
PHYSICAL REVIEW E 101, 043312 (2020)

Sampling first-passage times of fractional Brownian motion using adaptive bisections

Benjamin Walter1 and Kay Jörg Wiese 2

1Department of Mathematics, Imperial College London, London SW7 2AZ, England, United Kingdom
2Laboratoire de Physique de l’École Normale Supérieure, ENS, Université PSL, Centre National de la Recherche Scientifique,

Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, 24 rue Lhomond, 75005 Paris, France

(Received 8 October 2019; accepted 17 March 2020; published 29 April 2020)

We present an algorithm to efficiently sample first-passage times for fractional Brownian motion. To increase
the resolution, an initial coarse lattice is successively refined close to the target, by adding exactly sampled
midpoints, where the probability that they reach the target is non-negligible. Compared to a path of N equally
spaced points, the algorithm achieves the same numerical accuracy Neff , while sampling only a small fraction
of all points. Though this induces a statistical error, the latter is bounded for each bridge, allowing us to bound
the total error rate by a number of our choice, say Ptot

error = 10−6. This leads to significant improvements in
both memory and speed. For H = 0.33 and Neff = 232, we need 5 000 times less CPU time and 10 000 times
less memory than the classical Davies-Harte algorithm. The gain grows for H = 0.25 and Neff = 242 to 3 ×
105 for CPU and 106 for memory. We estimate our algorithmic complexity as CABSec(Neff) = O[(ln Neff)3], to
be compared to Davies-Harte, which has complexity CDH(N) = O(N ln N). Decreasing Ptot

error results in a small
increase in complexity, proportional to ln(1/Ptot

error). Our current implementation is limited to the values of Neff

given above, due to a loss of floating-point precision. Our algorithm can be adapted to other extreme events and
arbitrary Gaussian processes. It enables one to numerically validate theoretical predictions that were hitherto
inaccessible.

DOI: 10.1103/PhysRevE.101.043312

I. INTRODUCTION

Estimating the distribution of first-passage times (FPTs) is
a key problem in understanding systems as different as finan-
cial markets or biological systems [1,2], and the dynamics
of local reactions [3,4]. Typically, research focuses on non-
Markovian processes and bounded geometries, where first-
passage time distributions (FPTDs) are difficult to obtain ana-
lytically [5–9]. Within the class of non-Markovian processes,
fractional Brownian motion (FBM) is of particular interest as
it naturally extends standard diffusion to sub- and superdiffu-
sive self-similar processes [10]. Fractional Brownian motion
is a one-parameter family of Gaussian processes, indexed by
the Hurst parameter H ∈ (0, 1]. The latter parametrizes the
mean-square displacement via〈

X 2
t

〉 = 2t2H , (1)

recovering standard Brownian motion at H = 1
2 . It retains

from Brownian motion scale and translational invariance, both
in space and time. Due to its correlations, it has peculiar
characteristics, as, e.g., the recently observed behavior near a
reflecting boundary [11,12]. FBM has long defied an analytic
study of its extreme events, except for results in the math-
ematical literature concerning the tail of these distributions
[13–16].

In order to render the extreme events of this process
accessible to an analytical treatment, an ε expansion around
Brownian motion in ε = H − 1

2 was proposed [17]. This field
theoretic approach was applied to a variety of extreme events,
yielding the first-order corrections of several probability dis-
tributions [8,17–19]. The scaling functions predicted by this

perturbative field theory are computationally expensive to
verify, since they require a high numerical resolution of the
path. Typically this is done by simulating a discretized version
of the path over a grid of N equidistant points. Measuring a
first-passage time then amounts to finding the first passage of
a linear interpolation of these grid points. This approximation,
however, can lead to a systematic overestimation of the first-
passage time. As can be seen in Fig. 1, a high resolution of
the path is necessary in order to find the first-passage event at
t = 0.36 instead of the one at t = 0.45 or even t = 0.47 for
the coarser grids. To account for this, usually the number of
grid points is increased. As the size of fluctuations between
grid points diminishes as

δX = N−H , (2)

the subdiffusive regime (H < 1
2) necessitates an enormous

computational effort.
This poses challenges to the numerical validation of high-

precision analytical predictions as can be seen, for instance,
in [8]. There, in order to validate the analytically obtained
scaling functions, and to minimize discretization errors in the
subdiffusive regime, system sizes up to N = 224 are sampled
using the standard Davies-Harte algorithm. The implemen-
tation used there required a CPU time of 6 s per sample.
This illustrates that if theories of such high precision are to
be tested against simulations new numerical techniques need
to be developed. The present paper addresses this problem
by designing, implementing, and benchmarking an algorithm
sampling first-passage times of fractional Brownian motion
using several orders of magnitude less CPU time and memory
than traditional methods. The general idea is to start from a

2470-0045/2020/101(4)/043312(14) 043312-1 ©2020 American Physical Society

https://orcid.org/0000-0002-9270-4990
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.101.043312&domain=pdf&date_stamp=2020-04-29
https://doi.org/10.1103/PhysRevE.101.043312

BENJAMIN WALTER AND KAY JÖRG WIESE PHYSICAL REVIEW E 101, 043312 (2020)

0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50

τ∞ τ 4N

τN

t

Xt

FIG. 1. The continuous stochastic path (gray rough line) crosses
the barrier (blue horizontal line) for the first time at τ∞ (black
leftmost square mark). The discretization with N points (red line
passing through rightmost square) overestimates this time as τN (red
rightmost square mark). The numerical estimate is improved to τ 4N

(green middle square mark) when refining the discretization (green
line passing through middle square mark). This systematic error
worsens for diminishing values of Hurst parameter H .

rather coarse grid (as the red one in Fig. 1), and to refine
the grid where necessary. As a testing ground, we simulate
and compare to theory the first-passage time of an FBM with
drift [9].

The algorithm proposed here is an adaptive bisection rou-
tine (ABSec) that draws on several numerical methods already
established in this field, notably the Davies-Harte algorithm
[20], bisection methods [21,22], and the random midpoint
displacement method [23,24]. The central, and quite simple,
observation is that in order to resolve a first-passage event it is
necessary to have a high grid resolution only near the target.
This translates into an algorithm that generates a successively
refined grid, where refinement takes place only at points close
to the target, with the criterion of closeness scaling down by
2−H for each bisection. This refinement is stopped after the
desired resolution is reached. The sampling method is exact,
i.e., the collection of points is drawn from the ensemble of
FBM, a continuous process, with no bias. The only error one
can make is that one misses an intermediate point. We have
been able to control this error with a failure rate smaller than
10−6 per realization.

While there is a relatively large overhead for the nonho-
mogenous refinement, this is compensated by the use of far
less points, leading to a significant increase both in speed
and in memory efficiency over sampling methods that pro-
duce points for the full grid. For H = 0.33 and system size
N = 232, our algorithm is 5000 times faster than the Davies-
Harte (DH) algorithm, the fastest exact sampler (see [25,26])
if all points are needed. It has computational complexity
O[N ln(N)], which makes it the standard algorithm in most
current works (see, e.g., [6,7,27]), with system size N ranging
from 221 to 224. Our maximal grid size is limited by the
precision of the floating-point unit to Nmax ≈ 211/H .

This paper is organized as follows. In Sec. II, we introduce
our adaptive bisection algorithm. First, its higher-level struc-

ture is outlined and then each subroutine is detailed. Possible
generalizations to other extreme events or other Gaussian
processes are discussed at the end of this section. In Sec. III,
we present our implementation of the adaptive bisection in
C, which is freely available [28]. We benchmark it against an
implementation of the Davies-Harte algorithm. We compare
error rates, average number of bisections, CPU time, and
memory. Section IV contains a summary of our findings.

II. ALGORITHM

In this section, we introduce the ABSec. The central aim is
to translate the idea of refining the grid “where it matters” into
a rigorous routine.

A. Fractional Brownian motion and first-passage times

Gaussian processes Xt are stochastic processes for which
Xt evaluated at a finite number of points T in time has a
multivariate Gaussian distribution [29]. They are simple to
handle, since their path probability measure can be obtained
from their correlation function. The best known Gaussian
process is Brownian motion, which is the only translational
invariant Gaussian process with stationary and independent
increments.

Fractional Brownian motion generalizes Brownian motion
by relaxing the requirement of independent increments, while
keeping self-similarity. The latter property means that its path
probability measure is invariant under a space-time transfor-
mation t → ct, x → c−H x for c > 0. The parameter H is
referred to as the Hurst exponent. As a Gaussian process,
FBM is entirely characterized by its mean X0 = 〈Xt 〉 = 0 and
correlation function

C(s, t) = 〈XsXt 〉 = |s|2H + |t |2H − |t − s|2H , (3)

where H ∈ (0, 1]. As a consequence, 〈(Xt − Xs)2〉 = 2|t −
s|2H , and in particular 〈X 2

t 〉 = 2|t |2H . From the correlation
function it follows that on all time scales nonoverlapping
increments are positively correlated for H > 1

2 and negatively
correlated for H < 1

2 . For H = 1
2 one recovers Brownian

motion with uncorrelated increments.
The FPT of a stochastic process is the first time the process

crosses a threshold m. Since we use X0 = 0, it is defined for
m > 0 as

τm = inf
t>0

{t |Xt � m}. (4)

B. Notation

In simulating a FBM on a computer, one is forced to repre-
sent the continuous path by a discretized path that takes values
on a finite set of points in time, the grid. We denote the grid
by ordered times T = {t1, t2, . . . , tN }, and the corresponding
values of the process by X = {Xt1 , Xt2 , . . . , XtN }. Together,
(X , T) form the discretized path. Due to self-similarity of the
process, we can restrict ourselves to T ⊂ [0, 1] with no loss
of generality. The intervals between any two successive times
ti, ti+1 ∈ T are referred to as bridges (ti, ti+1). Each connected
component of [0, 1]\T is a bridge.

