-free case, not all
processes are absorbed, as is discussed in section II M. Rela-
tions between the different probability densities are discussed
in section II N, followed by an analysis of the tail of these dis-
tributions in section II O. Numerical checks are presented in
section III, followed by conclusions in section IV.

D. Simple Brownian Motion: First-passage time and
absorption probability

The perturbation theory is an expansion around simple
Brownian motion. This base point is considered here. By set-
ting H = 1

2 and ν = 0 in Eq. (1), we obtain simple Brownian
motion with drift. For this process, we compute (i) the posi-
tive transition probability and (ii) the absorption probability.

The transition probability of simple Brownian motion Pµ+
(to alleviate our notations, we do not put an index 0 to indicate
Brownian motion, since P+ is not used for fBm), the proba-
bility to pass from z0 to z1 within time t without crossing the
line z ≡ 0, satisfies the associated Fokker-Planck equation

∂tP
µ
+(z0, z1, t) = ∂2

z1P
µ
+(z0, z1, t)− µ∂z1Pµ+(z0, z1, t) .

(23)
with appropriate absorbing boundary condition at z ≡ 0. Its
solution is given by the mirror-charge solution

Pµ+(z0, z1, t) =
1√
4πt

(
e−(z1−z0)2/4t − e−(z1+z0)2/4t

)
×e

µ
2 (z1−z0)−µ

2t
4 , (24)

satisfying the initial condition

Pµ+(z0, z1, t = 0) = δ(z0 − z1) . (25)

It is useful to consider its Laplace-transformed version. We
define the Laplace transform of a function f(t), with t ≥ 0 as

f̃(s) := Lt→s [f(t)] =

∫ ∞
0

dt e−stf(t) . (26)

This yields

P̃µ+(z0, z1, s) = e
µ
2 (z1−z0)P̃+

(
z0, z1, s+

µ2

4

)
, (27)

where the drift-free propagator reads

P̃+(z0, z1, s) =
e−
√
s(z0−z1) − e−

√
s(z0+z1)

2
√
s

. (28)

The Laplace transform P̃(m, s) of the first-passage-time prob-
ability density, following Eq. (22), equals the probability to go
close to the boundary, and there being absorbed for the first
time,

P̃(m, s) :=

∫ ∞
0

dt e−stP(tFP(m) = t)

= ∂z1 P̃
µ
+(m, z1, s)

∣∣∣
z1=0

= e−
µ
2me−m

√
s+µ2/4 . (29)

Its inverse Laplace transform is the first-passage-time proba-
bility density

P(tFP(m) = t) = e−
µ
2m−

µ2

4 t
me−

m2

4t

2
√
πt3/2

, (30)

confirming the result in Eq. (17). The total (time integrated)
absorption probability is

Pabs(m) = P̃(m, s = 0)

= e−
µ
2me−

|µ|
2 m =

{
e−µm , µ > 0

1 , µ ≤ 0
. (31)

In what follows, we present perturbative corrections of these
results for ε 6= 0.

E. The path-integral of a fBm with drift

The technology developed in [43, 62, 64] uses a path-
integral to describe fBM. Since zt is Gaussian, its path-
probability measure on a finite interval [0, T ] is

P[zt] = exp (−S[zt;µ, ν]) , (32)

where S[zt;µ, ν] is an action quadratic in zt. Without drift
(µ = ν = 0), the action for a fBM to order ε is [43, 62, 64]

S[zt;µ = ν = 0] (33)

=

∫ T

0

dt
ż2
t

4Dε
− ε

2

∫ T

τ

dt2

∫ t2−τ

0

dt1
żt1 żt2
|t1 − t2|

.
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The action consists of a local part, corresponding to simple
Brownian motion, and a non-local part, proportional to ε. The
idea behind the perturbative expansion is that Brownian mo-
tion (as given by the first term) samples the whole phase space
of fBm, albeit with the wrong probability measure. Our per-
turbation theory corrects this, by weighing each path with
the second term in Eq. (33). This implies that the absorb-
ing boundary conditions at the origin are properly taken into
account, and that observables as the absorption current, which
are given by local operators, remain valid. For regularity, a
short-distance cutoff |t1 − t2| > τ is introduced in the last
integral, which is reflected in the diffusion constant [43]

Dε = 2Hτ2H−1 = (1 + 2ε)τ2ε = (eτ)2ε +O(ε2) . (34)

Let us now insert the definition (1) into the action (33). The
reason to proceed this way is that the method of images on
which our further calculation relies works in terms of xt as
defined in Eq. (1), but not zt. After some algebra we arrive at
the action for an arbitrary drift

S[zt] =

∫ T

0

dt
ż2
t

4Dε

+

∫ T

0

dt
ε

2
żt

[
(µ+ν) ln

(
t(T−t)
τ2

)
− 2ν ln

(
t

τ

)]
−ε

2

∫ T

τ

dt2

∫ t2−τ

0

dt1
żt1 żt2
|t1 − t2|

−zT − z0

2

[ µ
Dε

+ ν
]

+
T

4
(µ+ ν)2

+
T

2
ε
(
ν2 − µ2

)
ln(T ) + O(ε2) . (35)

Some checks are in order. In absence of absorbing boundaries,
the exact free propagator reads

Pµ,ν(0, z, T ) =
1

2
√
πTH

e−
(z−µT−νT2H )2

4T2H

=
1

2
√
πTH

exp

(
− z2

4T 2H
+
z

2

[
ν+µT−2ε

]
−T

4

[
νT ε+µT−ε

]2)
. (36)

Since the above formalism has variables ż only, the term∼ z2

is given by the drift-free perturbation theory. We can further
check that if we replace in the action ż(t) by its “classical
trajectory”, i.e. ż(t) → [z(T ) − z(0)]/T , then both the nor-
malization and the drift term agree with the exact propagator.

Let us specify Eq. (35) to the two cases of interest: For a
fBm with linear drift as given in Eq. (1) with ν = 0, we have

Sν=0[zt] =

∫ T

0

dt
ż2
t

4Dε
− µ

2Dε
(zT − z0) +

T 1−2ε

4
µ2

−ε
2

∫ T

τ

dt2

∫ t2−τ

0

dt1
żt1 żt2
|t1 − t2|

+
εµ

2

∫ T

0

dt żt ln

(
[T − t]t
τ2

)
+O(ε2) . (37)

For a fBm with non-linear drift as given in Eq. (1) with µ = 0,
we have

Sµ=0[z] =

∫ T

0

dt
ż2
t

4Dε
− ν

2
(zT − z0) +

T 1+2ε

4
ν2

−ε
2

∫ T

τ

dt2

∫ t2−τ

0

dt1
żt1 żt2
|t1 − t2|

+
εν

2

∫ T

0

dt żt ln

(
T − t
t

)
+O(ε2) . (38)

Note the appearance of the diffusion constant in the “bias”
(Girsanov) term zT − z0 for a linear drift, and its absence for
a non-linear drift.

