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We analyze the renormalization group (RG) flows of two effective Lagrangians, one for measurement-induced
transitions of monitored quantum systems and one for entanglement transitions in random tensor networks.
These Lagrangians, previously proposed on grounds of replica symmetry, are derived in a controlled regime for
an illustrative family of tensor networks. They have different forms in the two cases, and involve distinct replica
limits. The perturbative RG is controlled by working close to a critical dimensionality, dc = 6 for measurements
and dc = 10 for random tensors, where interactions become marginal. The resulting RG flows are surprising in
several ways. They indicate that in high dimensions d > dc there are at least two (stable) universality classes
for each kind of transition, separated by a nontrivial tricritical point. In each case one of the two stable fixed
points is Gaussian, while the other is nonperturbative. In lower dimensions, d < dc, the flow always runs to the
nonperturbative regime. This picture clarifies the “mean-field theory” of these problems, including the phase
diagram of all-to-all quantum circuits. It suggests a way of reconciling exact results on tree tensor networks with
field theory. Most surprisingly, the perturbation theory for the random tensor network (which also applies to a
version of the measurement transition with “forced” measurements) formally possesses a dimensional reduction
property analogous to that of the random-field Ising model. When only the leading interactions are retained,
perturbative calculations in d dimensions reduce to those in a simple scalar field theory in d − 4 dimensions. We
show that this holds to all orders by writing the action in a superspace formulation.
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I. INTRODUCTION

In this paper we explore renormalization group flows, close
to a critical dimensionality dc, for two kinds of phase tran-
sitions: measurement-induced phase transitions in monitored
quantum systems [1–4], and entanglement transitions in net-
works of random tensors [5]. We find that both kinds of flow
have an unexpected structure, with the upper critical dimen-
sionality playing a different role to that in familiar ordering
transitions. As a result, these flows do not give perturbative
access to critical exponents in low dimensions. However, they
shed light on the structure of the phase diagram in high dimen-
sions and in mean-field-like limits. Surprisingly, one of the
flows also yields a new example of perturbative dimensional
reduction [6,7], a phenomenon in which a field theory’s RG
flow maps onto that of a simpler theory in fewer dimensions,
as a result of an underlying supersymmetric structure.

Measurement-induced phase transitions (MPTs) occur in
quantum systems whose evolution is constantly interrupted
by local measurements. Depending on the strength of moni-
toring, quantum correlations in the evolving state may either
persist or be suppressed at late times [1,2,8–38], affecting,
for example, whether the evolution of a quantum trajectory
may be efficiently simulated. Since the outcomes of quan-
tum measurements are generically random, dynamics of this
kind have formal similarities to disordered systems in statis-
tical mechanics. These similarities are particularly manifest
if the dynamics is formulated in discrete spacetime, i.e., as a
quantum circuit. However, the “disorder”—the random mea-
surement outcomes—is not drawn in advance, but generated
by the system via Born’s rule.

A random tensor network (RTN) that is made up of un-
correlated local tensors, with “physical” bond indices at the
boundary of the network [39], may either be in an entangled or
a disentangled phase [5,13,29,40–43]. The transition between
the two may be driven by varying an effective bond dimension
for the network or a parameter in the probability distribution
for the tensors, or even the statistics of the network structure.
There is a close analogy with the measurement transition, with
the tensor network (for an appropriate geometry) playing the
role of the nonunitary time-evolution operator in the measure-
ment problem. In the latter case, this evolution operator can be
a circuit made up of unitaries and projection operators/Kraus
operators. These structural similarities mean that many tech-
niques can be applied to both problems, including the replica
trick that is ubiquitous in disordered systems [5,11,12,44].
However, there is also a structural distinction between the two
problems, arising from the fact that the ensemble of random
evolution operators associated with a true measurement pro-
cess is generated by Born’s rule. This difference has an effect
on the replica lattice model [11,13]. (The effective replica
model for a dynamical process is also highly constrained in
the unitary limit, i.e., in the absence of measurements.)

