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The experimental measurement of correlation functions and critical exponents in disordered systems is key
to testing renormalization group (RG) predictions. We mechanically unzip single DNA hairpins with optical
tweezers, an experimental realization of the diffusive motion of a particle in a one-dimensional random force
field, known as the Sinai model. We measure the unzipping forces Fw as a function of the trap position w in
equilibrium, and calculate the force correlator ∆m(w), its amplitude, and correlation length, finding agreement
with theoretical predictions. We study the universal scaling properties by varying the trap strength m2. Fluctua-
tions of the position of the base pair at the unzipping junction u scales as u ∼ m−ζ , with a roughness exponent
ζ = 1.34 ± 0.06, in agreement with the analytical prediction ζ = 4

3
. Our study provides a single-molecule test

of the functional RG approach for disordered elastic systems in equilibrium.

Introduction. Heterogeneity and disorder pervade physical
and biological matter [1–3]. Since Schrödinger’s conception
of the gene as an a-periodic crystal [4], disorder is recog-
nised as a crucial ingredient for life [5]. The readout of the
genetic information encoded in DNA can be modeled with
polymers in random potentials, such as Sinai’s model [6].
The latter describes the dynamics of a particle diffusing in
a one-dimensional random-force field, a suitable model for
the mechanical unzipping of the DNA double helix into sin-
gle strands. Sinai’s model is a special case (d = 0) of the
universal field theory of disordered elastic systems in d di-
mensions, where one can analytically calculate force correla-
tions. The latter have been measured in contact-line depinning
(d = 1) [7], Barkhausen noise (d = 2) [8] and RNA-DNA
peeling (d = 0) [9]. While these experiments are for depin-
ning, i.e. nonequilibrium, an experimental test of the equilib-
rium universality class is lacking. Here we test universality of
equilibrium-force correlations as predicted by Sinai’s model
in DNA unzipping.

In the experiment, a DNA hairpin of 6.8k base pairs is held
between two beads. One is fixed at the tip of a micropipette,
the other is optically trapped (Fig. 1(a) and Appendix A). By
moving the optical trap at a speed v ≈ 10nm/s, the double-
stranded DNA (dsDNA) is mechanically pulled and converted
into two single strands (ssDNA). The measured force-distance
curve (FDC) shows a sawtooth pattern characteristic of stick-
slip dynamics (Fig. 1(b), red curve). The hairpin unzips at
a critical mean pinning force fc ≈ 15pN, fluctuating in the
range 12-17pN. Once the hairpin is unzipped, the reverse pro-
cess starts (Fig. 1(b), blue curve): the optical trap moves back-
ward and the hairpin refolds into the dsDNA native confor-
mation. Rezipping and unzipping FDCs are almost identical,
implying that the system is in equilibrium.

During unzipping, the base pair at the junction separating
dsDNA from ssDNA is subject to random forces generated by
the neighbouring monomers, and modeled by the motion of
a single particle (d = 0) in a random potential that belongs
to Sinai’s universality class [6]. To test predictions, we car-
ried out experiments by changing the salt (NaCl) concentra-
tion from 10mM to 1000mM (Fig. 1(c)), which modulates the

strength of base-pair interactions.

The Model. The motion of the base pair at the junction can
be modeled by a Langevin equation (see Appendix B for the
derivation)

∂u

∂t
= m2(w − u) + F (u) + ηu(t) , (1)

where u(t) is the extension of the molecular construct, w the
relative trap-pipette position (Fig. 1(a)), and m2 the effec-
tive stiffness of the molecular construct. The random force
is F (u) = −V ′(u), where V (u) is the free energy stored in
the partially hybridized hairpin. F (u) acts at the hairpin junc-
tion and is determined by hydrogen bonding and stacking in-
teractions between consecutive base pairs. Using the nearest-
neighbour model one can show that the distribution of forces
is roughly Gaussian (Appendix C). In equilibrium, ∂u∂t ≈ 0, so
the force F (u) applied to the hairpin in Eq. (1) is counteracted
by the force Fw exerted on the bead by the optical trap. For
a fixed trap position w, Fw and u fluctuate due to the thermal
noise and the base-pair breathing dynamics. The equilibrium
force correlations are defined as,

∆m,T (w − w′) = FwFw′
c

= FwFw′ − Fw Fw′ , (2)

where (. . . ) stands for a double thermal and disorder aver-
age. Correlations depend on the value of m2, through the m-
dependence in Eq. (1). They also depend on temperature T ,
which leads to a rounding of ∆m,T (w) at smallw (see below).