To simplify the notation, we introduce

S0[zt] =

∫ T

0

dt
ż2
t

4
(39)

as a shorthand for the Brownian action around which pertur-
bation theory expands. The drift (Girsanov) term is e−Sd , with

Sd[z] =
z0 − zT

2

(
µ

Dε
+ν

)
+
T

4

(
µT−ε+νT ε

)2
. (40)

Further, define (valid at leading order in ε)

α := µ− ν , β := µ+ ν , (41)

µ =
α+ β

2
, ν =

β − α
2

. (42)

This simplifies the drift terms in the action to

Sα[zt] :=
1

2

∫ T

0

dt żt ln

(
t

τ

)
, (43)

Sβ [zt] :=
1

2

∫ T

0

dt żt ln

(
T − t
τ

)
. (44)

Finally, the drift-independent perturbative correction contain-
ing the non-local interaction reads

S1[zt] =
1

2

∫ T

τ

dt2

∫ t2−τ

0

dt1
żt1 żt2
|t1 − t2|

. (45)

In these notations, the action to order ε reads

S[zt;µ, ν] =
S0

Dε
+ Sd − ε (S1 − αSα − βSβ) . (46)

Perturbation theory takes place in the three interaction-terms
proportional to ε, plus an additional contribution due to Dε.
The bare result Eq. (27) of transition probabilities of fBM will
thus be corrected by three different terms corresponding to the
three interaction terms Sα,Sβ and S1, plus a correction from
Dε. The (diagrammatic) rules for computing these corrections
are outlined in the next section.
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m

x1

x2

x0

t1 t2 T
time

space

m

x1

x0

t T
time

space

m

x1

x0

t T
time

space

FIG. 1: Graphical representation of the path-integral for diagram G1(m, t) (left, expectation of S1), Gα(m, t) (middle, expectation of Sα),
and Gβ(m, t) (right, expectation of Sβ). The wiggly line in the first diagram represents the interaction proportional to 1/(t2 − t1). The red
lines in the second and third diagram contain a log of the corresponding time difference, ln(t/T ) for the first, and ln

(
(T − t)/T

)
for the

second.

F. Diagrammatic expansion

The central aim of this work is to calculate the first-passage-
time density. This is done by taking the derivative of the sur-
vival transition density at its endpoint (cf. Eq. (22)). The latter
is obtained perturbatively by evaluating a path-integral over
the action defined previously.

Pµ,ν(m, t) := ∂z1P
µ,ν
+,ε (m, z1, t)

∣∣∣
z1=0

≡ lim
z1→0

1

z1
Pµ,ν+,ε (m, z1, t) . (47)

Here we introduced Pµ,ν+,ε (m, z1, t)

Pµ,ν+,ε (m, z1, t) :=

∫ zt=z1

z0=m

D[zt]Θ(zt) exp (−S) , (48)

the probability of a path zt to pass from m to z1 within time
t without being absorbed at z = 0 (cf. Eq. (24)). At first or-
der in ε, this path integral has four perturbative contributions:
The three diagrams induced by S1, Sα, and Sβ , as well as the
change in the diffusion constant Dε. The simplest way of do-
ing these calculations is to calculate with D = 1, and finally
correct for Dε 6= 1 by writing the FPT density in time of zt as

Pµ,ν(m, t) = Gµ,ν(m, tDε) (49)

where we introduce the auxiliary probability density

Gµ,ν(m, t) (50)

=
∂

∂z1

∣∣∣
z1=0

zt=z1∫
z0=m

D[zt]Θ(zt) e−S
0−Sd+ε(S1−αSα−βSβ)

+O(ε2) .

We now use the perturbation expansion established in
Ref. [43, 45, 62, 63]; we refer to [43, 44] for a detailed in-
troduction, and only briefly summarise the method.

The function Gµ,ν(m, t) introduced above has the pertur-
bative expansion

Gµ,ν(m, t) = e−Sd
[
G0(m, t) + ε δG(m, t)

]
(51)

where

δG(m, t)

= ∂z1

∣∣∣
z1=0

∫ zt=z1

z0=m

D[zt]Θ(zt) (S1 − αSα − βSβ) e−S0

!
= G1(m, t)− αGα(m, t)− βGβ(m, t) +O(ε) . (52)

The three auxiliary functions are defined as

G1(m, t) := ∂z1

∫ zt=z1

z0=m

D[zt]Θ(zt)S1e−S0

∣∣∣
z1=0

, (53)

Gα(m, t) := ∂z1

∫ zt=z1

z0=m

D[zt]Θ(zt)Sαe−S0

∣∣∣
z1=0

, (54)

Gβ(m, t) := ∂z1

∫ zt=z1

z0=m

D[zt]Θ(zt)Sβe−S0

∣∣∣
z1=0

. (55)

As the term Sd only depends on the initial and final point, as
well as the time T , we were able to take it out. Each of the
perturbations S1, Sα, and Sβ , defined in Eqs. (43)-(45) has
to be evaluated inserted into the path integral with absorbing
boundaries at z = 0.

Let us summarize the rules of this perturbative expansion,
explained in detail in Ref. [43]. The first step is to perform
a Laplace transform, from the time variable t to the Laplace
conjugate s. This transform has two advantages: First of all,
it eliminates integrals over the intermediate times. Second,
the propagator (27)-(28) is exponential in the space variables,
thus the latter can be integrated over.

The next step is to eliminate the denominator in Eq. (45),
using a Schwinger parametrization (Eq. (31) of [43]),

1

t2 − t1
=

∫
y>0

e−y(t2−t1) . (56)

The variable y on the r.h.s. of Eq. (56) can be interpreted as a
shift in the Laplace variable s associated to the time difference
t2 − t1, i.e.

s→ s+ y (57)

for all propagators between times t1 and time t2. For an ex-
ample see the first diagram in Eq. (65) below.
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The integral over times necessitates a cutoff τ at small
times, which can be replaced by a cutoff Λ for large y
(Eq. (A3) of [43]). Their relation is∫ T

0

dt

∫ Λ

0

e−ytdy = ln(TΛ) + γE +O(e−TΛ)

!
= ln

(
T

τ

)
=

∫ T

τ

1

t
dt . (58)

This implies the choice

Λ = e−γE/τ . (59)

Finally, while the insertion of the position xt at time t with
0 < t < T leads to a factor of x in the corresponding propa-
gators,

〈zt〉z0=a,zT=b =

∫
z

P+(a, z, t)zP+(z, b, T − t) , (60)

the insertion of ẋt yields a derivative (Eq. (A1) of [43])

〈żt〉z0=a,zT=b = 2

∫
z

P+(a, z, t)∂zP+(z, b, T − t) . (61)

Here P+(a, b, T ) is the Brownian transition density intro-
duced in Eq. (24) in the absence of drift (µ = 0).