Two basic questions about these types of phase transitions
are: (1) Do there exist simple mean-field theories that cap-
ture their critical properties in high dimensions, or in models
with all-to-all connectivity? (2) Are there simple Landau-
Ginsburg-Wilson-like field theories that capture the effect of
fluctuations close to a critical dimension? Here we address
these questions using replica Landau-Ginsburg theories that
were proposed in Ref. [13] on grounds of symmetry, and
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which are explicitly derived here for a simple class of tensor
networks.

The replica trick is useful because it allows random models
to be exchanged (at least formally) for effective nonrandom
ones. The replica approach in simple tensor networks [5]
or circuits [11,12,44] built with random Gaussian tensors or
Haar-random unitaries leads to effective lattice “magnets”
whose “spins” σ take values in the permutation group SN (for
related models without the replica limit, see [39,45,46]). The
physical meaning of these degrees of freedom will be dis-
cussed below. Here N is a replica number: loosely speaking,
it arises from the need to average arbitrary tensor powers ρ̌⊗N

of an appropriately-defined density matrix ρ̌. In the random
tensor network, physical averages of entanglement entropies
or correlation functions may be obtained by taking the replica
limit N → 0. In the measurement problem averages must be
taken with weights from Born’s rule, and since this probability
is itself expressed in terms of the density matrix, the required
replica limit is N → 1 instead of N → 0 (see Ref. [3] for a
review).

These lattice models give a useful picture deep inside the
entangled phases, where the effective spin σ is long-range
ordered, and entanglement entropies translate to free energy
costs of domain walls that are forced into the ordered state by
boundary conditions. What is less apparent is how to “coarse-
grain” these lattice models to obtain a continuum field theory
that is useful close to the critical point. This is because the
lattice model must be formulated for arbitrary N in order to
apply the replica trick, and the complexity of the degrees of
freedom and their interactions increases with N . See [3–5,13]
for further discussions. It should be noted that there are limits
where the effective model becomes solvable [11].

Because of the difficulty in coarse-graining these effec-
tive models, Ref. [13] instead used a formulation in terms
of the “overlap” between distinct Feynman trajectories of a
monitored system, or between distinct configurations of bond
indices in a random tensor network. Consider, for example,
quantum circuit evolution for a spin-1/2 system with projec-
tive measurements. This may be thought of as a discrete path
integral: the sum over bond indices needed to “contract” the
quantum circuit (which we denote by K) is a sum over space-
time configurations S(x, t ) in the computational basis. The
basic object in the replica approach is a tensor-product evolu-
tion operator of the schematic form K⊗N ⊗ (K∗)⊗N (where K∗
is complex conjugated in the computational basis): this may
be thought of as a multilayer circuit with 2N layers. As a result
the “path integral” involves 2N spacetime configurations, one
for each layer. We denote the associated configurations by
Sa(x, t ) for the K layers, and S̄a(x, t ) for the K∗ layers, with
a = 1, . . . , N in each case.

By considering simple models one may motivate using an
N × N “overlap” matrix as the order parameter for coarse
graining. Microscopically,

Yab(x, t ) ∼ Sa(x, t )S̄b(x, t ). (1)

This is in the spirit of the Edwards-Anderson order parameter
for a spin glass [47]: Yab(x, t ) measures the local similarity
between two configurations, one associated with a K layer
and one with a K∗ layer. Heuristically, phase cancellation
favors the local pairing of layers: when we average over

measurements and/or random gates, the configurations, which
are most robust to phase cancellation are those in which the
random phases of the path integral amplitudes cancel in pairs
between K and K∗ layers.

The ordered states mentioned above, labeled by permu-
tations σ ∈ SN , correspond to configurations in which the
trajectory Sa(x, t ) in a given “forward” layer a is locally sim-
ilar to the trajectory S̄σ (a)(x, t ) in the partnered “backward”
layer σ (a). This leads to Y ab being largest, for given a, when
b = σ (a). We can think that in an strongly ordered state,
the expectation value 〈Yab〉 is linearly related to the matrix
representing the permutation σ , although there are subtleties
in this identification, which we will discuss.