The FDCs in Figs. 1(b) and (c) show a sawtooth pat-
tern characterized by segments of increasing force Fw, fol-
lowed by abrupt drops caused by the cooperative unzipping of
groups of base pairs in the range 10-100 basepairs [11].

The slope of each segment, equivalent to the effective stiff-
ness m2, decreases with w, permitting us to measure the scal-
ing of ∆m,T (w) with m2. In fact, m2 depends on the com-
bined effects of the optical trap, and the elastic response of the
molecular construct (ssDNA and dsDNA handles). It can be
written as (see Eq. (B27))

1

m2
=

1

kb
+

w

z1k1
, (3)
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FIG. 1. (a) Experimental setup. (b) Unzipping (red) and rezipping (blue) FDC’s demonstrating equilibrium behaviour. The residual hysteresis
at the end of the FDC is due to the DNA end-loop that slows down the initiation of stem formation upon reconvolution. (c) Experimental
FDC’s, Fw, for various salt concentrations. The mean pinning force varies between 12-17pN, and is non-universal.

with kb the trap stiffness, and z1, k1 the mean extension and
stiffness of one nucleotide at the unzipping force. Model-
ing the elastic response of the hairpin [12] shows that k1 ≈
130pN/nm and z1 ≈ 0.45nm at the unzipping force fc ≈ 15
pN, which gives a slope of about (z1k1)−1 ≈ 0.02pN−1.
Eq. (3) implies that the larger the length of the unpaired DNA,
the lower the effective stiffness m2. To verify this, we split
the FDCs into four regions (inset of Fig. 2). While smaller
regions have smaller variations in m2, regions must be taken
sufficiently large for a reliable statistics. Eq. (3) agrees with
the experimental data shown in Fig. 2.

Force correlations in Sinai’s model can be framed in terms
of the functional renormalisation group (FRG). The FRG
arises as the field theory [14–25, 27] of disordered systems
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FIG. 2. Variation of the effective stiffness m2 versus w according to
Eq. (3). The points correspond to the measured values of 1/m2 for
the four FDC regions (each one shown with a different colour in the
inset). The fit to data (dashed line) and the extrapolation to w = 0
gives the stiffness of the optical trap, kb = 0.05 ± 0.01pN · nm−1.
The inset illustrates the four studied regions in a FDC at 1M NaCl.

for interfaces, generalising the d = 0 case described by the
Sinai model. The FRG predicts two universality classes, crit-
ical depinning (non-equilibrium) and equilibrium (considered
here). In equilibrium, the T → 0 limit of ∆m,T (w) in Eq. (2),
can be written as

∆m(w) = m4ρ2m∆̃(w/ρm), ρm ∼ m−ζ , (4)

with ∆̃(w) the shape function, ζ the roughness exponent, and
w = w/ρm the rescaled dimensionless distance. The FRG
allows for observables to be computed perturbatively in an
expansion around the upper critical dimension, parameterised
by ε = 4 − d. The shape function ∆̃(w) is the fixed point of
the FRG flow equation

0 = (ε−2ζ)∆̃(w) + ζw∆̃′(w)− 1

2
∂2w
[
∆̃(w)−∆̃(0)

]2
+ . . .

(5)
The dots represent higher-loop corrections in ε, currently
known up to 3-loop order [10, 20–24]. For the equilibrium
random-field, ζ = (4 − d)/3, which gives ζ = 4/3 for
d = 0. This result can be derived by integrating Eq. (5) be-
tween w = 0 and w = ∞, and remains exact to all orders in
the loop expansion. Eq. (5) predicts that ∆̃(w) has a cusp at
w = 0 which becomes rounded at finite T .

Generalization of the FRG equation (5) to finite T allows us
to estimate the size of the boundary layer. An explicit relation
between ∆m(w) and ∆m,T (w) was derived in [14–16],

∆m,T (w) ≈ N∆m(
√
w2 + t2), t =

6m2kBT

ε|∆′m(0)| . (6)

It has been shown that the RG flow Eq. (5) preserves the area
under ∆m,T (w) for all T [10]. Therefore, we can use the
measured ∆m,T (w) and Eq. (6) to determine the normaliza-
tion factor N and ∆m(w). Details about the procedure are
given in appendix D.