G. Diagrams to be evaluated

The three auxiliary functions introduced in Eqs. (53)-(55)
have a diagrammatic representation presented in Fig. 1. They

give to first order in ε for G,

Gµ,ν(m,T ) := exp

(
−m

2

(
µ

Dε
+ν

)
− T

4

(
µT−ε+νT ε

)2)
×
{
G0(m,T ) + ε

[
G1(m,T )− αGα(m,T )

− βGβ(m,T )
]}

. (62)

The zeroth order contribution G0(m, t) follows from
Eqs. (29) and (30),

G0(m, t) =
me−

m2

4t

2
√
πt3/2

(63)

G̃0(m, s) = e−m
√
s . (64)

H. Order ε, first diagram G1

The Laplace transform of the first diagram is obtained from
the insertion of S1 (without drift), as represented by the first
diagram of figure 1, using the Brownian propagators found in
Eq. (27). (The global factor of 2 = 22/2 comes from a factor
of 2 for each insertion of ẋ, and the 1/2 from the action.)

G̃1(m, s) = lim
x0→0

2

x0

∫ Λ

0

dy

∫
x1>0

∫
x2>0

P̃+(m,x1, s)∂x1
P̃+(x1, x2, s+ y)∂x2

P̃+(x2, x0, s)

= 2

∫ Λ

0

dy

√
s
(

e−m
√
s (my − 2

√
s+ y) + 2

√
s+ ye−m

√
s+y
)

2y2

= em
√
s
(
m
√
s+ 1

)
Ei
(
−2m

√
s
)

+ e−m
√
s

[
m
√
s

(
ln

(
m

2
√
sτ

)
− 1

)
− ln

(
2m
√
s
)
− γE

]
, (65)

where we introduced the exponential integral function Ei(z) = −
∫∞
−z dt e

−z

z , and used Eq. (59) to eleminate Λ. For the inverse
Laplace transform we find using appendix C of Ref. [63]

G1(m, t) = G0(m, t)

[
I
(
m√
2t

)
+ 2

(
m2

4t
− 1

)
ln

(
m2

τ

)
+ ln

(
t

τ

)
+

(γE − 1)m2

2t
− 2γE − 1

]
. (66)

The special function I appearing in this expression was introduced in Ref. [62], Eq. (B53)

I(z) =
z4

6
2F2

(
1, 1;

5

2
, 3;

z2

2

)
+ π(1− z2) erfi

(
z√
2

)
− 3z2 +

√
2πe

z2

2 z + 2 , (67)

where erfi(z) is the imaginary error function. Using the definition (59) of Λ, Eq. (66) and introducing the variable

z :=
m√
2t
, (68)
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G0(m, t) and G1(m, t) can be written more compactly as

tG0(m, t) =
e−

z2

2 z√
2π

, (69)

G1(m, t) = G0(m, t)

{
I(z)− ln

(
4tz4

τ

)
+ z2

[
ln

(
2tz2

τ

)
+ γE − 1

]
− 2γE − 1

}
. (70)

Note that there is a global prefactor of 1/t, and a logarithmic dependence on t and τ .

I. Order ε, second diagram Gα

To study perturbations with Sα defined in Eq. (43), we represent the logarithm as

ln

(
t

τ

)
=

∫ ∞
0

dy

y

[
e−τy − e−ty

]
. (71)

This yields for the insertion of Sα

G̃α(m, s) = lim
x0→0

1

x0

∫ Λ

0

dy

y

∫
x1>0

[
P̃+(m,x1, s)e

−τy − P̃+(m,x1, s+ y)
]
∂x1

P̃+(x1, x0, s)

=

∫ Λ/s

0

dy

[
e−m

√
s

√
sy2

− e−m
√
s
√
y+1

√
sy2

− me−m
√
s−sτy

2y

]
=

1

4
me−m

√
s

[
2e2m

√
sEi
(
−2m

√
s
)

+ ln

(
4sτ2

m2

)
+ 2

]
+O(Λ−1) . (72)

We checked that the y integrand is convergent, at least as 1/y2 for large y, and has a finite limit for y → 0; thus neither x0 nor
Λ are necessary as UV cutoffs, and the y-integral is finite. The τ -dependence stems from the ln(t/τ) of the perturbation term.

Doing the inverse Laplace transform using appendix C of [63], we get with z defined in Eq. (68)

√
tGα(m, t) =

e−
z2

2 z2 [I(z)− 2]

2
√
π(1− z2)

+
z erfc( z√

2
)

√
2 (z2 − 1)

−
e−

z2

2 z2
[

ln
(

2tz2

τ

)
+ γE − 1

]
2
√
π

, (73)

defining the complementary error function erfc(z) = 1 − erf(z). Note that there is no pole at z = 1. Indeed, for z → 1 one
obtains

− 2F2

(
1, 1; 5

2 , 3; 1
2

)
− 4 2F2

(
1, 1; 3

2 , 2; 1
2

)
+ 2
√

2eπ
(

erfc
(

1√
2

)
− 3
)

+ 4πerfi
(

1√
2

)
− 4 ln

(
2t
τ

)
− 4γE + 22

8
√
eπ

. (74)

J. Order ε, third diagram Gβ

Using again the integral representation (71), the third diagram for the insertion of Sβ is read off from Fig. 1 as

G̃β(m, s) = lim
x0→0

1

x0

∫ Λ

0

dy

y

∫
x1>0

P̃+(m,x1, s) ∂x1

[
P̃+(x1, x0, s)e

−τy − P̃+(x1, x0, s+ y)
]

=

∫ ∞
0

dy

[√
y + 1e−m

√
s

√
sy2

−
√
y + 1e−m

√
s
√
y+1

√
sy2

− me−m
√
s−sτy

2y

]

=
e−m

√
s
(
m
√
s
[
2− ln

(
m2

4sτ2

) ]
+ ln

(
4m2s

)
+ 2γE

)
4
√
s

− em
√
s (m
√
s+ 1) Ei (−2m

√
s)

2
√
s

. (75)

We checked that the y integrand is convergent, as it decays at least as 1/y3/2 for large y, and has a finite limit for y → 0, thus
no UV cutoff is necessary, and the y-integral is finite.

Doing the inverse Laplace transform using appendix C of
Ref. [63], we get with z defined in Eq. (68)

√
tGβ(m, t) =

e−
z2

2 [I(z)− 2]

2
√
π (1− z2)

+
z erfc( z√

2
)

√
2 (z2 − 1)

+
e−

z2

2 z2
[
1− ln( tτ )

]
2
√
π

. (76)

K. Combinations

Let us remind that in the drift-free case the result for G0(z)
is given in Eq. (69), while G1(z) is given in Eq. (70). Let
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us now turn to the corrections for drift. While Gα and Gβ
are the appropriate functions for the calculations, we finally
need the corrections for linear drift µ and non-linear drift ν.
Demanding that

αGα + βGβ
!
= µGµ + νGν , (77)

and using Eqs. (41) and (42) yields
√
tGµ(m, t) =

√
t
[
Gα(m, t) + Gβ(m, t)

]
= −e−

z2

2

(
z2+1

)
[I(z)−2]

2
√
π (z2−1)

+

√
2 z erfc( z√

2
)

z2−1

−
e−

z2

2 z2
[
ln
(

2t2z2

τ2

)
+ γE − 2

]
2
√
π

(78)

√
tGν(m, t) =

√
t
[
Gβ(m, t)−Gα(m, t)

]
=

e−
z2

2 [I(z)−2]

2
√
π

+
e−

z2

2 z2
[
ln(2z2)+γE

]
2
√
π

.