Similar considerations apply to the tensor network, with a
pairing field Yab(x) indexed by a coordinate x that (microscop-
ically) runs over the bonds of the network. In either case, the
replica structure leads to a global symmetry group

GN ≡ (SN × SN ) � Z2 (2)

for this field, with separate permutation actions on the row
and column indices of Y (together with symmetry under trans-
position [48,49]). These symmetry considerations are similar
for the MPT and for RTNs, but as discussed above the re-
quired replica limits are different. Surprisingly, this leads to
different structures for minimal Landau-Ginsburg-Wilson-like
Lagrangians in the two cases.

The N → 1 limit, putatively relevant to the MPT, is sim-
pler, because—in analogy to standard ordering transitions—
we can consistently isolate a piece of Yab that transforms
irreducibly under the global GN symmetry. We denote the
resulting field by Xαβ , since below it will be convenient to
distinguish it from Yab. Irreducibility is ensured by the row
and column-sum constraints

∑
α Xαβ = 0 and

∑
β Xαβ = 0.

(We use α, β = 1, . . . , N for indices on fields that obey such
row/column sum constraints, and a, b = 1, . . . , N for fields
that do not.) The conjectured Lagrangian, for a spatially local
system, is then

L[X ] =
N∑

α,β=1

(
1

2
(∇Xαβ )2 + m2

2
X 2

αβ + g

3!
X 3

αβ

)
. (3)

Both space and time derivatives have been included in the
first term, and a nonuniversal velocity has been set to one. We
must study this theory in the limit N → 1 where the matrix X
becomes trivial. Our focus in this paper will be on the critical
theory, in which the renormalized mass is set to zero by tuning
a microscopic parameter such as the rate of measurements.

For a random tensor network with a Euclidean geometry,
the conjectured Lagrangian may be written in the form

L[Y ] =
N∑

a,b=1

(
1

2
[∇Yab]2 + m2

2
Y 2

ab + g

3!
Y 3

ab

)

+σ

2

N∑
a,b,c=1

(YabYac + YabYcb), (4)

with the limit N → 0 for the size of the matrix. Here no
constraint is imposed on the row or column sums of Yab.
The reason for this is discussed in the following sections: it
is closely analogous to phenomena in the random-field Ising
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model [50]. The Lagrangian in Eq. (4) also applies to the
measurement problem if the Born-rule probabilities are “over-
ridden” by complete postselection of measurement outcomes
(giving a “forced measurement” phase transition).

These Lagrangians were conjectured largely on symmetry
grounds [13]. One of our tasks is to show that they can
be derived in a quantitative fashion for a concrete ensemble
of random tensor networks—also interpretable as nonunitary
circuits generalizing the “kicked Ising model” [51–53]—by
examining the two relevant limits, N → 0 and N → 1. (A
caveat in the latter case is that our microscopic ensemble
of nonunitary circuits does not correspond to pure Born-rule
dynamics, as it does not form a Kraus ensemble [54]; how-
ever, it shares the same replica symmetry as more standard
measurement problems, so is an instructive toy model.) Our
main aim in this paper is to analyze the renormalization group
properties of Eqs. (3) and (4), by working close to the critical
dimensionalities (six and ten respectively) where the cubic
interactions in these theories become marginal.

At first sight the field theories above led to an ap-
parent paradox when compared with other results. These
Lagrangians suggest that in high dimensions, or in models
with “all-to-all” connectivity, we should find entanglement
transitions governed by the mean-field limits of Eqs. (3) and
(4) [13]. On the other hand, there is another setting where
entanglement and measurement transitions become exactly
solvable, which is on a tree tensor network [13,37] (closely
related to circuit dynamics with nonlocal gates [10,22,42]).
The analysis of Haar-random tree ensembles turns out to give
results quite different to the above mean-field limits, with, for
example, an essential singularity in the order parameter close
to the critical point. It has so far been unclear how to relate
these very different solvable regimes, which might naively
have been expected to be similar. (On the other hand, exam-
ining deterministic tree tensor networks showed that even on
trees there is more than one kind of transition [55].)