043312-2

SAMPLING FIRST-PASSAGE TIMES OF FRACTIONAL … PHYSICAL REVIEW E 101, 043312 (2020)

We denote the dyadic lattice on the unit interval by �k =
{i2−k; 0 � i � 2k}. Our adaptive bisection algorithm sets out
from a dyadic lattice �g of relatively low resolution (typically
g � 8 or 10). A FBM path is sampled for every point of
the coarse grid �g. If the linear interpolation of this coarse
path already surpasses the threshold m at a time τ (0), or in
other words if there is a smallest K such that XK2−g > m, then
the grid is truncated at τ (0). (That this truncation does not
introduce a bias is shown below.) If this is not the case, i.e., if
all points remain below the threshold m, then the full grid is
kept. We define the truncation of the grid T to a certain time
τ ∈ [0, 1] as

T |τ := {ti ∈ T |ti−1 < τ }, (5)

i.e., the truncation contains all points in time up to time
τ plus the next grid point of the initial grid �g (see
Sec. II C 3). This procedure results in an initial grid T (0) ⊂ �g

containing |T (0)| = K points, with K � 2g. Next, the algo-
rithm performs bisections of this grid in successive iterations
T (0), T (1), . . . , T (M), where M is the total number of bisec-
tions before the routine terminates. Since each new bisection
adds exactly one point to the grid, M also denotes the total
number of points added to the initial grid. The final grid T (M)

contains K + M points.
To each bridge (tl, tr) between left and right end points tl

and tr and contained in a grid T (m), we associate a level �

defined by � = − log2 (tr − tl). A bridge is bisected by intro-
ducing its midpoint tm = 1

2 (tl + tr) = tl + 2−�−1 and inserting
tm into the grid T (m+1) = {t1, . . . , tl, tm, tr, . . . , tN }. A bridge
can be bisected until its level reaches a maximum bisection
level L (typically L � 30 for H = 0.33). Since each iteration
only halves an existing interval, all grids are subsets of the
maximal dyadic lattice �L:

�g ⊇ T (0) ⊂ T (1) ⊂ · · · ⊂ T (M) ⊆ �L. (6)

Note that for each bridge (tl, tr) there is always one dyadic
lattice �n, such that ti and ti+1 are neighboring points in �n;
they are members, but not neighbors in �n′

for n′ > n; at least
one of them does not exist in �n′

for n′ < n.

C. Definition of the algorithm

The algorithm consists of two phases. In the first phase, the
initialization, a coarse grid is generated. In the second phase,
the adaptive bisection, this grid is successively bisected where
necessary. Once the second phase terminates, the first-passage
time is calculated using the final grid.

The first phase starts by sampling an initial discretized path
X (0) over a dyadic lattice T (0) = �g with N = 2g equidistant
points, using the Davies-Harte algorithm. The latter is the
fastest known algorithm to sample an exact FBM path on
an equidistant grid in time [25]; its execution time scales as
N ln(N), thus only slightly slower than what is needed to
generate an uncorrelated sample of the same length N . From
this relatively coarse grid, (X (0), T (0)), the first-passage time
is estimated via linear interpolation as τ (0).

Subsequently, the grid is truncated by discarding all points
behind the first point surpassing m [see Eq. (5)]. That this does
not change the measure is explained in Sec. II C 3. If no such
point exists, the full grid is kept. The correlations between the

different points Xt at times t stored in the grid are given by the
correlation matrix

Ci j (T) = C(ti, t j), ti, t j ∈ T , 1 � i, j � |T |. (7)

It is a symmetric matrix computed from the correlation func-
tion (3). It is then inverted to obtain the inverse correlation
matrix C−1

i j (T). The inversion is optimized by using precalcu-
lated tabularized matrices. This concludes the first phase.

In the second phase, bridges are checked successively until
the maximum level is reached. The order in which the bridges
of the growing grid are checked is determined by a subroutine
the aim of which is to find the first-passage event with the
least amount of bisections. The check consists in testing
whether the midpoint Xtm of the bridge (tl, tr) could surpass
the threshold m with a probability larger than ε, taken small.
If this is the case the bridge is deemed critical and bisected.
The bisection consists in generating a midpoint Xtm at time tm
conditional to the preexisting grid. This computation requires
the inverse correlation matrix and is detailed in Sec. II C 6.
Once the midpoint is generated, it is added to the path (X , T).
In a last step the inverse correlation matrix of the new grid
C−1(T ∪ tm) is stored. In Algorithm 1, the algorithm is given
in pseudocode.

The routines in the pseudocode are described in Secs.
II C 1–II C 7.

1. Davies-Harte algorithm

The DH algorithm is a widely used method to generate
FBM samples. It was introduced in [20], is pedagogically de-
scribed in [25], and has been extended to other Gaussian pro-
cesses in [26], allowing us to omit an introduction. It generates
a sample of fractional Gaussian noise (FGN) ξ1, ξ2, . . . , ξN ,
the incremental process of FBM ξ j = Xj+1 − Xj, j ∈ N, and
then sums the increments to a FBM sample with values Xiδt =
(δt)H

∑i
j=1 ξ j . Simulating the increments is more efficient

since FGN is a stationary Gaussian process which, for equally
sized increments, has a circulant correlation matrix, which can
be diagonalized using a fast Fourier transform (FFT). There-
fore a FGN sample of N increments can be simulated with
computational complexity O[N ln(N)]. The FFT algorithm
works optimally when the number of points is a natural power
of 2, i.e., if the grid is a dyadic lattice.

2. Estimating the first-passage time

Given a discretized path (X , T), we use its linear interpo-
lation to give the first-passage time as its first intersection with
the threshold (see Fig. 1).

3. Truncating the grid

A further optimization is to discard grid points beyond the
first point crossing the threshold [see Eq. (5)]. It is necessary
to show that the density of first-passage times conditioned on
the full grid equals the distribution conditioned on the trun-
cated grid, i.e., that truncating does not change the measure.

The FPTD P(τ) can be decomposed into a sum of con-
ditional probabilities for disjoint events. Each term of the
sum is the probability that the ith point of a grid surpasses
m, the threshold, for the first time [“Pgrid(Xti > m first)”],
times the FPTD of a FBM conditioned on the event that its

043312-3

BENJAMIN WALTER AND KAY JÖRG WIESE PHYSICAL REVIEW E 101, 043312 (2020)

discretization on grid T surpasses m at ti for the first time,
i.e.,

PT (τ |Xti > m first)

= P
(
τ |Xt : Xti > m and Xtj < m ∀t j < ti

)
(8)

for t j, ti ∈ T . The decomposition thus reads

P(τ) =
∑
ti∈T

PT
(
τ |Xti > m first

)
Pgrid

(
Xti > m first

)
. (9)

By continuity of the process,

PT
(
τ > ti|Xti > m first

) = 0, (10)

such that the sum in Eq. (9) can be truncated to

P(τ) =
∑

ti−1<τ

PT
(
τ |Xti > m first

)
Pgrid

(
Xti > m first

)
. (11)

In order to sample PT (τ |Xti > m first), one would naively
sample the entire grid X over all of T , but since

PT
(
τ |Xti > m first

) = PT |τ
(
τ |Xti > m first

)
, (12)

where the restriction is defined in Eq. (5), it is sufficient to
only regard the smaller grid T |τ , i.e.,

P(τ) =
∑

ti−1<τ

PT |τ
(
τ |Xti > m first

)
Pgrid

(
Xti > m first

)
. (13)

Discarding points in the initial stage leads to a smaller corre-
lation matrix to be inverted, which increases performance and
decreases memory.

4. Tabulating inverse correlation matrices

The inverse of the correlation matrix (7) is necessary to
compute the conditional probability of any further midpoint
(see Appendix B). Its computation is costly and typically
scales with O(N3) where N = 2g is the number of points in
T (0). If the algorithm is run multiple times, this computation
slows it down. The initial grid, however, is always a dyadic lat-
tice truncated at some point, i.e., T (0) = {k2−g; 0 � k � K},
where XK2−g is the first point to surpass m. Therefore, the
initial inverse correlation matrix C−1(T (0)) can take 2g − 1
possible values, one for each possible value of K . It is more ef-
ficient to precalculate all possible inverse correlation matrices
in the beginning, and store them in a vector “CMatrixTable”:

CMatrixTable[K] = (
[C(i2−g, j2−g)]K

i, j=1

)−1
. (14)

After generating the initial grid and measuring τ (0), one
reads out the appropriate entry of the table at K =
min {n ∈ Z; n2−g � τ (0)}.

5. Deciding whether a bridge is critical

Once entering the bisection phase, the algorithm needs to
decide whether a particular bridge is critical, i.e., whether it
is suspicious of hiding a “dangerous” excursion crossing the
threshold at m (see Fig. 1). Rather than determining whether
any point in (tl, tr) surpasses the threshold, we focus on the
midpoint tm conditioned on all other points X , and ask how
likely Xtm > m. Such an event needs to be avoided with a

very low probability ε, the error tolerance. The relevant
probability,

P
(
Xtm > m|X)

< ε, (15)

is too costly to be computed for every bridge in every step of
the iteration, as the midpoint is a Gaussian random variable,
with its mean and variance determined by every other point in
the grid. If we ignore all points of the path apart from (ti, Xti)
and (ti+1, Xti+1), a calculation given in Appendix A shows that
mean and variance would be given by

μ = 1
2

(
Xti + Xti+1

)
(16)

and

σ 2 = (
21−2H − 1

2

)
2−2�H . (17)

Here � is the level of the bridge of width δt = 2−�. Inter-
estingly, adding to the bridge’s end points further lowers the
variance [see Eq. (30)], which means that neglecting all but
nearest neighbors gives an upper bound on the variance of the
midpoint. Further, we conservatively bound the mean by the
maximum of both end points, μ � max (Xti , Xti+1). This is a
priori not a precise approximation, since far-away grid points
are able to “push” the expected midpoint above the bridge’s
end points for values of H �= 1

2 . As is shown in Sec. III C,
this systematic error can be absorbed by introducing an even
smaller error tolerance ε′. Furthermore, it is less relevant
in the subdiffusive regime, where the process is negatively
correlated. By giving conservative bounds on mean and vari-
ance with quantities that are local (i.e., do not depend on the
remaining grid), we can replace the original criterion (15)
by a computationally cheaper alternative, namely, the local
condition

P
[
Xtm > m

∣∣(Xtl , Xtr

)]
< ε′. (18)

This implies that Eq. (15) holds for an appropriate choice
of ε′, on average. This is to be understood as follows. In a
simulation, there are n decisions of type (15) to be taken.
The total error is approximately Ptot

error ≈ nε. The parameter
ε′ is chosen such that the total error rate remains smaller
than 10−6, and is thus negligible as compared to Monte
Carlo fluctuations. The dependence between ε′ and Ptot

error is
investigated in Sec. III C (see Fig. 3).