(79)

The perturbative contributions can be grouped together as,
cf. Eqs. (52) and (62)

G(m, t) := exp

(
−m

2

[
µ

Dε
+ ν

]
− t

4

[
µt−ε + νtε

]2)
×
{
G0(m, t) + ε

[
G1(m, t)−µGµ(m, t)−νGν(m, t)

]}
.

(80)

This expression is to this order equivalent to

G(m, t) := exp

(
−m

2

[
µ

Dε
+ ν

]
− t

4

[
µt−ε + νtε

]2)
×G0(m, t)

× exp

(
ε
G1(m, t)− µGµ(m, t)− νGν(m, t)

G0(m, t)

)
. (81)

See [64], Sec. IV.C for a discussion of why it is better to write
the perturbative corrections in an exponential form.

L. Scaling and corrections from the diffusion constant, final
result

The natural scaling variable for fBm is not z, but

y :=
m√
2tH

. (82)

This will induce some corrections (cf. Eq.(49)). Consider

e−
y2

2 y√
2π

=
e−

z2

2 z√
2π

[
1 + (z2 − 1)ε ln(t)

]
+O(ε2) . (83)

There is also a correction to the diffusion constant,

Dε ' (eτ)2ε . (84)

According to Eq. (49), this implies that

P(m, t) = G(m, tDε)

=
e−

y2

2 y√
2πtDε

× exp

(
−m

2

[
µ

Dε
+ ν

])
× exp

(
−Dεt

4

[
µ2(Dεt)

−2ε + ν2(Dεt)
2ε
])

× exp

(
ε

[
G1(m, t)− µGµ(m, t)− νGν(m, t)

G0(m, t)

− (y2 − 1) ln(t)

])
(85)

Note that we used the factored form (81) to make appear the
ratios of G1, Gµ and Gν with G0, yielding (relatively simple)
special functions F1, Fµ and Fν defined below. Regrouping
terms yields

P(m, t) =
e−

y2

2 y
1
H−1

√
2πt

× exp

(
−µm

1−2ε/H

2
y2ε − νm

2
yε − t

4

[
µt−ε + νtε

]2)
× exp

(
ε
[
F1(y)− µmFµ(y)− νmFν(y)

])
. (86)

To order ε, this can be rewritten in a more intuitive form as

tP(m, t) =
y

1
H−1

√
2π
× (87)

× exp

(
−y

2

2
+ ε
[
F1(y)+F0

1

]
− µm 1

H−1y2ε

[
1

2
+εFµ(y)

]

− νmy2ε

[
1

2
+εFν(y)

]
−m

2

8y2

[
µ

(
2y2

m2

)ε
H

+ ν

]2)
.

Note that since our expansion is restricted to the first order in
ε, in expressions like

1

H
−1 = 1−4ε+O(ε2) , 1− 1

2H
= 2ε+O(ε2) , (88)

we have no means to distinguish between left- and right-hand
side. Some choices are given by scaling, as the prefactor of
y

1
H−1, or seem natural, others are educated guesses.
Finally, we wish to rewrite Eq. (87) (a density in time) as

a density in y, given distance m from the absorbing boundary
for the starting point. Using that

dt

t
=

1

H

dy

y
, (89)

this yields

P(y|m,µ, ν) = P>(y|m,µ, ν) + Pescape(m,µ, ν)δ(y) .
(90)
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The function P>(y|m,µ, ν) is equivalent to Eq. (87) after the
change in measure (89),

P>(y|m,µ, ν) =
y

1
H−2

√
2πH

× (91)

×exp

(
−y

2

2
+ ε
[
F1(y)+F0

1

]
− µm 1

H−1y2ε

[
1

2
+εFµ(y)

]

− νmy2ε

[
1

2
+εFν(y)

]
−m

2

8y2

[
µ

(
2y2

m2

)ε
H

+ ν

]2)
.

Some trajectories escape, which we count as absorption time
t = ∞, equivalent to y = 0, resulting into the contribution
proportional to δ(y) in Eq. (90), with amplitude

Pescape(m,µ, ν) = 1−Pabs(m,µ, ν) , (92)

where

Pabs(m,µ, ν) :=

∫ ∞
0

dyP>(y|m,µ, ν) . (93)

It is evaluated in the next section, see Eqs. (121)-(123).
The three special functions appearing in Eq. (86) are de-

fined as follows: First, the drift-free contribution are

F1(y) + F0
1

:=
G1(y)

G0(y)
− (y2 − 1)

[
ln(t/τ)− 1

]
+ 4 ln y (94)

= I(y) + y2
(
ln
(
2y2
)

+γE

)
− 2 (γE + 1 + ln 2) .

The conventions are s.t. F1(y) agrees with Refs. [43, 45, 62],
i.e. F1(0) = 0. The constant part F0

1 is equivalent to a change
in normalization, N = exp(−εF0

1 ), which for the drift-free
case was of no interest [43, 45, 62], as there the absorption
probability is one, which is not the case with drift. In the
chose convention,

F1(y) = I(y) + y2
(
ln
(
2y2
)

+ γE

)
− 2 , (95)

F1(0) = 0 , (96)
F0

1 = −2 (γE + ln 2) . (97)

Its asymptotic expansions for small and large y are

F1(y) = 2
√

2πy + y2
(
ln
(
2y2
)

+ γE − 3
)
− 1

3

√
2πy3

+
y4

6
− 1

30

√
π

2
y5 +

y6

90
− 1

420

√
π

2
y7 +

y8

1260

−
√

π
2 y

9

6048
+

y10

18900
+O(y11) , (98)

F1(y) = ln(y2/2) + 1− ψ
(

1
2

)
+

1

2y2
− 1

2y4
+

5

4y6

− 21

4y8
+

63

2y10
+O(y−11) . (99)

Eq. (95) is equivalent to Eqs. (55) in [62], and (56) in [43].