For the Sinai model, the shape function ∆̃ in Eq. (5) has
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FIG. 3. Measured ∆m,T (w) for the first region (red). 1-σ error is
shown as a pink strip. Deconvolution (black solid) and extrapolation
to w = 0 (black dot-dashed). The inset shows ∆m,T (w) at short
range with subtraction of the peak at w = 0, as explained in the
main text.

been analytically calculated [13, 14],

∆̃(w) = − e−
w3

12

4π
3
2
√
w

∫ ∞

−∞
dλ1

∫ ∞

−∞
dλ2e−

(λ1−λ2)2

4w

× ei
w
2 (λ1+λ2)

Ai′(iλ1)

Ai(iλ1)2
Ai′(iλ2)

Ai(iλ2)2

×
[
1 + 2w

∫∞
0

dV ewVAi(iλ1+V)Ai(iλ2+V)

Ai(iλ1)Ai(iλ2)

]
. (7)

Here Ai is the Airy function, and ζ = 4/3 in agreement with
the FRG.

Data analysis. We analysed 33 FDCs obtained by unzipping
a 6.8kbp DNA hairpin in a broad range of salt conditions
from 10mM to 1000mM NaCl at T = 298K. As illustrated
in Fig. 2, we divided each FDC into four regions measuring
the force correlations (2) for each region. Force correlations
are equal within the experimental resolution for all salt condi-
tions, as shown in Supplementary Fig. 7. Although the effec-
tive stiffness of the molecular construct m2 changes with salt,
it changes much less than it does over the different unzipping
regions for a fixed salt condition. To enlarge statistics we av-
eraged ∆m,T (w) over all salts. Results for the first region are
shown in Fig. 3 (red line with red strip for error bars).

To recover ∆m,T (w) in Eq. (6) we must subtract two
sources of thermal noise, which are visible as a short-range
correlated peak at w ≈ 0: Brownian fluctuations of the bead;
and the breathing dynamics (opening and closing) of the DNA
base pairs at the junction. First, bead-noise subtraction re-
duces the peak’s amplitude ∆m,T (w = 0) from ≈ 0.6pN2

(red in main plot of Fig. 3) to ≈ 0.5pN2 (magenta line in
the inset). Second, we estimated the effect of the breathing
dynamics from numerical simulations of Sinai’s model [10].
This reduces the peak from ≈ 0.5pN2 to ≈ 0.35pN2 with
a dip of amplitude ≈ 0.3pN2 for w < 1nm (cyan curve in
the inset). This dip is also seen in simulations [10]. From

∆m,T (w) we derive the T = 0 force correlations, ∆m(w), by
plotting the experimental data versus

√
w2 + t2, see Eq. (6),

with t given there (T = 298K, ε = 4, m2 from Fig. 2).
We initially estimate ∆′m(0) by extrapolation of the raw data.
This gives ∆m(w) for w > t ≈ 7nm (black continuous line
in Fig. 3). The extrapolated ∆m(w) for w < t (dot-dashed re-
gion) is obtained by fitting a second-order polynomial (black
dot-dashed line in Fig. 3). The whole procedure is iterated un-
til convergence of ∆m(w) is reached. As a consistency check
we used the T = 0 theory prediction ∆m(w) together with
Eq. (6) to calculate ∆m,T (w) for all regions, see supplemen-
tary Fig. 8.

Force correlations in Eq. (6) are described by three parame-
ters: the correlation length ρm in the w direction, the stiffness
m2 of the molecular construct, and the temperature T . With
the measured value of m2 (Fig. 2) and kBT = 4.11pN · nm
we use Eq. (6) to predict t (ε = 4 and ∆′m(0) obtained from
the small-w extrapolation in Fig. 3). According to Eqs. (4) and
(6), the scale ρm is the only fitting parameter, which we report
on the table in Fig. 5 for all four regions. Its value increases
with w indicating that FDCs become progressively less rough
as unzipping progresses: For the first region, ρm = 26.8nm,
which corresponds to 33 basepairs [12], the typical size of
avalanches that can be resolved in the FDC at the beginning
of the unzipping process.