Criterion (18) is rephrased, using again � as the level of the
bridge, to

⎛
⎝m − max

(
Xti , Xti+1

)
(√

21−2H − 1
2

)
2−�H

⎞
⎠ > 1 − ε′, (19)

which implies

max
(
Xti , Xti+1

)
< m − (√

21−2H− 1
2

)
2−�H
−1(1−ε′), (20)

where we introduced
, the cumulative distribution function
of the standard normal distribution, and its inverse
−1. This
is further simplified by defining the critical strip

c0 = (√
21−2H − 1

2

)

−1(1 − ε′) (21)

and the level-corresponding critical strips

c� = 2−�H c0. (22)

043312-4

SAMPLING FIRST-PASSAGE TIMES OF FRACTIONAL … PHYSICAL REVIEW E 101, 043312 (2020)

i · 2−g (i + 1) · 2−g

• • • • • •

1
2 3

4
5 6

7

t

m

m − cg

m − cg+1

m − cg+2

g

g + 1

L

B
ri

dg
es

B
in

ar
y

tr
ee

P
at

h
X

G
ri

d
T

FIG. 2. Illustration of the adaptive bisection routine. The grid
T (bottom) contains points in time; here details are shown of the
initial bridge tl = i2−g, tr = (i + 1)2−g (labeled bullets) and succes-
sively introduced midpoints (bullets on the time axis). The path X
(above) samples values at times (dashed lines) which approximate
the path by linear interpolations (gray and black thick lines). The
threshold m (red uppermost horizontal line) is crossed by the path
and bisections are generated for every bridge the end points of which
lie in the critical strip corresponding to its level (blue vertical lines
underneath). The horizontal arrows on top of the path indicate the
bridges in between the grid points. The mapping from bridges to
the binary tree (top) is indicated with dotted lines. The top node
(1) corresponds to the widest bridge (i2−g, (i + 1)2−g), and children
correspond to subintervals generated by the midpoint. The bridges
are explored in order as given by numbers above nodes and chosen
by the bridge-selection routine (see text for details). Bridges that are
critical (blue filled nodes) are bisected, and their children are checked
from left to right, until a first-passage event has been identified at
maximum bisection level L (red filled node 7). This event terminates
the algorithm. In contrast to node 1, which belongs to the initial grid
T (0), nodes 2 to 7 stem from adaptive bisections and contribute to
the total count of bisections M. The maximum number of nodes
which could theoretically be spawned off this particular subinterval
is 2L−g − 1.

A bridge (Xtl , Xtr) of level � is deemed critical if either of its
end points lies above the critical strip corresponding to �, i.e.,

max
(
Xti , Xti+1

)
> m − c�. (23)

This makes for a computationally fast decision process, since
the critical strip width has to be computed only once. The
procedure then checks for a given level of the bridge whether
it reaches into the critical strip, in which case it is bisected
(see Fig. 2 for illustration).

6. Generating the new midpoint efficiently

If a bridge triggers a bisection, the midpoint is drawn
according to its probability distribution, given all points that
have been determined previously. If this occurs at, say, the mth
iteration, the discretized path is ((X1, t1), . . . , (XN , tN)) with
|T (m)| = |X (m)| = N = K + m where K � 2g is the number
of points in the truncated initial grid. Denoting the midpoint

ALGORITHM 1: Adaptive bisection

procedure ABSEC(g, L, m, ε)
T ← �g

X ←DAVIES_HARTE(�g) � II C 1
τ ← FPT_FROM_GRID(X ,T) � II C 2
(X ,T) ← (X ,T)|τ (0) � II C 3
C−1 ← CMatrixTable[τ (0)] � II C 4
(tl, tr) ←NEXT BRIDGE(T , 0, τ (0))
while (tl, tr) defined do

if Bridge (tl, tr) critical and not yet bisected then � II C 5
C−1 ← AUGMENT C−1-MATRIX(C−1, tm)
X ∗ ← GENERATE MIDPOINT(C−1, tm) � II C 6
X ← X ∪ X ∗

T ← T ∪ tm

if X ∗ > m then
τ ← FPT_FROM_GRID(X ,T)

(ti, ti+1) ←NEXT BRIDGE(T , (ti, ti+1), τ) � II C 7
output(τ)

to be inserted by (Xt∗ , t∗), one needs to find

P(Xt∗ |X1, . . . , XN). (24)

The midpoint is again normal distributed with mean μ∗(N)
and variance σ∗(N). Let T (m+1) = (T (m), t∗) be the aug-
mented grid, and C−1(N + 1) = C−1(T (m+1)) the associated
inverse correlation matrix [see Eq. (7)]. Then, as detailed in
Appendix B, the inverse of the variance is given by

σ−2
∗ (N) = [C−1(N + 1)]N+1,N+1 (25)

and the mean by

μ∗(N) = σ 2
∗ (N)

N∑
i=1

[C−1(N + 1)]N+1,iXti . (26)

Computing the inverse correlation matrix from scratch at ev-
ery iteration would require a matrix inversion which typically
uses O(N3) steps. We do this in O(N2) steps, by starting from
the already calculated inverse correlation matrix of the previ-
ous grid C−1(N) = C−1(T (m)). As detailed in Appendix C, the
inverse correlation matrix C−1(N + 1) = C−1(T (m+1)) can be
constructed as follows. First, generate a vector containing all
correlations of the new point with the grid, using Eq. (3):

�γ (N) = (C(t∗, t1),C(t∗, t2), . . . ,C(t∗, tN))T . (27)

Second, multiply it with the (already constructed) inverse
correlation matrix to obtain

�g(N) = C−1(N) · �γ (N). (28)

In terms of �γ and �g, the mean and variance can be expressed
as

μ∗(N) = �X · �g, (29)

where we use �X = (Xt1 , . . . , XtN) for short, and

σ 2
∗ (N) = 2(t∗)2H − �γ · �g. (30)

Since �γ T �g = �γ T C−1(N)�γ > 0, conditioning on more points
diminishes the variance of a midpoint. The outer product of �g

043312-5

BENJAMIN WALTER AND KAY JÖRG WIESE PHYSICAL REVIEW E 101, 043312 (2020)

defines the matrix

G(N) := �g ⊗ �gT . (31)

It is used to build the enlarged inverse correlation matrix

C−1(N + 1) =
(

C−1(N) + σ−2G(N) −σ−2�g(N)
−σ−2�gT (N) σ−2

)
, (32)

where σ 2 = σ 2
∗ (N). In our implementation entries in

�μ, �g,C−1, etc., are generally not in order of time but in order
of their addition to the grid.

7. Bridge selection

The task of the bridge-selection routine (see Algorithm 2)
is to choose the order in which bridges of the successively
refined grid are tested, and possibly inserted. Its aim is to find
the first-passage event with the least number of bisections. To
this aim, it zooms in into areas where a first-passage time is
likely, and zooms out when the possibility of a crossing be-
comes negligible. In this subsection, we phrase this intuition
in more rigorous terms.

Prior to the first call of the routine, the initial grid consists
of 2g bridges of uniform width 2−g. The routine selects the
earliest bridge, i.e., (tl = 0, tr = 2−g), and scans all bridges
of the initial grid in ascending order in time until a critical
bridge is found [by applying the criticality criterion (18)].
Once such a bridge is found, the algorithm explores this bridge
by successive bisections. After a finite number of bisections
the algorithm either has identified a first-passage event to the
desired precision or no crossing was found. In the latter case,
the routine then moves on to the next bridge of the initial grid.

In order to illustrate the workings of the bridge-selection
routine, it is helpful to consider a bijection between the
adaptively bisected grid and a rooted binary tree (see Fig. 2).
Every bridge (tl, tr) that is bisected by introducing a point at tm
contains two sub-bridges (tl, tm) and (tm, tr). We refer to these
bridges as the left and right children of (tl, tr). Vice versa,
every bridge that is not part of the initial bridge (i.e., with
level � > g) is the child of another bridge which is referred
to as the parent of the bridge. The set of all bridges that
are contained in an initial bridge of width 2−g is mapped
to a rooted binary tree by identifying every node with a
bridge, where a node can either have zero or two children
depending on whether the bridge has been bisected or not.
The root of the tree corresponds to the bridge contained in
the initial bridge from where the bisections were spawned off.
The generation of a node in the tree corresponds to its level
by generation = � − g + 1. Therefore, the depth of the tree is
limited to generationmax = L − g + 1.

The routine stores a representation of this tree internally,
together with the information as to whether a node or bridge
has previously been checked for criticality or not. If a bridge
is bisected, but its two children have not yet been checked
for criticality, the left child is selected. This is because earlier
crossings of the threshold render later crossings irrelevant. If a
bridge has two children, but the left has already been checked
(implying that neither it nor any of its further descendants
contains a first-passage event), the right child is selected. If
both children of the bridge have already been checked, none of
the descendants contains a first-passage event. In that case the

parent of the bridge is returned (zooming out). If the routine
returns to the root, the bridge of type (i2−g, (i + 1)2−g) has
no parent, and the next such bridge ((i + 1)2−g, (i + 2)2−g)
is returned. If i = 2g − 1, the routine terminates by returning
an empty bridge since the entire grid has been checked. This
selection routine implies that in the “worst case,” when every
point of the initial grid T (0) lies in the critical strip without
ever crossing the threshold m, every single subinterval will
be analyzed. This means that in a worst-case scenario up to
2g search trees (see Fig. 2) would be generated, each tree
containing up to 2L−g − 1 nodes. This scenario is extremely
unlikely.