The picture we find here is that above the critical dimen-
sions, there are at least two stable universality classes for the
phase transition in “generic” models, i.e., in models lacking
any special symmetry. At weak coupling there is a stable
mean-field-like universality class, while at strong coupling
something else happens that is beyond the domain of simple
perturbation theory. These two stable universality classes are
separated by a third universality class, which is governed by a
nontrivial and perturbatively accessible unstable fixed point.
This qualitative flow structure is shown for the theory of
Eq. (3) in Fig. 1. For the RTN case there is a similar flow
topology for an appropriate combination of the two couplings
g, σ in Eq. (4).

Making a precise connection between trees and high-
dimensional systems is beyond the scope of this paper, but this
division into weak- and strong-coupling universality classes
suggests a natural resolution of the above “paradox” (i.e.,
the difference between Haar-random trees and weak-coupling
mean field): it is tempting to identify the critical behavior
found previously on the tree with a version of the strong-
coupling phase implied by the above RG flows. We note
that the explicit tensor network models studied here are in
a different limit from models with Gaussian random ten-
sors or Haar-random gates studied previously: It is possible

FIG. 1. The RG flow for Eq. (18) describing the massless N → 1
theory. The red line is an unstable (tricritical) fixed point that sep-
arates two stable universality classes for the transition: a Gaussian
universality class and a strong-coupling universality class.

that the latter models are typically in the strong-coupling
phase, as seems to be the case for certain random-graph-like
models [13].

The ε expansion associated to the flow topology in Fig. 1
is not for an IR-attractive fixed point in dimensions smaller
than dc, but rather for a repulsive fixed point that appears
above the critical dimension dc, and describes the transition
between weak- and strong-coupling regimes. So unfortunately
we cannot use it to predict exponents in, say, 1+1 dimensions.
However, the RG behavior is interesting in its own right.
Surprisingly, the RTN theory (4) turns out to have a hidden
supersymmetric structure, which implies that the perturbative
beta function in d dimensions reduces to that of a simple
scalar theory (in fact, the simplest possible interacting scalar
theory, with a cubic interaction) in d − 4 dimensions. If we
neglect terms that are subleading near the critical dimension
dc = 10, the beta function for Eq. (4) is reduced to that of a
superspace action of the form

S[ϒ] =
∫

dd x
∫

θ

1

2
ϒ
(−∇2

S

)
ϒ + m2

2
ϒ2 + gσ

6
ϒ3, (5)

where ϒ is a superfield that depends on both commuting and
anticommuting “spatial” coordinates (x and θ respectively)
and ∇2

S is the superspace Laplacian [56] generalized to two
anticommuting pairs of variables. In turn, the flow of the
coupling in this theory maps onto that of a simple scalar 	3

theory.
The original example of dimensional reduction is the

random-field Ising model, where it was observed that various
perturbative series in d dimensions reduced to those in the
clean Ising model in d − 2 dimensions [57–59]. This was
understood to be due to the existence of a supersymmetric
formulation [6]. In the random-field Ising model dimensional
reduction holds near the upper critical dimension of six, but
must fail in sufficiently low dimensions [60–72]: this is now
believed to be due to operators that are irrelevant near six
dimensions becoming relevant somewhere around five dimen-
sions [66,70,72,73]. There is another well-known example
in which dimensional reduction works not only close to the
upper critical dimension, but all the way down to two di-
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mensions: this is the field theory describing the statistics of
random branched polymers or lattice animals [7,62,74–79].
(In this case there is a rigorous microscopic demonstration of
dimensional reduction in a particular model, which does not
use field theory [77,78].)

How useful the supersymmetric formulation of the RTN
field theory is remains to be seen. Here we confine ourselves
to perturbative statements: in the future it will be interesting
to investigate whether any nonperturbative information can be
obtained.