We now check two predictions of the theory: the result (7)
and the FRG scaling relation (4). In particular, the scaling
function ∆̃ only depends on the dimensionless combination
w/ρm ∼ wmζ , and its amplitude is universal. The inset of
Fig. 4 shows ∆m(w) for the four regions where ρm increases
while the molecule is unzipped and m2 decreases. In Fig. 4
we test the scaling law (4) with ζ = 4/3, as predicted for
Sinai’s model. We can also determine the value of ζ indepen-
dently of the collapse in Fig. 4. In Fig. 5 we show results for
the scaling of the correlation length ρm and amplitude ∆m(0)
with m. We get ζ = 1.41 ± 0.10 and ζ = 1.29 ± 0.08 from
the scaling of ρm and ∆m(0), respectively, giving an aver-
age of ζ = 1.34± 0.06 in agreement with the expected value
ζ = 4/3. Details are given in supplementary Fig. 8.

We can go one step further: In random-field systems, the
correlations of the potential V (u) grow linearly at large u-
distances, 1

2 [V (u)− V (u′)]2 ' σ|u − u′|. The constant σ is
related to the force correlator ∆m by

σ =

∫ ∞

0

∆∞(u)du ≡
∫ ∞

0

∆m(w)dw . (8)

This relation holds for the microscopic ∆∞(u) and the
measured ∆m(w), as the area under ∆m(w) is preserved by
the RG flow, as previously discussed. A constant σ in Eq. (8)
implies ζ = 4/3 for all m in Eq. (4). Eq. (8) then yields the
analytic prediction

ρm =

[ ∫
w>0

∆∞(w)

m4
∫
w>0

∆̃(w)

]1/3
. (9)

In appendix C, we discuss how the microscopic correlator
∆∞(w) can be obtained from the binding energies, using our
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FIG. 4. Inset: The function ∆m(w) for the four regions changes with
the measured m (see Fig 5). Main: Collapse of ∆m(w) according
to Eq. (4) with ζ = 4/3. In black we show the theoretical ∆m(w),
with ρm = 29(3)nm as predicted by the microscopic disorder. 5

We can go one step further: In RF systems, the
potential correlator grows linearly at large distances,
1
2 (V (u) � V (u0))2 ' �|u � u0|. The constant � is related
to the force correlator � as

� =

Z 1

0

�0(u)du ⌘
Z 1

0

�m(w)dw. (10)

This relation is valid both for the microscopic force correlator
�0(u), as for the measured effective force correlator �m(w),
since such a LR correlated function cannot be changed under
RG. This enforces ⇣ = 4/3 in Eq. (5), and conservation of the
integral (10). The variance of the microscopically measured
�0(0) =???, which decays to half this value for base-pair
distance 1, and to 0 for base-pair distance 2. Interpolating
linearly, this yields � =??? for the integral. Eq. (5) then yields
the analytic prediction

⇢m =

" R
w>0

�0(w)

m4
R

w>0
�̃(w)

#1/3

. (11)

Using
R

w>0
�̃(w) = 0.252 from Eq. (9) this gives ⇢m =???

Observable region 1 region 2 region 3 region 4

w[nm] [0, 800] [800,2200] [2200, 4200] [4200,6200]

m2[pN/nm] 0.036(3) 0.027(3) 0.016(4) 0.007(4)

⇢m [nm] 27(3) 29(3) 42(4) 76(5)

�m(0)[pN2] 0.44 0.38 0.31 0.18

�0
m(0)[pN2/nm] 0.032 0.018 0.0099 0.0032

TABLE I. Properties of the force correlator for each of the four seg-
ments as shown in Fig. 2. The scale ⇢m is obtained from the measure-
ment of �m(0)/�0

m(0) times a numerical constant to get back the
scale ⇢m in Eq. (5). Using Eq. (9), this constant is �̃m(0)/�̃0

m(0) =
1.36.

IV. CONCLUSION

To the best of our knowledge, this is the first test of Sinai’s
model in an experiment. Sinai’s model predicts, and our ex-
periments confirm, that there is a single scale for the corre-
lator of forces. On the theoretical side, this is a gratifying
result. In particular, one can contrast this experiment to the
peeling of complementary RNA-DNA strands, belonging to
the depinning universality class, and characterised by a sig-
nificantly larger effective stiffness m2. It also has a larger
correlation length of about 186 base pairs as compared to our
24 to 76. The possibility to open base pairs by thermal fluc-
tuations is reduced to at most a few. Thus, a description by
zero-temperature depinning is sufficient there, whereas ther-
mal fluctuations play a relevant role here.