To summarize, the routine is either descending (zooming
in) or ascending (zooming out) within the tree, depending on
whether the children of a node, if existent, have been visited
or not.

The routine takes into account two additional constraints.
First, concerning the maximum bisection level L, if a bridge
of maximum level L contains a first-passage event, the routine
terminates since this estimate has reached the desired resolu-
tion. If it contains no crossing, the parent is returned. Second,
it takes into account whether a bridge is early enough in time
to improve the first-passage estimate. If a bridge at level �

records a first-passage event, only its descendants can improve
this result.

We give the pseudocode of the routine below. In
the implementation we present later (Sec. III A), the al-
gorithm is implemented slightly differently for perfor-
mance reasons. The logical steps, however, are the same
and we decided to present them here for pedagogical
reasons.

D. Adding deterministic functions

The adaptive bisection routine can be adapted to further
generate first-passage times of stochastic processes of the
form

Zt = Xt + f (t), (33)

where f (t) is a deterministic smooth function, e.g., a linear
or fractional drift term, and Xt is again a fractional Brownian
motion. In its first phase, Xt is generated on a subgrid, and f (t)
is added accordingly. The resulting process Zt , t ∈ T (0) is then
passed to the bridge-selection routine, where the bridges are
checked for criticality using the values of Zt in the criticality
criterion (20). Once a bisection is required, the midpoint is
generated using the subtracted process Xt = Zt − f (t), i.e.,
the vector used to generate the midpoint’s mean [see Eq. (26)]
is �X , not �Z . Then, the generated midpoint Xm is transformed
back using Zm = Xm + f (tm), and inserted into the path of
Z . Note that even if f (t) = μt (linear drift), and contrary to
Brownian motion, the iteration cannot be performed directly
on Zt .

E. Further generalizations

The underlying idea of the algorithm—to generate a grid
that is fine only where it matters—lends itself to various other
nonlocal observables, in particular extreme events, such as
running maxima (minima), positive time (time spent in the

043312-6

SAMPLING FIRST-PASSAGE TIMES OF FRACTIONAL … PHYSICAL REVIEW E 101, 043312 (2020)

region Xt > 0), last returns, or the range or span (max Xt −
min Xt) of a process.

In each of these examples, one needs to adapt two logical
steps in the procedure: (i) the order in which bridges of the
grid are iterated and (ii) the criterion for triggering a bisection.
For first-passage times, the order of the bridges is given by
the subroutine described above in Sec. II C 7. The criterion
for bisection is determined by the bridge’s distance to the
threshold. These two choices are particular to first-passage
events.

For running maxima, the bridges should be tested in de-
scending order of height, and the bisection criterion adapted
to decide whether the midpoint could surpass the current
maximum with a probability larger than ε. If the current
maximum changes, the criterion for triggering a bisection also
changes. As the maximum can only increase, bridges which
were uncritical before do not become critical by a change of
the estimate of the maximum.

To find the last return to zero (t0 = supt ′<t {t ′|Xt ′ = 0}), the
bisection criterion is the same as for first-passage times (with
m set to zero), but bridges should be iterated over from latest
to earliest, choosing the right subinterval first after bisection
(see Fig. 2).

The span of a process at time t is defined as the running
maximum minus the running minimum [8,30–33]. To find the
first time the span reaches one is more delicate. There are
two cases, given a discretization. Either span 1 is reached
first when the maximum increases, or the minimum decreases.
Suppose that the maximum increases. Then there is a min-
imum for a smaller time. By refining the grid close to this
minimum, the latter may decrease. This in turn shifts down
the critical strip for the maximum, and one has to redo all
checks for bridges close to the maximum.

The algorithm can be generalized to other Gaussian pro-
cesses, since the derivations given in Sec. II C 6 and Appendix
B for the insertion of a conditional midpoint apply to any
Gaussian process. The only point at which we made explicit
use of properties for FBM was at the initialization step, where
the Davies-Harte method was employed to generate a path on
a coarse dyadic lattice. If one were to study another Gaussian
process, one would need to replace the correlation function
(3), and adapt the routine generating the initial grid.

Once these modifications are made for the new problem,
we expect the algorithm to deliver similar improvements in
performance and memory.

III. RESULTS AND BENCHMARKING

In this section, we compare an implementation of our adap-
tive bisection method (ABSec) with an implementation of
the Davies-Harte (DH) method. Our focus lies on comparing
both CPU time and memory usage for a simulation of equal
discretization error. We find that for large system sizes, Neff �
102/H , the adaptive bisection routine outperforms the Davies-
Harte method both in CPU time and memory. This advantage
grows markedly for lower values of H . At H = 0.33, for
instance, and a final grid size of Neff = 232 we need 5000
times less CPU time and 10 000 less memory. At H = 0.25 we
find ABSec to be 300 000 times faster and 106 less memory
intensive than DH at an effective system size of Neff = 242.

ALGORITHM 2: Finding the next bridge to be checked.

procedure NEXT BRIDGE(T , (tl, tr), τm)
if (tl, tr) = 0 then

return (0, 2−g) � Initialise with first bridge
if (tl, tr) has no children then

return parent bridge
if (tl, tr) early enough for τm AND level < L then

if left child not checked then
return left child � Move down left

if left child checked AND right child not checked then
return right child � Move down right

if both children checked then
return parent bridge � Move up to parent

if level of (tl, tr) = L then
if Bridge crosses threshold then

return NULL

else
return parent bridge

We then discuss systematic errors and analyze how they de-
pend on the parameters, in order to clarify the payoff between
computational cost and numerical accuracy. We conclude with
a discussion of our findings.

A. Implementation in C

We implemented the adaptive bisection algorithm in C,
using external libraries LAPACK [34], GSL [35], FFTW3 [36],
and CBLAS [37]. The code is published [28] and available
under a BSD license. It was compiled using the Clang/LLVM
compiler using the −03 flag as the only compiler optimiza-
tion. The code was executed on an Intel(R) Core(TM) i5-
7267U CPU 3.10-GHz processor.

As reference, we use an implementation of the Davies-
Harte method in C [38]. Compiler settings and hardware are
identical to those used for the adaptive bisection algorithm.

In order to compare performance, we used user time and
maximum resident set size as measured by the POSIX com-
mand GETRUSAGE; user time indicates the time the process
was executed in user space, and maximum resident set size
indicates the amount of RAM held by the process.

B. Numerical errors and fluctuation resolution

The adaptive bisection algorithm suffers from three errors.
(i) The resolution of the grid itself is determined by the

maximum grid size if all bridges were triggered, which we
refer to as horizontal error. Any discretization of a continuous
path suffers from errors that are made when replacing the
rough continuous path by the linear interpolation of a grid.
Even if the true first-passage time is optimally approximated,
the error still depends on the system size N . In that respect,
our algorithm does not differ from DH or other exact sampling
methods.

(ii) The adaptive bisection routine suffers from a proba-
bilistic error, namely, false negative results of the criticality
check, i.e., bridges which do contain an excursion crossing
the threshold m, but the end points of which do not lie in

043312-7

BENJAMIN WALTER AND KAY JÖRG WIESE PHYSICAL REVIEW E 101, 043312 (2020)

the critical strip (see Sec. II C 5). We refer to these errors as
vertical errors.

(iii) The algorithm suffers from rounding errors of the
floating-point unit.

Horizontal errors correspond to the resolution of the pro-
cess’s fluctuations. To contain fluctuations of a FBM between
two grid points at distance N−1 to the order of δX , one
needs to choose N ∼ (δX)−

1
H . Horizontal errors are there-

fore characterized by the effective discretization resolution
NH ∼ (δX)−1 which corresponds to the inverse fluctuation
resolution. In order to compare two discretizations of a
FBM path for two different values of the Hurst parameter
H , comparing N is misleading. Rather, we compare their
effective discretization resolutions NH . Horizontal errors are
impossible to measure numerically, since there exists no way
to simulate a continuous path. They are, however, independent
of the sampling method used; this implies that the horizontal
error of a path generated by DH with system size 2L and an
adaptive bisection routine of maximum bisection level L are
exactly the same, given no vertical error occurred. For a deeper
discussion of discretization errors of the DH algorithm, see
Sec. V E of [33].

Vertical errors are controlled by the error tolerance ε′, of
Eqs. (20) and (21). To study vertical errors systematically, one
needs to compare the results with a fully sampled grid using
(for instance) DH. This is discussed in the next section.

In the remainder of the section, we run benchmarking
experiments that repeat the adaptive bisection routine a large
number of times, typically I = 104. Following the insights of
Sec. III C, we choose an error tolerance that is small enough to
neglect errors of the vertical kind (whenever the vertical error
rate is much smaller than I−1). In doing so, we can ignore
the vertical error such that the numerical discretization error
becomes a good common error for both adaptive bisections
and DH. This allows us to compare grids sampled with both
methods systematically across various values of H and L.

Finally, errors due to the finite precision of the floating-
point unit are considered. These arise in the matrix inversion
(32), where inspection reveals terms of opposite sign. They
can be detected by plotting σ 2

∗ (N) as a function of grid
resolution. For small grids, σ 2

∗ (N) almost follows a power law,
with little spread. Numerical errors are visible as a net increase
of this spread (see Fig. 10). To be on the safe side, we choose
the maximal L to be four less than the point where we first see
numerical errors appear.