Since the reader may query the relevance of entanglement
transitions in very high dimensions, let us summarize some
key outcomes. Perhaps the most basic is that we explicitly
demonstrate the relevance of the above field theories to a
non-fine-tuned class of random tensor networks. (In order to
obtain these field theories in a controlled way we use the trick
[80] of introducing a large number of flavors for the degrees
of freedom, but in essence we consider simple tensor net-
works whose contraction gives rise to an effective Ising model
with complex couplings.) These derivations imply the exis-
tence of weak-coupling mean-field regimes not only in high
enough dimensions but also—more realistically—in models
with sufficiently mean-field-like connectivity. We will dis-
cuss the resulting mean-field phenomenology in more detail
separately [81].

The derivation shows that the field theories serve as effec-
tive descriptions even in low dimensions: while the RG flow
is not accessible perturbatively, other continuum techniques
might be applicable.

Another outcome is a clear demonstration that the two
classes of problems we discuss have a quite different univer-
sal behavior. Universal differences between models involving
measurements on the one hand, and models involving forced
measurements and random tensors on the other hand, have
been demonstrated analytically for dynamics with a tree-like
structure [37] and for free-fermion systems [82,83] (which
show their own, distinct, kinds of measurement-induced be-
havior [24,27,33,34,49,84–96]).

In the next sections we plunge into the RG flows, first for
the simpler case of models with the replica symmetry of the
measurement transition (N → 1) in Sec. II.

We then continue to random tensor networks/forced mea-
surements for which the relevant limit N → 0 is more
involved: in Sec. III we consider a direct perturbation ex-
pansion. The aim of the following Sec. IV is to give a
supersymmetric formulation showing that—perturbative—
dimensional reduction holds to all orders.

Readers who wish to know what kind of concrete lattice
models can be used to obtain these theories may wish to
skip ahead to Sec. V, where a concrete derivation of the field
theories is given.

II. RG FOR THE MPT LAGRANGIAN (N = 1)

The putative Lagrangian for the MPT is

L(Xαβ ) =
N∑

α,β=1

1

2
(∇Xαβ )2 + m2

2
X 2

αβ + g

3!
X 3

αβ, (6)

where the N × N matrix X encodes the pairing between Feyn-
man trajectories (Sec. I), and the N dependence is nontrivial
because of constraints on the fields,

N∑
α=1

Xαβ =
N∑

β=1

Xαβ = 0. (7)

Space and time coordinates are grouped together (although
the physical dynamics is in real time, the spacetime signa-
ture is Euclidean). Symmetry arguments for this form can be
found in Ref. [13], and a derivation in a class of nonunitary
circuits will be given in Sec. V (for which the bare strength
of the interactions may be made arbitrarily small). Only the
interaction that is most relevant in high dimensions is retained.
The microscopic derivation shows that the coupling constant
g for this interaction is real and negative. The replica limit is
N → 1, where the field and the free energy become trivial.

At the mean-field level, this action has a disordered
phase for positive mass-squared (representing the strong-
monitoring, or disentangled, phase), where 〈X 〉 = 0, and
an ordered (weak-monitoring/disentangled) phase for neg-
ative mass-squared, in which the left/right permutational
symmetry in Eq. (2) is broken down to a diagonal sub-
group: for example, one of the equivalent ordered states is
〈Xαβ〉 = (2m2/g)(Nδαβ − 1). Our focus is on the transition
between these two phases, where the renormalized mass van-
ishes.

Before discussing RG for this theory it is useful to recall
some simpler theories. The structure of Feynman diagrams for
the Lagrangian (6) is closely related to that for the analogous
theory for a field with only a single index,

L(	α ) =
N∑

α=1

1

2
(∇	α )2 + m2

2
	2

α + g

3!
	3

α, (8)

again with the constraint
∑N

α=1 	α = 0. This is the standard
Lagrangian for the N-state Potts model [97,98], and specifi-
cally for the N → 1 limit of Potts, which describes percolation
[99]. The SN symmetry of the Potts model acts by permuting
the N components of the order parameter 	α , and the con-
straint

∑
α 	α = 0 isolates an irreducible representation of

this symmetry.
An even simpler theory is a scalar field 	 (without any

indices) with a cubic interaction [7,100–107],

L(	) = 1

2
(∇	)2 + m2

2
	2 + g

3!
	3. (9)

This is the Yang-Lee theory: in this case, unlike the cases of
interest to us, the coupling g is usually taken to be imaginary.