On an experimental side, our results are relevant for ...
Ideas for different hairpin constructions where we can mea-
sure �(w) ?
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estimate of ∆∞(0) ≈ 10(2)pN2, which decays to half this
value for base-pair distance 1, and to 0 for base-pair distance
2, corresponding to 1.6nm. A linear interpolation of ∆∞(u)
between these values gives σ = 8(2)pN2 · nm in Eq. (8).

Using
∫
w>0

∆̃(w) = 0.252 from Eq. (7), and substituting in
Eq. (9) gives ρm = 29(3)nm for region 1 in agreement with
the value previously obtained (ρm ≈ 27nm for m2 = 0.036
pN/nm in Fig. 5). In Fig. 4 (main) we show the predicted force
correlator (black curve) with the predicted ρm = 29(3)nm.

Conclusions. We tested Sinai’s model of equilibrium force
correlations and their universality in DNA unzipping experi-
ments. In DNA the binding energies between base pairs are
correlated up to two base pairs, making it a suitable realiza-
tion of Sinai’s model. We experimentally measured the rough-
ness exponent ζ finding agreement with Sinai’s prediction,
ζ = 4/3. While predictions for critical exponents are com-
monplace, far more difficult is to predict the amplitude and the
correlation length of correlation functions in critical phenom-
ena. Here we show that the amplitude of force correlations
and its correlation length can be predicted from the effective
stiffness of the molecular construct m2 and the energy param-
eters of the nearest-neighbour model in DNA thermodynamics
[28, 29]. We get experimental values for ρm that are within
10% of the predicted ones: e.g. for region 1, ρm ≈ 27nm
(measured) versus ρm ≈ 29nm (predicted).

It is interesting to compare our unzipping experiment to the
peeling of complementary RNA-DNA strands [9]. Peeling is
a highly irreversible process belonging to the depinning uni-
versality class. It is characterized by a significantly larger ef-
fective stiffness m2, and a larger correlation length of about
186 bp as compared to the 26 to 77 bp of DNA unzipping.
The high energies required for DNA peeling make the T = 0
nonequilibrium depinning transition relevant there, whereas
for DNA unzipping thermal fluctuations occur in equilibrium.

Our study can be extended to DNA with chemically modi-
fied bases and RNA [30]. It would also be interesting to study
DNA sequences with long-range correlations [32] and with
periodically repeated motifs, a physical realization of periodic
disorder relevant for charge-density waves. Finally, one could
consider dynamical effects, e.g. upon temperature changes
[33] using a temperature-jump optical trap [34]. Overall,
single-molecule unzipping offers exciting possibilities to ex-
perimentally investigate critical phenomena in random poly-
mers.
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Unfolded

FIG. 6. Schematic description of the unzipping experiment as reported Appendix A and representation of the parameters introduced in the
computation in Appendix B. As reported in the text, xh is the extension of the handles, xb is the displacement of the bead from the center of
the optical trap, d0 is the diameter of the folded double-helix (∼ 2nm) and xss is the extension of the ssDNA.

SUPPLEMENTARY MATERIAL

Appendix A: Experimental details

We use laser optical-tweezers (LOT) to unzip a 6.8k base-pair (bps) DNA hairpin consisting of a stem of fully complementary
Watson-Crick base-pairs ending with a tetra-loop ACTA. The hairpin strands are terminated with short (29 bp) double-stranded
DNA (dsDNA) handles, one labeled with a digoxigenin tail (DIG) and one with a biotin tail (BIO). In our setup the DIG-
labeled and BIO-labeled handles are tethered to anti-DIG (AD) and streptavidin-coated (SA) beads, respectively. The AD bead
is optically trapped while the SA one is hold by air suction at the tip of a glass micro-pipette. In a typical unzipping experiment,
the optical trap is repeatedly moved back and forth relative the fixed micro-pipette at a constant loading rate. At the initial trap
position, the molecule starts in its folded dsDNA configuration (Fig. 1(a)). As the optical trap is moved away from the pipette
the unzipping reaction proceeds and the molecule gradually unzips (Fig. 1(a)) until it is completely unfolded and the two single-
strands (ssDNA) are fully stretched (Fig. 1(c)). At this point the reverse reaction starts (rezipping) and the molecule steadily
refolds into its dsDNA form (dashed arrows). The force versus trap position F (w) sampled during this process shows a saw-
tooth pattern which depends on the DNA hairpin sequence. The fact that the unzipping and rezipping saw-tooth force-distance
curves coincide (Fig. 1 (b)) means that the processes are in equilibrium. Here, we unzipped/rezipped the 6.8kpbs DNA hairpin
at room temperature (298K) in a wide range of monovalent salt conditions (10mM, 25mM, 50mM, 100mM, 250mM, 500mM
and 1000mM NaCl). Fig. 1 (c) shows unzipping curves for a range of different salt concentrations.