C. Error rate depending on ε′

This section addresses the question of vertical errors, i.e.,
bridges that were deemed uncritical by the adaptive bisection
routine (see Sec. II C 5), yet contained an excursion that
crossed the threshold for the first time. This probability,
P(Xtm > m), where Xtm marks the midpoint of a bridge, was
bounded using an error tolerance ε′. Therefore, we need
to know how ε′ controls the error rate. Since we can only
measure the error rate when compared to another numerically
generated grid, we compare our algorithm to a path generated
using the Davies-Harte algorithm of equal precision. The pro-
cedure is as follows. In a first step, the Davies-Harte method is
used to generate a path on the dyadic lattice �L. For this path,

10−7 10−6 10−5 10−4 10−3 10−2

error tolerance ε

10−6

10−5

10−4

10−3

10−2

10−1

P
to

t
er

ro
r

T (0)=Λ8, L=20

T (0)=Λ4, L=20

T (0)=Λ4, L=16

10ε

3ε

FIG. 3. Error rate from the phone book test for various values of
ε′ for H = 0.33. The error rate is almost identical when changing
the initial grid size from 28 (red square marks) to 24 (blue triangle
marks) at the same maximum bisection level L = 20. When lowering
the maximum bisection level to L = 16, the error rate improves. The
relation between error rate and error tolerance decreases approxima-
tively linearly over several orders of magnitude (compare with solid
gray line). The total error rate is approximately 10ε′ for L = 20 (solid
gray line) and about 3ε′ for L = 16 (dashed gray line). Note that
the prefactor is much smaller than the number of points, which can
be read off from Fig. 5. Error rates were averaged over 105 to 106

iterations.

and a threshold m, the first-passage time is calculated using its
linear interpolation as detailed in Sec. II C 2. Then, only times
in the subgrid �g ⊂ �L are copied into a second path. This
path is handed over to a modified adaptive bisection routine
(see Algorithm 1). The bridges of the grid are successively
checked, at each step deciding whether to bisect as discussed
in Sec. II C 5. Once a midpoint needs to be drawn, it is not
randomly generated, but taken from the full grid at the same
time. The full grid thus serves as a phone book for the adap-
tive bisection algorithm, where points are looked up if they
lie at points the algorithm would have otherwise generated
randomly. The algorithm then outputs its own estimate of
the first-passage time. If the first-passage times disagree, this
is considered an error. We refer to this check as the phone
book test. This test is iterated 106 times, and the error rate
Ptot

error is defined as the ratio between errors and the number of
iterations.

The results are shown in Fig. 3, where we compare the
error rate for different values of ε′ and for three different
grids of varying initial grid size, and maximum bisection
levels. The plot shows that the total error rate and error
tolerance ε′ depend on each other linearly, indicating that ε′
is a suitable replacement for ε introduced in Eq. (15). The
plot further shows that the error rate remains almost identical
when replacing the initial grid �8 by �4 (which contains 16
points only). Further, the error rate improves if the maximum
bisection level is lowered. When lowering the effective system
size from 220 to 216, the error rate lowers approximately by a
factor of 3.

In summary, this plot confirms that the computationally
cheap variant (18) allows us to control the vertical errors (false
negative results of the criticality test).

043312-8

SAMPLING FIRST-PASSAGE TIMES OF FRACTIONAL … PHYSICAL REVIEW E 101, 043312 (2020)

2 4 6 8 10

0

25

50

75

100

125

150

175

A
ve

ra
ge

nu
m

b
er

of
b
is

ec
ti

on
s

at
le

ve
l

H = 0.25

H = 0.33

H = 0.5

H = 0.67

FIG. 4. Average number of new midpoints generated at bridge
level �, for various values of H (solid, dashed, dash-dotted, and
dotted lines) as a function of �H . For equal values of �H , a lower
Hurst parameter implies a larger number of average bisections. These
numbers are virtually independent of the initial grid size, as is shown
for �4 (circle marks) and �8 (triangle marks).

D. Average number of bisections

In this section, we investigate how many points are added
to the initial grid, and how the additionally inserted midpoints
are distributed over the different generations. The number of
midpoints generated, M, is the main expense of computational
resources, since each point requires promoting an inverse
correlation matrix from size n to n + 1 requiring O(n2) steps.

Each midpoint that is generated bisects a bridge at level �

and creates two sub-bridges at level � + 1. In order to know
how the algorithm spends most of its time, we simulated the
adaptive bisection routine 104 times over an initial grid of
size �4 or �8 and measured the average distribution of the
M newly generated midpoints over the different levels. The
results are shown in Fig. 4.

While the distribution remains virtually unchanged when
replacing the initial grid by �8, its shape changes for different
values of Hurst parameter H . For H > 1

2 , the distribution
remains flat and even descends for � > 5/H . For H = 1

2
it remains constant for � > 8 (at around 11 midpoints per
generation), while for H < 1

2 (see figure for H = 1
3 and 1

4)
the number of inserted midpoints increases, and tends to be at
higher bridges.

Since the number of additionally inserted points M is cru-
cial to the performance of ABSec, the routine is designed to
minimize this number, with a hypothetical minimum of L − g
points (when finding the first-passage event with no fault). The
hypothetical maximum corresponds to a full bisection of the
grid which would require 2L − 2g ≈ 2L additional points (this
occurs when the path does not cross the threshold at all and
ε′ → 0). In Fig. 5, we show the total number of bisections M
for various system sizes L, averaged over 104 realizations. The
number of additional points ranges from 40 to 1500, where
larger system sizes lead to an increase of M. For H = 0.33 and
L = 32, the average of additional points is M = 710, which
corresponds to 1.6 × 10−7 of the full grid. This means that,
with that fraction of the full grid only, the algorithm identifies

15 20 25 30 35
L

0

200

400

600

800

1000

1200

1400

A
d
d
it

io
n
al

gr
id

p
oi

nt
s

M

H = 0.2

H = 0.25

H = 0.33

H = 0.5

2.5 5.0 7.5 10.0
LH

0

500

1000

1500

FIG. 5. Average number of bisections M as a function of the
maximum bisection level L (i.e., Neff = 2L) for different values of
H (diamond, circle, upright, and upside down triangle marks). Inset
shows M vs LH . As long as H � 0.33 growth is asymptotically
approximately linear in L, corroborating M ∼ ln(Neff). For smaller
values of H , either the linear regime is not yet reached, or the growth
is stronger (5000 iterations with initial grid �8 and error tolerance
ε′ = 10−9). For H = 0.5, extrapolation was used.

the first-passage time to the same accuracy as DH (up to
vertical errors controlled by ε′ = 10−9 in this case).

We observe that for values of H � 1
3 the number of bi-

sections grows first sublinearly and then linearly in L. This
behavior changes for values H � 1

4 , where growth is stronger,
and we may not yet be in the asymptotic regime. This is also
indicated by the profiles shown in Fig. 4, where for lower
values of H the distribution ceases to tend to a plateau, but
grows for higher levels of bisection �.

E. Computing time and complexity estimate

In this section, we analyze how the performance of our al-
gorithm varies with different parameters, and how it compares
to DH. In loose terms, we expect the initial grid, generated
by DH, to cost O[2g ln(2g)], and each of the M bisections to
cost k2 with k, the number of grid points, i.e., costs, or more
precisely the algorithmic complexity, should behave as

CABSec(g, M) ∼
2g+M∑
k=2g

k2 ≈ 1

3
(2g + M)3. (34)

It is therefore evident that the majority of the computational
cost lies in the bisection phase, and the overall complex-
ity is of order O[(2g + M)3]. When comparing this to the
complexity of generating 2L grid points with DH, which
is O[2L ln(2L)], one estimates that ABSec outperforms DH
whenever M3 � 2L ln(2L). As is shown below, ABSec out-
performs DH for L � 12 to 16.

We define the performance of the algorithm via its user
time, i.e., the share of the CPU time the process spends in user
space. This means that, depending on the implementation, the
total of CPU time (“wall time”) might differ. User time is a
more robust observable, so we use it as the best approximation
to the performance of the implementation.

043312-9

BENJAMIN WALTER AND KAY JÖRG WIESE PHYSICAL REVIEW E 101, 043312 (2020)

101 102 103 104

effective discretization NH

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

t u
se

r
/

it
er

at
io

n
[s

]

ABSec, H = 0.33

DH, H = 0.33

(Fit DH, H = 0.33)

ABSec, H = 0.5

DH, H = 0.5

ABSec, H = 0.67

DH, H = 0.67

FIG. 6. Average user time required to find the first-passage time
in a grid of effective discretization precision 2−LH . The dashed lines
indicate user time for Davies-Harte method, and solid lines are for the
adaptive bisection method. The three different colors indicate H =
0.33, 0.5, 0.67 (bottom, center, top pairs of lines). Simulations were
run 104 times for ε′ = 10−9 and for two different initial subgrid sizes
(�4, circle marks; �8, square marks). For H = 0.33 (top solid blue
lines), the effective system sizes range from L = 4 to 32 for �4, and
L = 12 to 28 for �8. For H = 0.5 (center solid green lines), L ranges
from 4 to 22 for �4 and from L = 12 to 22 for �8. For H = 0.67
(bottom solid red lines), L ranges from 4 to 16 for �4 and 12 to 16
for �8.

We measure the average user time per generated first-
passage time, using either DH or ABSec. To render different
Hurst values and algorithms comparable, we plot the user time
versus the inverse of the effective discretization error, which
scales as NH for DH and 2LH for ABSec. It describes how well
the FBM path is resolved numerically, taking into account the
fluctuation scaling for different Hurst parameters.

Since at the beginning of the ABSec procedure inverse cor-
relation matrices are tabulated (see Sec. II C 4), we measured
the run time for 104 iterations, in order to render the initial
overhead irrelevant.

Figure 6 shows the result of the benchmarking. For small
effective system sizes, ABSec performs slower than DH,
which is due to the relatively complex overhead of bisections.
For (effective) system sizes of N � 10

2
H the ABSec algorithm

gains an increasing and significant advantage since its run
time only grows sublinearly.