For any cubic theory (with a single cubic coupling), a one-
loop calculation in 6 − ε dimensions gives [98,108]

(10)

(after a standard rescaling of the coupling constant [109]) with
� the RG time, i.e., the logarithm of a lengthscale. Here

and are group-theoretic factors associated with the one-
loop diagrams that renormalize the propagator and the three-
point vertex, respectively, i.e., the diagrams of the schematic
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form

(11)

These combinatorial factors are defined such that for the
simplest case of a single scalar field without any index (Yang-
Lee), we have . The Yang-Lee case therefore
gives

dg

d�
= ε

2
g + 3

4
g3 for Yang-Lee. (12)

This theory has a fixed point for imaginary g in 6 − ε dimen-
sions, which is relevant to the Ising model in an imaginary
magnetic field.

For N-state Potts,

(13)

These nontrivial combinatorial factors arise from the con-
straint

∑
α 	α = 0, which leads to a nondiagonal propagator

〈	α	α′ 〉 ∝ (δαα′ − 1
N ). The calculation of these constants is

reviewed in Appendix A. With the values in Eq. (13), the cubic
term in the Potts β function is negative in the limit N → 1,

dg

d�
= ε

2
g − 7

4
g3 for percolation. (14)

This is consistent with the existence of a nontrivial fixed point
in 6 − ε dimensions for percolation (which is described by the
theory with real g).

Now consider the matrix Lagrangian (6). Propagators now
carry both “row” and “column” indices, arising from the row
and column indices of the field Xαβ . The evaluation of any
given diagram involves contractions of these indices. Cru-
cially, the contractions of the row and column indices are
independent, and each gives the same group-theoretic factor
as in the Potts case. To see this, let us represent the propagator
as a double line,

(15)

then the triangle diagram (for example) generalizes from Potts
to

(16)

from which one can see that the index contractions happen
separately in the two “layers”. As a result, the group-theoretic
factor for any given diagram is simply the square of that for
the Potts model. In particular [110]

(17)

Given the similarity of (6) to the Potts Lagrangian, we might
at first sight have expected the two theories to show a similar
phenomenology in the N → 1 limit. However, this is not the

case, because the squaring operation in Eq. (17) changes the
sign of the one-loop term in the beta function,

dg

d�
= ε

2
g + 15

4
g3 for the MPT Lagrangian. (18)

The theory of interest to us has real g. Therefore the beta
function above shows that there is no perturbatively accessible
fixed point below six dimensions.

However, we do have a perturbatively accessible fixed
point above six dimensions. The schematic RG flow for
Eq. (18) is shown in Fig. 1. Note that the nontrivial fixed point
is unstable with respect to variations in g. Since the mass is
also a relevant perturbation, this is a tricritical point, reached
by tuning two parameters.

These flows suggest an interesting possibility for the
phenomenology of the measurement phase transition. The
simplest interpretation is as follows.

To start with, both above and below six dimensions we
have a stable disentangled phase (positive m2) and a stable
entangled phase (negative m2): here we are discussing the
transition between these phases, obtained by tuning the renor-
malized mass to zero.

Above six dimensions, the Gaussian fixed point (g = 0)
is stable, indicating that without fine-tuning, we can have a
phase transition with mean-field exponents (see below). The
transition will be in this universality class if the bare value of
the coupling g is small enough, lying in the basin of attraction
of g = 0.

However, the nontrivial fixed point g2
∗ = 2

15 (d − 6) in
d > 6 is a tricritical point, which separates the mean-field
universality class from an alternative “strong-coupling” uni-
versality class for the transition. Here we are hypothesising
that the flow to large positive g in Fig. 1 ends at a distinct
strong-coupling fixed point, which is not accessible in our per-
turbative calculation. (Calculations on trees may give hints as
to the nature of this phase in high dimensions, but this requires
investigation.) In principle, in an appropriate model with two
tuning parameters it should be possible to access both the
mean-field and the “strong-coupling” universality classes for
the phase transition, and the tricritical point separating them.
By contrast, for d � 6 the Gaussian fixed point is unstable, so
that only the putative strong-coupling fixed point survives.