The second function is for the drift proportional to µ,

Fµ(y) :=
Gµ(m, t)

mG0(m, t)
+ ∂ε

∣∣∣∣
ε=0

(
m4ε

2Dεy2ε

)
. (100)

It is evaluated as

Fµ(y) =

(
y2 + 1

)
[I(y)− 2]

2y2(1− y2)
+

√
2πe

y2

2 erfc
(
y√
2

)
y (y2 − 1)

+
1

2

[
ln(2)− γE

]
. (101)

Its asymptotic expansions are

Fµ(y) =
1

2

[
1− γE + ln(2)

]
+

1

3

√
2πy − y2

4
+

1

15

√
π

2
y3

−y
4

36
+

1

140

√
π

2
y5 − y6

360
+

√
π
2 y

7

1512
− y8

4200

+

√
π
2 y

9

19008
− y10

56700
+O(y11) , (102)

Fµ(y) = ln(2y) +
ln(2y2) + γE − 1

2y2
+

3

4y4
− 5

4y6
+

35

8y8

− 189

8y10
+O(y−11) . (103)

Note that we added some strangely looking factors into the
result (91). The factor m×m− 2ε

H = m
1
H−1 accounts for the

dimension of the diffusion constant, m/Dε ∼ mτ−2ε, and
takes out the term ln(m) from Fµ(y). We moved out also a
remaining term ∼ ln y.

The third function is for the drift proportional to ν,

Fν(y) :=
Gν(y)

G0(y)m
− ln(y) . (104)

It is evaluated as

Fν(y) =
I(y)− 2

2y2
+

ln(2) + γE

2
. (105)

Its asymptotic expansions read

Fν(y) =

√
2π

y
+
−3 + γE + ln(2)

2
− 1

3

√
π

2
y +

y2

12

− 1

60

√
π

2
y3 +

y4

180
− 1

840

√
π

2
y5 +

y6

2520

−
√

π
2 y

7

12096
+

y8

37800
−
√

π
2 y

9

190080
+

y10

623700

+O(y11) (106)

Fν(y) = − ln(y) +
2 ln(y) + γE + 1 + ln(2)

2y2
+

1

4y4
− 1

4y6

+
5

8y8
− 21

8y10
+O(y−11) (107)

Using Eq. (91) for small y, there is a problem when εν < 0,
since then the combination (second-to-last term in the expo-
nential)

−ενmy2ε

[
1

2
+εFν(y)

]
y→0−→ −ενm

√
2πy2ε−1 ≈ −2ν

√
πtH .

(108)
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FIG. 2: Left: The function F1(y) (blue, solid), with its asymptotic expansions (red and green dashed). Middle: ibid. for Fµ(y). Right: ibid.
for Fν(y). Numerical measurements are presented on Figs. 5, 6 and 8.

diverges (at least for 1
4 < H < 1

2 ), which is amplified since
it appears inside the exponential. We propose to use the fol-
lowing Padé variant, which seems to work well numerically,

[
1

2
+εFν(y)

]
ε<0, ν>0
−−−−−−−→ 1

2− 4εFν(y)
. (109)

WhileFν(y) diverges for small y, this is at leading order noth-
ing but a normalization factor depending on νtH .

All three functions F1(y), Fµ(y) and Fν(y) are measured
in section III, see figures 5, 6, and 8.

M. Absorption probability

From Eq. (62), we obtain, Pabs(m,α, β)

Pabs(m,α, β) =

∫ ∞
0

dtG(m, tDε)

=

∞∫
0

dt exp

(
−m

2

[
µ

Dε
+ν

]
− t

4

[
µt−ε+νtε

]2)G0(m, tDε)

+ ε

∞∫
0

dt exp

(
−m

2
β − t

4
β2

)
×

×
[
G1(m, t)− αGα(m, t)− βGβ(m, t)

]
+O(ε2)

= exp

(
−m

2

[
µ

Dε
+ ν

])

×
{ ∞∫

0

dt exp

(
− t

4

[
µt−ε + νtε

]2)G0(m, tDε)

+ ε
[
G̃1(m, s)− α G̃α(m, s)− βG̃β(m, s)

]∣∣∣√
s=|β|/2

}
+O(ε2) . (110)

Here G̃1(m, s) is given by Eq. (65), G̃α(m, s) by Eq. (72),
and G̃β(m, s) by Eq. (75). We still need the integral

∫ ∞
0

dt exp

(
− t

4

[
µt−ε + νtε

]2)G0(m, tDε)

= e−|β|m/(2
√
Dε) +

αβ

2
εG3(m,β) , (111)

G3(m,β) =

∫ ∞
0

dt e−
β2t
4 t ln(t)G0(m, t) . (112)

The last expression can be calculated as

G3(m,β) :=

∫ ∞
0

dt e−
β2t
4 t ln(t)G0(m, t)

= ∂κ

∣∣∣
κ=0

∫ ∞
0

dt e−
β2t
4 t1+κG0(m, t)

= ∂κ

∣∣∣
κ=0

|β|−κ− 1
2mκ+ 3

2Kκ− 1
2

(
m|β|

2

)
√
π

= −
m3/2∂κ

∣∣∣
κ=0

Kκ− 1
2

(
|β|m

2

)
√
π|β|

+
me−

|β|m
2 ln

(
m
|β|

)
|β|

= −me
m|β|

2 Ei(−m |β|)
|β| +

me−
m|β|

2 ln
(
m
|β|

)
|β|

=
m

|β| [−2 ln(|β|)− γE] +
1

2
m2
[
− 2 ln(m)− γE + 2)

]
+O(m3) , (113)

where Kn(z) denotes the modified Bessel function of the sec-
ond kind. With the above formulas, Eq. (110) is rewritten as
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Pabs(m,α, β) = e−m(β+|β|)/2
{

1 + ε e|β|m/2×

×
[
αβ

2
G3(m,β) +

α+β+|β|
2

m(1+ ln τ)e−|β|m/2

+ G̃1(m, s)− αG̃α(m, s)− βG̃β(m, s)

]
√
s=
|β|
2

+O(ε2)

}
. (114)

We note the exact relations, which can be verified numerically,

G̃1(m, s) + 2
√
s G̃β(m, s) = 0 , (115)

G3(m,β)|β|+ 2G̃α(m, s)

−m(1 + ln τ)e−
m|β|

2

∣∣∣√
s=
|β|
2

= 0 . (116)

Let us analyse Pabs separately for β < 0 and β > 0, starting
with the former. Using both cancelations in Eqs. (115) and
(116), we find

Pabs(α, β < 0) = 1 +O(ε2) . (117)

Thus there is no change in normalisation for a drift towards
the absorbing boundary. For β > 0, we find again with the
use of Eqs. (115) and (116)

Pabs(α, β > 0) = e−mβ× (118)

×
{

1 + ε

[
(α+β)m(1 + ln τ)

+2eβm/2
(
G̃1(m, s)− αG̃α(m, s)

)
√
s= β

2

]
+O(ε2)

}
.