To estimate the performance time, we observe that for
values of H � 0.33 the number of additional grid points M
grows linearly in the logarithm of the effective system size
(see Fig. 5) throughout the entire observed range. Based on
our empirical findings, we propose a linear relation M ∼ L =
log2(Neff), which implies [see Eq. (34)] an overall computa-
tional complexity of

CABSec(Neff) = O[(ln Neff)3], H � 1
3 , (35)

since eventually M � 2g for Neff large enough (see Fig. 5
for H � 1

3). This estimate is corroborated by Fig. 7, where
the scaling of user time with system size agrees with our
estimate of (ln Neff)3 for sufficiently large system sizes. The
linear relation between the number of bisections M and the
logarithmic system size L, however, does not extend to smaller

101 102 103

Effective discretization precision (NH)

10−6

10−5

10−4

10−3

10−2

10−1

100

101

t
u
se

r
/

it
er

at
io

n
[s

]

ABSec, H = 0.33, T (0) = Λ4, ε = 10−7

ABSec, H = 0.33, T (0) = Λ8, ε = 10−7

ABSec, H = 0.33, T (0) = Λ4, ε = 10−9

ABSec, H = 0.33, T (0) = Λ8, ε = 10−9

DH, H = 0.33

FIG. 7. (tuser/iteration)1/3 plotted vs effective discretization NH

for various values of H (blue circle marks H = 0.33, green square
marks H = 0.5, red diamond marks H = 0.67; see Fig. 6). They
corroborate the estimate of CABSec ∼ (ln Neff)3. Straight lines indicate
fits of the form a ln(N) + b vs t1/3

user implying a scaling of tuser ∼
a3[ln(Neff)3] + O[(ln Neff)2]. This is in agreement with the complex-
ity estimate in Eq. (35). The inset shows the ratio between data points
and the fit.

values of H , where Fig. 5 indicates superlinear growth. Still,
testing the ABSec routine at H = 0.25 for an effective system
size of Neff = 242 gave an average user time of 6.2 s and
was about 300 000 faster than an extrapolation of the user
time for DH at the same system size.1 This shows that for
all practical purposes ABSec remains a much faster algorithm
even at parameters where estimate (35) seems to no longer
hold.

For H = 0.33, due to memory limitations, DH is unable to
generate paths larger than N = 224, where ABSec is already
about 40 times faster. Since ABSec is also more memory
efficient (see next section), we can generate grids of size
up to 232 for which, if we interpolate the growth of DH,2

we find that ABSec is 5500 times faster than DH for these
parameters. For H > 1

2 , the advantage is less pronounced,
and at a comparable discretization precision the algorithm is
“only” 40–50 times faster at H = 0.67.

Performance also depends on the initial grid size. In Figs. 6
and 8, we compare run times for two different initial grids, �4

and �8. For larger initial grid sizes, the algorithm is slower
since more points need to be generated initially. An increase
in initial grid size leads to a decrease of 15% (for H = 0.33)
in the average number of bisections. This is approximately
outweighed by the time DH takes to generate a path on �8

(see Fig. 6).
The run time increases only slowly for a smaller error

tolerance. In Fig. 8, we show how user time decreases when
changing ε′ from ε′ = 10−9 to 10−7. For an effective precision
of 2

32
3 , user time increases by roughly 60%. Since error rates

grow linearly with ε′ (see Fig. 3), we conclude that for an error

1This experiment was run with an initial grid �4 and ε′ = 10−9.
2Since DH scales with N ln(N), we fit with f (N ; a, b, c) =

N[a ln(N) + b] + c.

043312-10

SAMPLING FIRST-PASSAGE TIMES OF FRACTIONAL … PHYSICAL REVIEW E 101, 043312 (2020)

101 102 103

Effective discretization NH

0.0

0.2

0.4

0.6

0.8

(t
u
se

r/
it

er
at

io
n
)1/

3
[s

]

H = 0.33

H = 0.5

H = 0.67

101 102 103

Effective discretization NH

0

1

2

3

FIG. 8. User time for ABSec (solid lines) compared to DH
(dashed line) for two different initial grid sizes and two different
values of error tolerance ε′. For a 100 times higher error tolerance
(top semitransparent pair of lines), user time increases by up to 60%.

rate 100 times lower one only needs to invest 60% more user
time.

All together, these observations show that the algorithm
behaves in a controlled manner for varying error tolerances
and initial grid sizes. Depending on the number of iterations,
and the quality of the data desired, choosing g (initial grid
size), L (desired precision), and ε′ (error tolerance level)
accordingly leads to an algorithm that performs up to 5000
times faster than DH at H = 0.33, that was hitherto very hard
to access with high precision. The algorithm should be tested
more for H = 0.25, where it allows one to reach a precision
unimaginable by DH.

F. Memory requirements

As a final benchmark of our algorithm, we consider mem-
ory usage. The latter is defined by the resident set size of the
process, as measured by GETRUSAGE. When using DH, the
full grid needs to be saved, and in doing so memory usage
scales like N . Figure 9 shows memory usage for both DH and
ABSec when performed for different effective discretization
precisions and initial grid sizes. It shows that for large system
sizes ABSec gains a growing and significant advantage. To
generate a path of 228 lattice points in double precision via
DH, one requires 10 GB working memory, whereas ABSec
uses between 20 and 80 MB, depending on the initial grid
size. This represents an improvement by a factor of 125 to
500. This is due to the fact that only the initial grid which
scales as O(2g), the additional grid points of order O(M), and
a correlation matrix scaling as O(2g + M)2 need to be stored.
As implemented, additional memory is needed for the catalog
of inverse correlation matrices [see Eq. (14)] which occupies
memory of order O(23g), so including the catalog overall
memory space grows like 23g + (2g + M)2. For Neff large
enough, we assume that 2g � M, such that asymptotically for
large effective system sizes the necessary memory grows as
order M2. For values of H � 1

3 , we empirically found that
M ∼ ln(Neff), such that in that parameter range we estimate

101 102 103

Effective discretization precision (NH)

107

108

109

1010

R
es

id
en

t
se

t
si

ze
[B

]

ABSec, H = 0.33, T (0) = 24, ε = 10−7

ABSec, H = 0.33, T (0) = 28, ε = 10−7

DH, H = 0.33

FIG. 9. Memory usage for DH (dashed line) and ABSec (solid
line) for two different initial subgrid sizes. DH scales linearly in N ,
while ABSec grows only slowly (see text for estimate). For system
of size Neff = 228, ABSec needs only 10−2 to 10−3 of the memory
for DH. For larger systems or smaller H , the advantage of ABSec is
even bigger. Measurements were taken after 104 iterations.

memory to grow as

MABSec(Neff) = O((ln Neff)2), H � 1
3 . (36)

This advantage is again due to M � 2L, i.e., using the fact
that the first-passage time can be found to equal precision with
many less grid points.

G. Floating-point precision

Currently, our implementation uses the 64-bit DOUBLE

type. Since the variance of a bridge point is calculated from
the subtraction of quantities of O(1) [see Eq. (30)] the dif-
ference of which can be as small as O(2−LH), the subtraction
suffers from the finite floating-point precision when L is too
large, as is demonstrated in Fig. 10 (see caption for details).
This leads to Lmax � 10.5/H , or N � 2 × 10

3
H .

H. Discussion

In this section we illuminated several aspects of our algo-
rithm that show how it is capable of generating first-passage
times with high numerical precision using several orders of
magnitude less CPU time and memory as compared to DH.
We chose to compare ABSec to DH because the latter is
widely spread in simulating first-passage times of FBM (see,
e.g., [6,7]), and since it is the fastest known exact generator
of FBM. Since our method is also exact (the statistics of the
grid generated is bias free), we think of DH as the natural
benchmark. There are related approximative algorithms like
the random midpoint displacement algorithm R�,r that also
inserts midpoints, only taking into account the � left and r
right nearest neighbors [24]. This neglects long-range corre-
lations between small increments at t1, t2 which even for t1 �
t2 are correlated algebraically via (t1 − t2)−1 + O[(H − 1

2)2]
(for H �= 1

2). The ABSec algorithm uses the full inverse cor-
relation matrix of all points generated and is therefore closely
related to exact procedures like DH.

043312-11

BENJAMIN WALTER AND KAY JÖRG WIESE PHYSICAL REVIEW E 101, 043312 (2020)

5 10 15 20 25 30 35
bridge level

0.97

0.98

0.99

1.00

1.01

1.02

1.03

σ
2

2
/(

21−
2H

−
1)

H = 0.33

H = 0.5

H = 0.67

0 20

10−5

10−3

10−1

σ
2

FIG. 10. Ratio between the sampled variance and no-neighbor-
estimate of variance [see Eq. (17)] of an inserted midpoint Xm vs the
level of the bisected bridge. For H = 0.5 (green diamond marks), the
ratio equals 1, as BM is Markovian. For H �= 0.5 (red square marks
H = 0.67, blue circle lines H = 0.33), the variance fluctuates, as
shown by the error bars for one standard deviation. Numerical errors
due to a loss of floating-point precision become relevant around
Lmax � 11/H . ABSec was used with an initial grid �8 and ε′ = 10−9.

Supported by our experiments, we are able to control both
vertical and horizontal errors at the scale of inherent errors
of a Monte Carlo simulation. In practice, the limiting factors
are not systematical errors of the algorithm but floating-point
imprecisions stemming from the matrix inversion.

The phone-book test used to asses the error rate does not
take into account issues of precision when drawing new mid-
points, which are copied from a pregenerated grid. Since this
is an implementation-dependent grid, we decided to only use
the phone-book test since the errors caused in that procedure
are the ones inherent to the algorithm itself. An implementa-
tion with a higher-precision floating-point unit seems highly
desirable.