Interestingly, these RG flows are reminiscent of the flows
for a directed polymer in a random medium in d + 1 dimen-
sions, or equivalently for Kardar-Parisi-Zhang (KPZ) surface
growth in d spatial dimensions. The nonlinearity in the KPZ
equation has a flow diagram similar to Fig. 1, but with a
critical dimensionality d equal to two [111]. A difference is
that here the mass-squared m2 must be tuned to zero in order to
be in the critical plane shown in Fig. 1, whereas KPZ growth
is scale invariant (corresponding formally to a massless field
theory) without the need to tune a parameter. However, a
nonzero m2 can be given an interpretation in the KPZ context,
see [112,113] for quenched KPZ.

Finally, we briefly discuss exponents. The basic exponents
of the Gaussian universality class (which is stable for d > 6)
are given by mean-field theory. For example, the order pa-
rameter in the ordered phase scales as 〈X 〉 ∼ (rc − r)β , where
r is the microscopic parameter that ultimately controls the
mass in the effective theory, and β = 1. Scaling forms for
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entanglement entropies just inside the ordered phase may be
obtained by considering systems with domain-wall boundary
conditions and are given in [13]—for example, the entropy
density coefficient associated with the entanglement volume
law (or with the amount of quantum information preserved at
late times [10,15]) scales as

s ∼ (rc − r)5/2. (19)

Slightly inside the disordered phase, there is a characteris-
tic length (or time) scale ξ ∼ |rc − r|−ν with ν = 1/2, and
two-point functions obey Wick’s theorem. These exponents
happen to be the same as those in a percolation toy model for
the measurement transition in high dimensions [10,13], since
the latter is also governed by a cubic theory that flows to its
Gaussian fixed point (albeit a different cubic theory).

For the nontrivial (unstable) fixed point above six di-
mensions, the exponents are corrected from their mean-field
values at order d − 6. Exponents at the putative strong-
coupling fixed point are not known, and would have to be
studied by another method.

III. RANDOM TENSOR NETWORKS/FORCED
MEASUREMENTS: N = 0 THEORY

The action proposed for the random tensor network con-
tains an N × N dimensional matrix, and we are interested in
the limit N → 0,

L[Y ] =
N∑

a,b=1

1

2
[∇Yab(x)]2 + m2

2
Yab(x)2 + g

3!
Y 3

ab

+ σR

2

N∑
a,b,c=1

Yab(x)Yac(x) + σL

2

N∑
a,b,c=1

Yab(x)Ycb(x).

(20)

The theory of interest has σL = σR = σ , but below it is con-
venient to distinguish the two couplings. A linear term in Y ,
of the form r

∑
a,b Yab is now also allowed by symmetry (in

contrast to the previous theory where such a term vanishes).
However, we have the freedom to shift Y by a constant,
which reduces the number of independent couplings by one.
In writing Eq. (20) we have assumed that we are either in the
disordered phase (m2 > 0) or at the critical point (m2 = 0),
and have shifted the field so that the linear term vanishes. We
focus on the RG flow for the critical theory; the mean-field
behavior will be described elsewhere [81]. The microscopic
derivation of Eq. (20) for a particular family of tensor net-
works in Sec. V shows that σ is positive and g is negative;
however, the formal RG flows are independent of these signs.

The fact that we need to retain the quadratic σ terms
in the critical theory may seem counterintuitive, but is
closely analogous to what happens in the replica field the-
ory for the random-field Ising model, which is discussed in
Refs. [50,69,71–73,78]. In the massless free theory, and in
the limit N → 0, the effect of σ is to split Y into modes
with distinct scaling dimensions [see for example Eq. (44)
below], and this modifies the usual classification of couplings
as relevant or irrelevant. In Sec. IV we will discuss an explicit
change of basis for the fields [62] that makes the assignment

of engineering dimensions straightforward. Here we instead
perform a direct diagrammatic analysis, but before getting to
this we anticipate two results that are most easily understood
in the language of Sec. IV (though also obtainable diagram-
matically).