For what follows, we note regularity of the combination
Ei(−x)− ln(x)− γE. We can write Eq. (118) as

Pabs(m,α, β) = e−mβ×

×
{

1 + ε

[
(m(β − α) + 2)

(
eβmEi(−mβ)− ln(βm)− γE

)
− αm(2 ln(β) + γE) + βm(2 ln(m) + γE)

]
+O(ε2)

}
= e−mβ×
×
{

1 + εm

[
2(β−α) ln(β)− γE(α+3β)− 2β + 4β ln(m)

]
+O(ε2) +O(m2ε)

}
. (119)

As the asymptotic expansion in the last line shows, a common
resummation is possible; passing to variables µ and ν, it reads

Pabs(m,µ, ν) = exp
(
−m 1

H−1µ
[
1 + 2(1− γE)ε

]
−m 1

H−1ν(µ+ν)
1
H−2

[
1+2(1−2γE)ε

])
+O(ε2) +O(m2ε) . (120)

This formula represents the leading behavior of Pabs(m,µ, ν)
for small m; thus terms of order O(m2ε) could be neglected.
Note that the (inverse) powers of H were chosen s.t. the re-
sulting object is scale invariant. Expanding in ε leads back to
Eq. (119). One finally arrives at

Pabs(m,µ, ν) = exp

(
−m 1

H−1

{
µ
[
1 + 2(1− γE)ε

]
+ ν(µ+ ν)

1
H−2

[
1 + 2(1− 2γE)ε

]}
+ ε

{
2(mν + 1)

[
em(µ+ν)Ei

(
−m(µ+ ν)

)
− ln

(
m(µ+ ν)

)
− γE

]
− 2m(µ+ ν)

[
ln
(
m(µ+ ν)

)
+ γE − 1

]})
+O(ε2) . (121)

In order that this formula be invariant under m → λm, µ → λ1− 1
H µ and ν → λ−1ν, we can either replace mµ by mµ

H
1−H , or

m
1
H−1µ. The first version is

P
(a)
abs(m,µ, ν) = exp

(
−m 1

H−1

{
µ
[
1 + 2(1− γE)ε

]
+ ν
(
µ

H
1−H + ν

) 1
H−2 [

1 + 2(1− 2γE)ε
]}

+ ε

{
2(mν + 1)

[
em
(
µ

H
1−H +ν

)
Ei
(
−m

(
µ

H
1−H + ν

))
− ln

(
m
(
µ

H
1−H + ν

))
− γE

]
− 2m

(
µ

H
1−H + ν

)[
ln
(
m
(
µ

H
1−H + ν

))
+ γE − 1

]})
+O(ε2) . (122)
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FIG. 3: Example for the absorption probability as a function of µ at ν = 0 (left), and ν at µ = 0 (right). In all cases m = 0.1. The blue solid
line represents the result obtained by a direct numerical integration of Eq. (91), and adjusting the overall normalisation at µ = ν = 0 to 1; this
has the advantage that the combination µm

1
H

−1 appears naturally. The green dashed curve is the same, without adjustment of normalisation.
The red dotted curve (visible only on the left plot) is obtained using Eq. (121). The magenta curve is obtained using Eq. (122). The cyan curve
is from Eq. (123), and is identical to the magenta one on the right plot.

The alternative second version is

P
(b)
abs(m,µ, ν) = exp

(
−m 1

H−1

{
µ
[
1 + 2(1− γE)ε

]
+ ν(µ

H
1−H + ν)

1
H−2

[
1 + 2(1− 2γE)ε

]}
+ ε

{
2(mν + 1)

[
em

1
H
−1µ+mνEi

(
−m 1

H−1µ−mν
)
− ln

(
m

1
H−1µ+mν

)
− γE

]
−
(
m

1
H−1µ+mν

)[
ln
(
m

1
H−1µ+mν

)
+ γE − 1

]})
+O(ε2) . (123)

From the appearance of fractal powers of m and ν in
Eq. (120), we suspect that both power series in mµ

H
1−H and

m
1
H−1µ might appear. While numerical simulations could

decide which version is a better approximation, only higher-
order calculations would be able to settle the question.

N. Relation between the full propagator, first-passage times,
and the distribution of the maximum

In this section, we demonstrate how the probability densi-
ties of three different observables follow from the same scal-
ing function. This shows how our result can be used to find
the probability distribution of both running maxima and first-
passage times for fBM with linear and non-linear drift.

Let us start with the drift-free case, µ = ν = 0.

(i) In Ref. [62] was calculated P+(m, t), the normalised
probability density to be at m, given t, when starting at
x0 close to 0 (in [62] this quantity is denoted P+(x, t)
with m = x). While P+ is a density in m, and thus
should be denoted P+ (cf. Tab. I), it is the time deriva-
tive of a probability, see Eq. (129). This can be seen

from its definition,

P+(m, t) :=
P+(m, t|x0)∫∞

0
dmP+(m, t|x0)

, (124)

and the asymptotic expansion at small x0, (see e.g. [62],
appendix C)∫ ∞

0

dmP+(m, t|x0) ∼ x
1
H−1
0 , (125)

which implies that P+(m, t) has dimension 1/time.

(ii) Here we consider the probability density to be absorbed
at time twhen starting atm. This is a first-passage time,
with distribution Pfirst(m, t).

(iii) Third, let the process start at 0, and consider the distri-
bution of the max m, given a total time t, Pmax(m, t),
denoted by PTH(m) (with t = T ) in Ref. [43].

All three objects have a scaling form depending on the same
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variable y = m√
2tH

:

Pfirst(m, t) =
H

t
Pfirst(y) , (126)

P+(m, t) =
H

t
P+(y) , (127)

Pmax(m, t) =
1√

2TH
Pmax(y) . (128)

The factors of H and
√

2 where chosen for later convenience.
These objects are related. Denote Psurv(m, t) the probability
to start at x = 0, and to survive in presence of an absorb-
ing boundary at m up to time t. Note that Psurv(m, t) is a
probability, whereas Pfirst(m, t), P+(m, t), and Pmax(m, t)
are densities, the first two in t, the latter in m. Then

P+(m, t) = Pfirst(m, t) = −∂tPsurv(m, t) , (129)
Pmax(m, t) = ∂mPsurv(m, t) . (130)

Since Psurv(m, t) is a probability, it is scale free, and scaling
implies that

Psurv(m, t) = Psurv

(
y =

m√
2tH

)
. (131)

Putting together Eqs. (129), (130) and (131) proves Eqs. (126)
to (128), with

Pfirst(y) = P+(y) = yP′surv(y) (132)
Pmax(y) = P′surv(y) . (133)

The scaling functions appearing are almost the same, differing
by (innocent looking) factors of t and H and a (non-innocent
looking) factor of y. However, when changing to the measure
in y, all of them become identical. The survival probability in
absence of a drift is given in Eqs. (63)-(64) of Ref. [43].