Appendix B: Model for the unzipping experiment

Given the setup in Fig. 6 (middle panel), at a fixed trap-pipette distance w one can write

w = xb + u, (B1)

where xb is the distance of the bead from the center of the optical trap and u is the total length of the molecular construct. The
latter can be written as

u = 2xh + d0 + 2uss(n), (B2)

where xh is the extension of the dsDNA handle, d0 is the diameter of the hybridized hairpin and uss(n) is the extension of the
ssDNA. The molecular construct has two short handles, each of 29bp≡ 10nm in length, much shorter than the persistence length
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of dsDNA (50 nm) and are very rigid at the unzipping force (≈ 15pN). Moreover, their overall extension is negligible compared
to uss(n). Also we can neglect d0 ≈ 2nm. The total length of the molecular construct can be approximated as

u ' 2uss(n) ≡ 2nz, (B3)

with 2n the total number of unzipped bases and

z = z(u, n) =
u

2n
, (B4)

the monomer extension. The total energy is given by

Hw(u, n) =
1

2
kb(w − u)2 + 2n Û

( u
2n

)
+GN−n. (B5)

The first term is the harmonic potential of the optical trap with stiffness kb. The second term, Uss(u, 2n) = 2nÛ(z) is the elastic
energy of the ssDNA that behaves as an ideal elastic model. GN−n is the binding energy of the N − n base pairs in the stem.

Given (B5) and w fixed, u and n are the only two degrees of freedom of the system. Their respective equations of motion are

γu
∂u

∂t
= −∂Hw

∂u
+ ηu, (B6a)

γn
∂n

∂t
= −∂Hw

∂n
+ ηn, (B6b)

where γu and γn are constants (viscosities), and ηu and ηn are δ-correlated Brownian noises with correlations 〈ηu(t)ηu(t′)〉 =
〈ηn(t)ηn(t′)〉 = 2kBTδ(t− t′). Mechanical equilibrium for the bead implies

− ∂Hw
∂u

= 0⇒ kb(w − u) = f1

( u
2n

)
, (B7)

where f1(z) = −Û ′(z) is the force acting on the ssDNA. Note that the timescale for u is much faster than the time scale for n,
so we can take u in equilibrium and Eq. (B7) holds. This allows us to set ηn → 0.

For a given w and n, there is an equilibrium position u∗(w, n) for which the force exerted by the optical trap on the bead
equals the force exerted by the molecular construct on the bead. For the basepair dynamics we find

−∂Hw
∂n

= −2Û
( u

2n

)
+
u

n
Û ′
( u

2n

)
+G′N−n

= −2Û(z) + 2zÛ ′(z) +G′N−n

= 2

∫ z

0

f1(z′)dz′ − 2zf1(z) +G′N−n

= −2

∫ f1(z)

0

z(f ′)df ′ +G′N−n

= Iw(f(n)) +G′N−n, (B8)

where

Iw(f) := − 2

∫ f

0

z(f ′)df ′. (B9)

For a given w and u∗(w, n), there is an equilibrium n∗, so that Eq. (B8) gives

− ∂Hw(n)

∂n

∣∣∣∣
n∗

= Iw(n∗) +G′(N − n∗) = 0 ⇒ Iw(n∗) = −G′(N − n∗), (B10)

where n∗ is the value at which the absolute minimum is attained. Expanding Iw(n) around n∗ and substituting the previous
result one gets

Iw(n) = Iw(n∗) +
∂Iw
∂n

∣∣∣∣
n∗

(n− n∗) +O(n− n∗)2 (B11)

= −G′(N − n∗) +
∂Iw
∂n

∣∣∣∣
n∗

(n− n∗) +O(n− n∗)2. (B12)
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Let us focus on the first-order term. Using Eq. (B9), it can be rewritten as

∂Iw
∂n

=
∂Iw(n)

∂f1

∂f1
∂n

= −2z1
∂f1
∂n

, (B13)

where z1 := z(f1). Taking a derivative w.r.t. n of Eq. (B7) we obtain

− kb
∂u

∂n
=
∂f1

(
u
2n

)