IV. SUMMARY

When simulating first-passage times, or any other nonlocal
observable, of fractional Brownian motion, the large fluctua-
tions for H < 1

2 require the grid to have a very high resolution
for the same quality of data as for H � 1

2 . Generating a fine
grid is particularly expensive, both in memory and in time.
The algorithm proposed here refines the grid only where it
is likely to impact the first-passage event. To give rigorous
notion to that idea, we developed a precise criterion for when
and where the grid should be refined. The new midpoints
are then sampled exactly. Comparing it to the fastest known
exact sampler, the Davies-Harte algorithm, we find that our
implementation of the algorithm is 5000 times faster and
uses 1000 times less memory when applied to H = 0.33 at
Neff = 232, due to the fact that only roughly 0.1% of the
full grid is needed to determine the first-passage event. Our
algorithm works with a probabilistic approximation, and the
error rate can be bounded by 10−6 or even 10−8. This should
be sufficient for most Monte Carlo experiments and on the
order of numerical (algorithm-independent) errors.

We have successfully used the algorithm to validate the
analytic results for the first-passage time in [9]. There we used
2.5 CPU years at precision N = 228. With DH we would have
had to reduce the precision to N = 224, which still would have
taken 75 CPU years.

Finally, the concepts presented here can be used for other
observables and other Gaussian processes. We hope that our
algorithm contributes to confirming theoretical predictions
on extreme events in Gaussian processes that were hitherto
numerically inaccessible at the required precision.

ACKNOWLEDGMENTS

The authors thank Marc-Thierry Jaekel and Andy Thomas
for computing support and resources. B.W. is grateful to
Gunnar Pruessner for insightful discussions and support, and
thanks Laboratoire de Physique Théorique de l’École Nor-
male Supérieure and Laboratoire de Physique de l’École Nor-
male Supérieure for hospitality. We thank Matteo D’Achille
for a careful reading of the paper.

APPENDIX A: DERIVATION OF THE CRITICAL
STRIP LENGTH

In this section we derive the width of the critical strip
which was introduced in Sec. II C 5. The critical strip refers
to the distance between a FBM bridge of size δt = 2−� and
the threshold m, below which the midpoint of the bridge may
surpass the threshold with probability larger than ε. We ignore
any other grid points beyond the two fixed bridge points. By
translational invariance, we set X0 = 0, and Xδt = a (a ∈ R).
The problem is then equivalently stated as

P
[
X B

δt/2 > c(ε)
] = ε, (A1)

where X B
t is the FBM-bridge process conditioned on X0, Xδt .

Following the derivation in [39], the law of the FBM bridge is
itself a Gaussian process with first and second moment,

〈
X B

t

〉 = 〈Xtδ(Xδt − a)〉
〈δ(Xδt − a)〉 , (A2)

〈
X B

s X B
t

〉 = 〈XsXtδ(Xδt − a)〉
〈δ(Xδt − a)〉 , (A3)

where on the right-hand-side the averages are over free FBM
paths. As shown in [39], Eqs. (8) and (9), the averages are

〈
X B

t

〉 = a
C(t, δt)

C(δt, δt)
, (A4)

〈
X B

s X B
t

〉c = C(s, t) − C(s, δt)C(t, δt)

C(δt, δt)
, (A5)

where C(s, t) is the correlation function of Eq. (3). Since we
are only interested in the midpoint with s = t = δt/2, this
yields

μ = 〈
X B

δt/2

〉 = a

2
, (A6)

σ = 〈(
X B

δt/2

)2〉c = (
21−2H − 1

2

)
(δt)2H . (A7)

This determines the normal distribution of the midpoint
and by translational invariance proves the values used in
Sec. II C 5.

043312-12

SAMPLING FIRST-PASSAGE TIMES OF FRACTIONAL … PHYSICAL REVIEW E 101, 043312 (2020)

APPENDIX B: HOW TO GENERATE AN ADDITIONAL
RANDOM MIDPOINT

We derive the conditional law of an additional randomly
generated midpoint for an arbitrary Gaussian process as
given in Eqs. (25) and (26). Let T N = t1, . . . , tN and X N =
Xt1 , . . . , XtN be given, and denote the point to be inserted
by tN+1 and XtN+1 (the times are not ordered). For ease of
notation, we write Xi = Xti . As a Gaussian process, the vector
�X = (X1, . . . , XN , XN+1)T is a normal random variable with
mean zero and covariance matrix

〈 �X ⊗ �X 〉 = C(ti, t j) =: C(N + 1), 1 � i, j � N. (B1)

It has a symmetric inverse correlation matrix C−1
i, j . Its proba-

bility law is therefore given by

P(�X) = exp
(− 1

2

∑N+1
i, j=1 XiC

−1
i, j Xj

)
√

(2π)N+1 det(C)
. (B2)

Since X1, . . . , XN are fixed, XN+1 conditioned on X N follows
the marginal distribution

P(XN+1|X N)

= exp
(− 1

2 X 2
N+1C

−1
N+1,N+1 − ∑N

j=1 XjC
−1
N+1, jXN+1

)
√

2π/C−1
N+1,N+1

.

(B3)

Note that the normalizing factor in Eq. (B2) has canceled,
since Eq. (B3) is a conditional average. This is a Gaussian
distribution

P(XN+1|X N) = exp
[− σ 2

2 (XN+1 − μ)2
]

√
2πσ

, (B4)

with variance

σ 2 = 1

C−1
N+1,N+1

(B5)

and mean

μ = −
N∑

j=1

Xj

C−1
N+1, j

C−1
N+1,N+1

. (B6)

The mean can be seen as an average of the Xj with weight
C−1

N+1, j/C−1
N+1,N+1.

APPENDIX C: DERIVATION OF THE ENLARGED
CORRELATION MATRIX

In this section, we derive the algorithm to promote inverse
correlation matrices as given in Eqs. (27)–(32). Assuming that

C(N) and C−1(N) are known, the aim is to find C(N + 1)
and C−1(N + 1) in as few as possible computational steps.
The starting point is the observation that C(N + 1) contains
C(N) as the block matrix and is only augmented by a row and
identical column:

C(N + 1) =
(

C(N) �γ
�γ T

〈
X 2

N+1

〉), (C1)

where �γ is defined in Eq. (27) and 〈X 2
N+1〉 = 2t2H

N+1 in the case
of FBM, but is intentionally left general. For the more difficult
part, the inversion, we assume that the inverse correlation
matrix is of the form

C−1(N + 1) =
(

A(N) �b
�bT c

)
(C2)

for some arbitrary (symmetric) matrix A, vector �b, and number
c. Multiplying matrices (C1) and (C2) results in

CC−1 =
(

C(N)A(N) + γ ⊗ �bT C(N)�b + c�γ
(C(N)�b + c�γ)T �bT �γ + c

〈
X 2

N+1

〉
)

!= 1N+1, (C3)

such that one obtains the system of equations

C(N) · A(N) + �γ ⊗ �bT = 1N , (C4)

C(N) · �b + c�γ = �0, (C5)

�b · γ + c
〈
X 2

N+1

〉 = 1. (C6)

This is solved by

A(N) = C−1(N) + C−1(N) · �γ ⊗ �γ T · C−1(N)〈
X 2

N+1

〉 − �γ · C−1(N) · �γ , (C7)

�b = − C−1(N) · �γ〈
X 2

N+1

〉 − �γ · C−1(N) · �γ , (C8)

c = 1〈
X 2

N+1

〉 − �γ · C−1(N) · �γ . (C9)

Defining �g as in Eq. (28) and σ 2 as in Eq. (30), one arrives at
the inverse matrix (32).

[1] S. Redner, A Guide to First-Passage Processes (Cambridge
University, Cambridge, England, 2001).

[2] R. Metzler, G. Oshanin, and S. Redner, First-Passage Phenom-
ena and Their Applications (World Scientific, Singapore, 2014).

[3] P. Hänggi, P. Talkner, and M. Borkovec, Reaction-rate theory:
Fifty years after Kramers, Rev. Mod. Phys. 62, 251 (1990).

[4] A. Godec and R. Metzler, First passage time distribution in
heterogeneity controlled kinetics: Going beyond the mean first
passage time, Sci. Rep. 6, 20349 (2016).

[5] L. P. Sanders and T. Ambjörnsson, First passage times for a
tracer particle in single file diffusion and fractional Brownian
motion, J. Chem. Phys. 136, 175103 (2012).

043312-13

https://doi.org/10.1103/RevModPhys.62.251
https://doi.org/10.1103/RevModPhys.62.251
https://doi.org/10.1103/RevModPhys.62.251
https://doi.org/10.1103/RevModPhys.62.251
https://doi.org/10.1038/srep20349
https://doi.org/10.1038/srep20349
https://doi.org/10.1038/srep20349
https://doi.org/10.1038/srep20349
https://doi.org/10.1063/1.4707349
https://doi.org/10.1063/1.4707349
https://doi.org/10.1063/1.4707349
https://doi.org/10.1063/1.4707349

BENJAMIN WALTER AND KAY JÖRG WIESE PHYSICAL REVIEW E 101, 043312 (2020)

[6] T. Guérin, N. Levernier, O. Bénichou, and R. Voituriez,
Mean first-passage times of non-Markovian random
walkers in confinement, Nature (London) 534, 356
(2016).

[7] N. Levernier, O. Bénichou, T. Guérin, and R. Voituriez, Uni-
versal first-passage statistics in aging media, Phys. Rev. E 98,
022125 (2018).

[8] K. J. Wiese, First passage in an interval for fractional Brownian
motion, Phys. Rev. E 99, 032106 (2019).

[9] M. Arutkin, B. Walter, and K. J. Wiese, Extreme Events for
Fractional Brownian motion with drift: Theory and numerical
validation, arXiv:1908.10801.

[10] B. B. Mandelbrot and J. W. Van Ness, Fractional Brownian
motions, fractional noises and applications, SIAM Rev. 10, 422
(1968).

[11] A. H. O. Wada and T. Vojta, Fractional Brownian mo-
tion with a reflecting wall, Phys. Rev. E 97, 020102(R)
(2018).

[12] T. Guggenberger, G. Pagnini, T. Vojta, and R. Metzler, Frac-
tional Brownian motion in a finite interval: correlations effect
depletion or accretion zones of particles near boundaries, New
J. Phys. 21, 022002 (2019).