Let us finally add drift. Then the survival probabil-
ity Psurv(y, ũ, v) depends on three variables introduced in
Eqs. (12)-(15), setting there x → m. Since ũ = mµ

H
1−H ,

and v = νm are both constants multiplying m, we can write
Psurv(y, ũ, v) = Psurv(y,m). Using Eqs. (129) and (130),
we find

P+(m, t) = Pfirst(m, t) = − d

dt
Psurv(y,m)

=
H

t
∂yPsurv(y,m) , (134)

Pmax(m, t) =
d

dm
Psurv(y,m)

=
[ y
m
∂y + ∂m

]
Psurv(y,m) . (135)

Passing to the measure in y, we obtain

P+(y,m) = Pfirst(y,m) = y∂yPsurv(y,m) , (136)

Pmax(y,m) =

[
∂y +

m

y
∂m

]
Psurv(y,m) . (137)

This set of equations allows us to express Pmax(y,m) as an
integral over P+(y,m) = Pfirst(y,m).

O. Tail of the distribution

Piterbarg [67] states (section 11.3, page 85) that for a fBm
defined on the interval [0, 1], with

〈
x2

1

〉
= 1, in the limit of

u→∞,

P(max0≤t≤1 xt > u)

' Ψ(u)×


2 , H = 1/2

1 , H > 1/2
H2H

2H
2

1
2H u

1
H−2 , H < 1/2

. (138)

Ψ(u) :=
1√
2πu

exp

(
−u

2

2

)
' 1√

2π

∫ ∞
u

exp

(
−x

2

2

)
dx .

(139)

The estimate for H < 1/2 seems to contain misprints: We
find σ(t) :=

√
〈x2
t 〉 = 1 − H|1 − t| (i.e. H instead of 2H).

Rescaling t−1→ (t−1)×2
1

2H gives σ(t)→ 1−H×2
1

2H ×
|1− t|, thus

P(max0≤t≤1 xt > u) ' H2H

2
1

2HH
u

1
H−2Ψ(u) , H <

1

2
.

(140)
Using the latter result, taking a derivative w.r.t. u, and passing
to the measure in y, one obtains P(y) ≡ P>(y|m,µ = ν =
0) ≡ Pmax(y) (in terms of our variable y), in the limit of large
y,

P(y) ' e−
y2

2√
2π
×


2 , H = 1/2

1 , H > 1/2
H2H

2
1

2HH
y

1
H−2 , H < 1/2

. (141)

The Pickands constantH2H has ε-expansion [55]

H2H = 1− 2γEε+O(ε)2 . (142)

How is this consistent with Eq. (91)? Taylor-expanding the
latter for large y yields

P(y) ' 2
e−y

2/2

√
2π

{
1−
[
1 + γE + 2 ln(y) + ln(2)

]
ε

+O(ε2) + o(y0)
}
. (143)

In Ref. [62] this was interpreted as P(y) ∼ y−2εe−y
2/2.

Eq. (141) shows that this interpretation is incorrect. For large
y, our expansion is almost the sum of the two contributions in
Eq. (141) for H 6= 1/2,

P(y) ≈ e−y
2/2

√
2π

[
1 +

H2H

2
1

2HH
y

1
H−2 + ...

]
' 2

e−y
2/2

√
2π

{
1−

[
1 + γE + 2 ln(y)− ln(2)

]
ε

+O(ε2) +O(y0)
}
. (144)

Note the difference in sign for the ln(2) term between
Eqs. (143) and (144), showing that the guess (144) slightly
underestimates the amplitude for ε < 0.
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III. NUMERICS

A. Simulation protocol

Fractional Brownian motion can be simulated with the clas-
sical Davis-Harte (DH) algorithm [18, 68], whose algorith-
mic complexity (execution time) scales with system size N
as N lnN . Here we use the adaptive bisection algorithm in-
troduced and explained in Refs. [69, 70]. For H = 1/3 its
measured algorithmic complexity grows as (lnN)3, making
it about 5000 times faster, and 10000 times less memory con-
suming than DH for an effective grid size of N = 232.

To measure the functions F1, Fµ and Fν , which all depend
on y only, we

(i) generate a (drift free) fBm xt with x0 = 0, of lengthN ;
the latter corresponds to a time T = 1.

(ii) add the drift terms to yield zt = xt + µt+ νt2H

(iii) for given m, find the first time t, s.t. zt = m

(iv) evaluate y = m√
2tH

; add a point to the histogram of y.

This histogram misses values of t > T = 1, i.e. y < m√
2

.
We checked the procedure for Brownian motion (with ν →

0), where

P(y|m,µ) =

√
2

π
e
− (µm+2y2)2

8y2 . (145)

Note that this is a function of y and mµ only, so that we can
write

P(y|mµ) =

√
2

π
e−

y2

2 × e−
mµ
2 e
− (mµ)2

8y2 . (146)

For fBm, we measure P(y|m,µ, ν), and then extract F1, Fµ
and Fν . Firstly,

Fε1 (y|m) :=
1

ε
ln

(
P(y|m)y2− 1

H e
y2

2

)∣∣∣∣
µ=ν=0

(147)

and Fε1 (y|m) = F1(y) +O(ε2). The following combination
is more precise, since terms even in ε cancel,

Fε,sym
1 (y|m) =

1

2

[
Fε1 (y|m)+F−ε1 (y|m)

]
+O(ε2) . (148)

The second-order correction can be estimated as

Fε2 (y|m) :=
1

ε
[Fε1 (y|m)−F1(y|m)] +O(ε) . (149)

Its symmetrised version again suppresses subleading correc-
tions,

Fε,sym
2 (y|m) :=

1

2ε

[
Fε1 (y|m)−F−ε1 (y|m)

]
+O(ε2) .

(150)

The third order correction can be extracted as

Fε3 (y|m) :=
1

2ε2

[
Fε1 (y|m) + F−ε1 (y|m)− 2F1(y|m)

]
+O(ε) . (151)

For the remaining functions Fµ and Fν , we can employ sim-
ilar formulas; we have to decide how to subtract F1, numer-
ically from the simulation, or analytically, i.e. by supplying
numerically or analytically the denominator in

Fεµ(y|m,µ) := −1

ε

[
ln

( P(y|m,µ, ν = 0)

P(y|m,µ = ν = 0)

)
× y−2ε

µm
1
H−1

+
1

2
+
µ

4

(m
2

)1
H−1

y3− 5
2H

]
, (152)

Fεν (y|m) := −1

ε

[
ln

( P(y|m,µ = 0, ν)

P(y|m,µ = ν = 0)

)
× y−2ε

νm

+
1

2
+
νm

8
y−ε−2

]
. (153)

We can also work symmetrically

Fεµ(y|m) := −1

ε

[
ln

( P(y|m,µ, ν=0)

P(y|m,−µ, ν=0)

)
y−2ε

2µm
1
H−1

+
1

2

]
.

(154)

Fεν (y|m) := −1

ε

[
ln

( P(y|m,µ=0, ν)

P(y|m,µ=0,−ν)

)
y−2ε

2νm
+

1

2

]
.

(155)
Finally, a more precise estimate of the theoretical curves

is given by symmetrizing results for the same |ε|, using the
analogue of Eq. (148).