∂n
= k1

( u
2n

)[ 1

2n

∂u

∂n
− u

2n2

]
, (B14)

where

k1 ≡ k1(z) := f ′1(z). (B15)

Solving for ∂u∂n yields

∂u

∂n
=

k1u

n (2nkb + k1)
. (B16)

Using Eq. (B13), and the first equality of Eq. (B14) gives

∂Iw
∂n

= −2z1
∂f1
∂n

= −2z1kb
∂u

∂n
= − 2z1kbk1u

n (2nkb + k1)
= − 4z21kbk1

k1 + 2nkb
. (B17)

The equation of motion for the basepairs dynamics in Eq. (B6b) can therefore we written as

γn
∂n

∂t
= Iw(n) +G′(N − n) + ηn ' Iw(n∗) +

∂Iw(n)

∂n

∣∣∣
n=n∗

(n− n∗) +G′(N − n) + ηn

=
∂Iw
∂n

∣∣∣
n=n∗

(n− n∗)−G′(N − n∗) +G′(N − n) + ηn

= − 4z21kbk1
k1 + 2nkb

(n− n∗)−G′(N − n∗) +G′(N − n) + ηn. (B18)

Define

G(N − n) =

N∑

i=N−n
gi. (B19)

The random forces are

fn = −G′(N − n) = −gN−n ≡ −g(N − n). (B20)

We observe that

u = 2〈z1〉n, u∗ = 2〈z1〉n∗,
∂n

∂t
=

1

2〈z1〉
∂u

∂t
, (B21)

where 〈z1〉 denotes a statistical average over z1.
The final equation of motion for u can be rewritten as

γ̃n
∂u

∂t
= m2(u∗ − u) + F (u)− F (u∗) (B22)

≡ m2(w − u) + F (u), (B23)

where

w = u∗ − 1

m2
F (u∗), (B24)

γ̃n =
γn

4〈z1〉2
, (B25)

F (u) =− 2〈z1〉 g
(
N − u

2〈z1〉

)
, (B26)

1

m2
=

1

kb
+

2n

k1
≈ 1

kb
+

u

〈z1〉k1
≈ 1

kb
+

w

〈z1〉k1
. (B27)

Note that u∗ in this equation is simply a minimum, not necessarily the previously assumed global minimum. Rescaling t, we set
γ̃n → 1. Noticing that u and w in the experiment are defined up to an overall shift gives equation (1) in the main text.
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FIG. 7. (a) Distribution of the nearest-neighbour binding energies at 1M NaCl salt concentration for the 6 kbp sequence studied here. For the
first (b) and third (c) region, the averaged ∆m for each salt concentration. Despite the dependence of the pinning force on the salt concentration,
the correlation length is not visibly affected by the salt concentration. Color code as in Fig. 1 (c).

Appendix C: Distribution of binding energies

In Ref. [26, 31] the base-pair free energies in DNA where experimentally determined for the 6kbp sequence studied in this
paper. Fig. 7(a) shows that the distribution of basepair energies is roughly Gaussian, here given for the 1M salt concentration.
Using these binding energies one can evaluate the microscopic disorder ∆∞(w). One uses that 1kcal/mol = 6.944pN · nm
and converts to forces by dividing by the base-pair length of ≈ 0.8nm [12]. The resulting ∆∞(w) decays to zero on a scale of
2bp ≈ 1.6 nm.

The FRG implies that
∫
w>0

∆(w) is independent of m2. As a consequence
∫ ∞

0

dw∆∞(w) ≡
∫ ∞

0

dw∆m(w)

=

∫ ∞

0

dwm4ρ2m∆̃m(w/ρm) = m4ρ3m

∫ ∞

0

dw ∆̃m(w) = 0.252m4ρ3m. (C1)

Solving for ρm yields Eq. (9) presented in the main text,

ρm =

[ ∫
w>0

∆∞(w)

m4
∫
w>0

∆̃(w)

]1/3
'
[

3.97

m4

∫

w>0

∆∞(w)

]1/3
. (C2)

The equality (C1) is satisfied in our experiment, a strong test of universality. We find
∫
w>0

∆m(w) ≈ 7.2(4)pN2 · nm, for the
first region,

∫
w>0

∆m(w) ≈ 7.0(4)pN2 · nm for the second,
∫
w>0

∆m(w) ≈ 7.0(5)pN2 · nm for the third and
∫
w>0

∆m(w) ≈
7.2(7)pN2 · nm for the last region. Our estimate of the microscopic

∫
w>0

∆∞(w) comes close to this. If we use the binding
energies of [31] for the 1M salt concentration, we find

∫
w>0

∆∞(w) ≈ 8(2)pN2·nm[26, 31]. For the first region this corresponds
to ρm = 29(3)nm close to the experimentally measured value of 27(3)nm.