[13] J. Pickands III, Asymptotic properties of the maximum in a
stationary Gaussian process, Trans. Am. Math. Soc. 145, 75
(1969).

[14] G. M. Molchan, Maximum of a fractional Brownian motion:
Probabilities of small values, Commun. Math. Phys. 205, 97
(1999).

[15] V. I. Piterbarg, Asymptotic Methods in the Theory of Gaussian
Processes and Fields, Translations of Mathematical Mono-
graphs Vol. 148 (American Mathematical Society, Providence,
1995).

[16] V. I. Piterbarg, Twenty Lectures About Gaussian Processes
(Atlantic Financial, London, 2015).

[17] K. J. Wiese, S. N. Majumdar, and A. Rosso, Perturbation
theory for fractional Brownian motion in presence of absorbing
boundaries, Phys. Rev. E 83, 061141 (2011).

[18] M. Delorme and K. J. Wiese, Maximum of A Fractional Brow-
nian Motion: Analytic Results from Perturbation Theory, Phys.
Rev. Lett. 115, 210601 (2015).

[19] T. Sadhu, M. Delorme, and K. J. Wiese, Generalized Arcsine
Laws for Fractional Brownian Motion, Phys. Rev. Lett. 120,
040603 (2018).

[20] R. B. Davies and D. S. Harte, Tests for Hurst effect, Biometrika
74, 95 (1987).

[21] D. M. Ceperley, Path integrals in the theory of condensed
helium, Rev. Mod. Phys. 67, 279 (1995).

[22] M. Sprik, M. L. Klein, and D. Chandler, Staging: A sampling
technique for the Monte Carlo evaluation of path integrals,
Phys. Rev. B 31, 4234 (1985).

[23] A. Fournier, D. Fussell, and L. Carpenter, Computer rendering
of stochastic models, Commun. ACM 25, 371 (1982).

[24] I. Norros, P. Mannersalo, and J. L. Wang, Simulation of frac-
tional Brownian motion with conditionalized random midpoint
displacement, Adv. Perfor. Anal. 2, 77 (1999).

[25] A. B. Dieker, Simulation of fractional Brownian motion, Ph.D.
thesis, University of Twente, 2004.

[26] P. F. Craigmile, Simulating a class of stationary gaussian pro-
cesses using the Davies-Harte algorithm, with application to
long memory processes, J. Time Ser. Anal. 24, 505 (2003).

[27] D. Krapf, N. Lukat, E. Marinari, R. Metzler, G. Oshanin, C.
Selhuber-Unkel, A. Squarcini, L. Stadler, M. Weiss, and X. Xu,
Spectral Content of A Single Non-Brownian Trajectory, Phys.
Rev. X 9, 011019 (2019).

[28] B. Walter and K. J. Wiese, Monte Carlo sampler of first-passage
times for fractional Brownian motion using adaptive bisections:
Source code, https://hal.archives-ouvertes.fr/hal-02270046.

[29] V. I. Piterbarg, Twenty Lectures about Gaussian Processes
(Atlantic Financial, London, 2015).

[30] G. H. Weiss and R. J. Rubin, The theory of ordered spans of
unrestricted random walks, J. Stat. Phys. 14, 333 (1976).

[31] G. H. Weiss, E. A. DiMarzio, and R. J. Gaylord, First passage
time densities for random walk spans, J. Stat. Phys. 42, 567
(1986).

[32] V. Palleschi and M. R. Torquati, Mean first-passage time for
random-walk span: Comparison between theory and numerical
experiment, Phys. Rev. A 40, 4685 (1989).

[33] K. J. Wiese, Span observables: “When is a foraging rabbit no
longer hungry?”, J. Stat. Phys. 178, 625 (2019).

[34] E. Anderson Z. Bai, C. Bischof, L. S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A.
McKenney, and D. Sorensen, LAPACK Users’ Guide, 3rd ed.
(Society for Industrial and Applied Mathematics, Philadelphia,
1999).

[35] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P.
Alken, M. Booth, and F. Rossi, GNU Scientific Library Refer-
ence Manual (Network Theory, London 2009), 3rd ed.

[36] M. Frigo, A fast Fourier transform compiler, in Proceedings
of the ACM SIGPLAN 1999 Conference on Programming Lan-
guage Design and Implementation, PLDI ’99 (ACM, New York,
1999), pp. 169–180.

[37] L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C.
Whaley, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G.
Henry et al., An updated set of basic linear algebra subprograms
(BLAS), ACM Trans. Math. Softw. 28, 135 (2002).

[38] B. Walter and K. J. Wiese, https://github.com/benjamin-w/
davies-harte-fpt.git.

[39] M. Delorme and K. J. Wiese, Extreme-value statistics of frac-
tional Brownian motion bridges, Phys. Rev. E 94, 052105
(2016).

043312-14

https://doi.org/10.1038/nature18272
https://doi.org/10.1038/nature18272
https://doi.org/10.1038/nature18272
https://doi.org/10.1038/nature18272
https://doi.org/10.1103/PhysRevE.98.022125
https://doi.org/10.1103/PhysRevE.98.022125
https://doi.org/10.1103/PhysRevE.98.022125
https://doi.org/10.1103/PhysRevE.98.022125
https://doi.org/10.1103/PhysRevE.99.032106
https://doi.org/10.1103/PhysRevE.99.032106
https://doi.org/10.1103/PhysRevE.99.032106
https://doi.org/10.1103/PhysRevE.99.032106
http://arxiv.org/abs/arXiv:1908.10801
https://doi.org/10.1137/1010093
https://doi.org/10.1137/1010093
https://doi.org/10.1137/1010093
https://doi.org/10.1137/1010093
https://doi.org/10.1103/PhysRevE.97.020102
https://doi.org/10.1103/PhysRevE.97.020102
https://doi.org/10.1103/PhysRevE.97.020102
https://doi.org/10.1103/PhysRevE.97.020102
https://doi.org/10.1088/1367-2630/ab075f
https://doi.org/10.1088/1367-2630/ab075f
https://doi.org/10.1088/1367-2630/ab075f
https://doi.org/10.1088/1367-2630/ab075f
https://doi.org/10.2307/1995059
https://doi.org/10.2307/1995059
https://doi.org/10.2307/1995059
https://doi.org/10.2307/1995059
https://doi.org/10.1007/s002200050669
https://doi.org/10.1007/s002200050669
https://doi.org/10.1007/s002200050669
https://doi.org/10.1007/s002200050669
https://doi.org/10.1103/PhysRevE.83.061141
https://doi.org/10.1103/PhysRevE.83.061141
https://doi.org/10.1103/PhysRevE.83.061141
https://doi.org/10.1103/PhysRevE.83.061141
https://doi.org/10.1103/PhysRevLett.115.210601
https://doi.org/10.1103/PhysRevLett.115.210601
https://doi.org/10.1103/PhysRevLett.115.210601
https://doi.org/10.1103/PhysRevLett.115.210601
https://doi.org/10.1103/PhysRevLett.120.040603
https://doi.org/10.1103/PhysRevLett.120.040603
https://doi.org/10.1103/PhysRevLett.120.040603
https://doi.org/10.1103/PhysRevLett.120.040603
https://doi.org/10.1093/biomet/74.1.95
https://doi.org/10.1093/biomet/74.1.95
https://doi.org/10.1093/biomet/74.1.95
https://doi.org/10.1093/biomet/74.1.95
https://doi.org/10.1103/RevModPhys.67.279
https://doi.org/10.1103/RevModPhys.67.279
https://doi.org/10.1103/RevModPhys.67.279
https://doi.org/10.1103/RevModPhys.67.279
https://doi.org/10.1103/PhysRevB.31.4234
https://doi.org/10.1103/PhysRevB.31.4234
https://doi.org/10.1103/PhysRevB.31.4234
https://doi.org/10.1103/PhysRevB.31.4234
https://doi.org/10.1145/358523.358553
https://doi.org/10.1145/358523.358553
https://doi.org/10.1145/358523.358553
https://doi.org/10.1145/358523.358553
https://www.vttresearch.com/sites/default/files/julkaisut/muut/1999/rmdmn.pdf
https://doi.org/10.1111/1467-9892.00318
https://doi.org/10.1111/1467-9892.00318
https://doi.org/10.1111/1467-9892.00318
https://doi.org/10.1111/1467-9892.00318
https://doi.org/10.1103/PhysRevX.9.011019
https://doi.org/10.1103/PhysRevX.9.011019
https://doi.org/10.1103/PhysRevX.9.011019
https://doi.org/10.1103/PhysRevX.9.011019
https://hal.archives-ouvertes.fr/hal-02270046
https://doi.org/10.1007/BF01030198
https://doi.org/10.1007/BF01030198
https://doi.org/10.1007/BF01030198
https://doi.org/10.1007/BF01030198
https://doi.org/10.1007/BF01127728
https://doi.org/10.1007/BF01127728
https://doi.org/10.1007/BF01127728
https://doi.org/10.1007/BF01127728
https://doi.org/10.1103/PhysRevA.40.4685
https://doi.org/10.1103/PhysRevA.40.4685
https://doi.org/10.1103/PhysRevA.40.4685
https://doi.org/10.1103/PhysRevA.40.4685
https://doi.org/10.1007/s10955-019-02446-6
https://doi.org/10.1007/s10955-019-02446-6
https://doi.org/10.1007/s10955-019-02446-6
https://doi.org/10.1007/s10955-019-02446-6
https://doi.org/10.1145/567806.567807
https://doi.org/10.1145/567806.567807
https://doi.org/10.1145/567806.567807
https://doi.org/10.1145/567806.567807
https://github.com/benjamin-w/davies-harte-fpt.git
https://doi.org/10.1103/PhysRevE.94.052105
https://doi.org/10.1103/PhysRevE.94.052105
https://doi.org/10.1103/PhysRevE.94.052105
https://doi.org/10.1103/PhysRevE.94.052105