Below, we measure the three scaling functions F1, Fµ and
Fν for H = 0.33, using our recently introduced adaptive-
bisection algorithm [69, 70]. The latter starts out with an ini-
tial coarse grid of size 2g , which is then recursively refined
up to a final gridsize of 2g+G. It gains its efficiency by only
sampling necessary points, i.e. those close to the target.

The optimal values of g and G depend on H . We run
simulations with the following choices: H = 0.33 (g = 8,
G = 18), H = 0.4 (g = 10, G = 14), H = 0.6 (g = 8,
G = 8), and H = 0.67 (g = 8, G = 6). Thanks to the adap-
tive bisection algorithm, we can maintain a resolution in x of
10−3, with about 25 million samples at H = 0.33, H = 0.6
and H = 0.67, and twice as much for H = 0.4. As we will
see below, this allows us to precisely validate our analytical
predictions.

B. Simulation results

We show simulation results on Figs. 4 to 8. First, on fig-
ure 4 (left), we present results for the first-passage probabil-
ity P(y|m,µ, ν = 0), using m = 0.1. The numerical re-
sults (in color) are compared to the predictions from Eq. (91).
One sees that theory and simulations are in good quantitative
agreement. This comparison is made more precise by plotting
the ratio between simulation and theory on the right of Fig. 4.
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FIG. 4: Left: First-passage time density Pfirst(m, t) = P(y) plotted as a function of y as given in Eq. (9). In order to increase the resolution
of the plot, we use overlapping bins with binsize 5 × 105, with y increasing by 105 points for each bin; m = 0.1. For various values of H
and µ, numerical simulations are compared to the theory. As can be seen on this plot, and on the ratio between simulations and theory to the
right, the relative error is about 3% at the extreme points. Note that neglecting F1(y) would lead for H = 0.4/0.6 to an error of 15%, and for
H = 0.33/0.67 to an error of 25%.
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FIG. 5: Numerical estimate of F1. The black curve is the theoretical
estimate (95), followed by a number of estimates using Eq. (147).
Solid lines are for m = 0.1, dashed ones for m = 1. The sym-
metrised estimates (148) are in olive/cyan. The latter has minimal
deviations from the theory. The inset shows a numerical estimate
for F2(y), as given by Eqs. (149) and (150). All curves are consis-
tent, and let appear even the next-to-leading corrections. (Remind
that changing the normalization is equivalent to adding a constant to
F1(y) or F2(y)). The strong curve-down for small and large y are
due to numerical problems.

The function F1(y) is extracted on Fig. 5. We show simu-
lations for m = 0.1 (colored solid lines), and m = 1 (colored
dashed lines). The theoretical result (95) agrees with numer-
ical simulations for all H , at both values of m. Using the
symmetrized form (148) with H = 0.4/0.6 shows a particu-
larly good agreement. It allows us to extract the subleading
correction via Eqs. (149) and (150). This is shown in the inset
of Fig. 5; again the symmetrized estimate is the most precise.
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FIG. 6: Numerical estimate of Fµ. The black curve is the theoretical
result (101). The colored curves are obtained using Eq. (154) with
µ = ±1 for H = 0.6 and H = 0.67, and µ = ±3 for H =
0.33 and H = 0.4. Solid lines are for m = 0.1, dashed ones for
m = 1. The symmetrised estimates (148) are in olive/cyan. The
cyan curve using the equivalent of Eq. (148) with H = 0.4/0.6 is
our best numerical estimate of Fµ(y). The inset shows the estimated
second-order correction, analogous to Eqs. (149)-(150).

Note that the second-order correction is rather sensitive to the
choice of m; more effort would be needed to estimate it prop-
erly. Also note that adding a constant toF1(y) is equivalent to
an overall change in normalization, thus one should concen-
trate on the shape of the cuves.

Using the data presented on Fig. 4, Fig. 6 shows the order-ε
correction Fµ extracted via Eq. (154). The symmetrized esti-
mate is rather close to the analytical result. The inset estimates
the subleading correction. Again, estimates for m = 0.1
(dashed lines) and m = 1 (solid lines) are consistent, and a
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FIG. 7: Left: first-passage-time density plotted with overlapping bins as in Fig. 4 for various values of H and non-linear drift ν compared to
the theory given in Eq. (91). Right: Ratio of simulation and theoretical values.
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FIG. 8: Left: Numerical estimate of Fν , using Eq. (155). The black curve is the theoretical prediction (105). The colored curves are
simulation results using Eq. (155). Solid lines are for m = 0.1, dashed ones for m = 1. The cyan and olive curves are the symmetrised
results using the equivalent of Eq. (148) for H = 0.4/0.6 (cyan) and H = 0.33/0.67 (olive). The former one is the best numerical
estimate of the theory, and very close to the latter. The inset shows the estimated second-order corrections, analogous to Eqs. (149)-(150).
There seem to be non-negligible corrections of order three. An almost perfect data collapse can be obtained for m = 0.1 as εFεν (y) '
Fν(y)ε + (2y−2 − 4y−1 − 6 + y)ε2 + (3y − 20)ε3, and for m = 1 as εFεν (y) ' Fν(y)ε + (y − 1.7)(1.5ε2 − 6ε3), see right figure.
Since extrapolation problems mentioned around Eq. (109) become important for small y, this estimate is intended as a fit only, to show that
the scatter on the left plot is consistent with higher-order corrections.

proper measure of the second-order correction would demand
a higher numerical precision.

The results for non-linear drift ν are presented on Fig. 7,
starting with the probability distribution P(y|m) (left), fol-
lowed by the ratio between simulation and theory on the right,
using m = 0.1. The agreement is again good. From these
data is extracted the function Fν(y) defined in Eq. (105), see
Fig. 8. Note that Fν(y) is much larger than Fµ(y) (Fig. 6),
and diverges for small y. The subleading corrections to Fν(y)
are not negligible, seemingly m-dependent, and estimated as
well, allowing us to collapse all measured estimates on the
theoretical curve.

In summary, we have measured all scaling functions with
good to excellent precision, ensuring that the analytical results
are correct.

IV. CONCLUSION

In this article, we gave analytical results for fractional
Brownican motion, both with a linear and a non-linear drift.
Thanks to a novel simulation algorithm, we were able to ver-
ify the analytical predictions with grid sizes up to N = 228,
leading to a precise validation of our results.
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Our predictions to first order in H − 1/2 are precise, and
many samples of very large systems are needed to see statis-
tically significant deviations. We therefore hope that our for-
mulas will find application in the analysis of data, as e.g. the
stock market.

Another interesting question is how a trajectory depends on
its history, i.e. prior knowledge of the process. We obtained
analytical results also in this case, and will come back with its
numerical validation in future work.

Our study can be generalised in other directions, as e.g.

making the variance a stochastic process, as in [71] or in the
rough-volatility model of Ref. [72], which both use fBm in
their modelling.
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