1. Salt dependence

The base-pair energies change with the salt concentration according to

dG([salt]) = dG0([1M])−mi ln([salt]), (C3)

where dG0 is the binding energy at a 1M salt concentration. The values for mi are given in Table 1 of Ref. [26]. Values
for
∫
w>0

∆∞(w) for different salt concentrations are given in Table I. One can do a similar analysis, taking into account
the proportion of samples per salt concentration. One finds a somewhat larger value

∫
w>0

∆∞(w) ≈ 9(2)pN2 · nm and
ρm = 30(3)nm, still in agreement within error bars.
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salt concentration [mM]
∫
w>0 ∆∞(w) # samples

1000 8(2) 6

500 8(2) 7

250 8(2) 5

100 9(2) 5

50 9(2) 4

25 10(3) 3

10 10(3) 3

TABLE I. Properties of the microscopic disorder using the binding energies of [26]. In our analysis, we averaged over the different salt
concentrations (see main text). The resulting error is small, of the order of 2bp on the total correlation length.
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FIG. 8. Comparison of the force correlation ∆m(w) for segments 1-4 in (a-d) extracted at T = 0 (black with grey error bar) with the theoretical
prediction (cyan dashed line). The blue line shows the result of (D3), testing our convolution and reconstructing the finite-T data using the
diffusion kernel which well reproduces the experimental data (orange). One sees that as m2 decreases, the correlation lenght increases and the
size of the thermal peak decreases [10].
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Appendix D: RG at finite temperature, boundary layer and deconvolution

At finite temperature, the 1-loop FRG equation without rescaling acquires an additional term

−m∂m∆m(w) = −1

2
∂2w
[
∆m(w)−∆m(0)

]2
+T̃m∆′′m(w) . . . (D1)

In Eq. (5) we have written the fixed-point equation for the rescaled version ∆̃(w) = mε−2ζ∆(wmζ),

−m∂m∆̃(w) = (ε−2ζ)∆̃(w) + ζw∆̃′(w)− 1

2
∂2w
[
∆̃(w)−∆̃(0)

]2
+T̃m∆̃′′(w) . . . (D2)

What is remarkable about Eq. (D1) is that the RG flow conserves the integral
∫
w>0

∆(w), both at vanishing temperature T̃m = 0

and at T̃m > 0. The reason is that the r.h.s. of Eq. (D1) is a total derivative. For the random field solution ζ = ε/3 relevant for
us, this also holds for the rescaled Eq. (D2).

In Eq. (6) we wrote the finite-temperature solution in the standard boundary-layer form

∆m,T (w) ≈ N∆m(
√
w2 + t2), t =

6m2kBT

ε|∆′m(0)| . (D3)

As the flow preserves the area, it is important to fix N , s.t. the integrals on both sides coincide. This adds a non-trivial change
in normalization, which cannot be given in closed form. Another problem of the boundary layer is that given ∆m,T (w), one can
reconstruct ∆m(w) only for w ≥ t. Since the boundary layer is a phenomenological approximation, we may propose a different
approximation. Namely, to obtain the finite-t solution by convoluting the zero-temperature solution with an appropriately chosen
diffusion kernel,

∆m,T (w) =

∫ ∞

−∞
du∆m(u)R(u− w, τ), R(u, τ) =

1√
4πτ

e−
u2

4τ . (D4)

A nice property of the convolution prescription in Eq. (D4) is that by construction it is area preserving. What remains to be done
is to fix the “diffusion time” τ . Given the properties of the diffusion kernel, this can analytically be done for

∆m(w) = Ce−aw−bw2

. (D5)

Demanding that ∆′′m,T (0)/∆m,T (0) agree yields

τ =
t2

π
− 2a(π − 2)t3

π2
+O(t4). (D6)

The leading-order term only depends on t, while the subleading term contains a = −∆′(0+)/∆(0) ∼ 1/ρm. In the example of
Figs. 3(a)–(b) we find τ = 18.87 at leading order, and τ = 22 at subleading order. The latter value yields an excellent agreement
between approximations (D3) and (D4), and is used in the tests on Fig. 8.
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