First, the critical dimension of the above theory is 10, rather
than the six of more conventional cubic theories such as that in
the previous section. We will see shortly that this is consistent
with the beta function we derive. Second, other couplings that
could have been written down in Eq. (20), for example the
alternate cubic interactions∑

a,b

∑
a′,b′

YabY
2

a′b′ ,
∑
a,b

∑
a′,b′

∑
a′′,b′′

YabYa′b′Ya′′b′′ , (21)

are less relevant near the Gaussian fixed point. (See [13] or
Appendix C for the justification.)

The Lagrangian (20) has a remarkable dimensional reduc-
tion property: after discarding subleading corrections, various
perturbative calculations in this theory in d dimensions, in-
cluding the calculation of the beta function, reduce to the
analogous calculations in the scalar Yang-Lee theory (9) in
d − 4 dimensions with the (real) coupling gYL = gσ . This
dimensional reduction by four generalizes the dimensional
reduction by 2 that occurs, at least perturbatively, in various
replica-like theories with a single replica index [6,7,106,114].
Our aim in this section is to motivate the result by show-
ing schematically how dimensional reduction works for the
one-loop diagrams that renormalize the coupling in Eq. (20),
using dimensional regularization. In the next section we give
a nondiagrammatic proof of dimensional reduction using su-
persymmetry.

As will be clear below, the effective coupling is gσ , rather
than g, because g always appears together with σ in the lead-
ing diagrams. This is consistent with dimensional analysis:
in a cubic theory the canonical momentum dimension of g is
[g]m = 3 − d/2, so it is not g but gσ , which has canonical
dimension ε

2 = 10−d
2 and is marginal in d = 10, as required

by dimensional reduction to a scalar theory, which is marginal
in six dimensions.

For later reference, let us first consider the renormalization
of the cubic vertex in a simple scalar theory, arising from
the diagram at zero external momentum. This involves the
momentum integral

(22)

We will review the computation of the momentum integral
below. Our convention is to normalize such integrals so that∫

k
e−ak2

:=
∫

dd k

πd/2
e−ak2 = a−d/2 . (23)

Before discussing the analogous diagrams in the matrix theory
(20), let us fix the diagrammatic conventions. The propaga-
tor is defined using only the diagonal part of the quadratic
Lagrangian in Eq. (20). To avoid clutter we represent it by
a single line, which carries both row and column indices,
reflecting the matrix structure of Yab,

(24)
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The couplings σL and σR are taken into account as Feynman
vertices that are off-diagonal in either the row or column
index. We represent these with either a red (lighter) or blue
(darker) dot,

(25)

For later convenience we do not include the factors of the
couplings in the definitions of the diagrammatic vertices.

The interaction vertex is diagonal in all indices,

(26)

where δa,a′,a′′ is one if all indices agree and zero otherwise.
Now consider the diagram

(27)

which does not include any σ vertices (red or blue dots). This
diagram is present in the theory, but it is subdominant in the
IR limit, i.e., for small momentum, or equivalently at small
mass, which we consider here. The dominant diagrams (for a
given topology) are those with the maximal number of red and
blue dots. This can be seen by dimensional analysis: σL,R has
the same dimension as m2 or k2, so each additional factor of
σL,R brings with it an additional dimensional factor of 1/m2.

However, the maximal number of dots is limited by the
fact that

∑
i 1 = N vanishes in the replica limit. For example,

inserting two red dots on the same propagator line gives a
free index sum, which vanishes. If we are interested in the
renormalization of the coupling g, then we must also ensure
that the index structure of the resulting diagram agrees with
the right-hand side (RHS) of Eq. (27) (i.e., is proportional to
δa,a′,a′′δb,b′,b′′ ). Then, we can add at most one red and one blue
dot per loop.

The dominant one-loop diagrams therefore give the follow-
ing momentum integral,

(28)

In the first of the two diagrams in (28) the combinatorial
factors are 3 × 2 to place the red and blue dot, and in the
second they are 3 to choose the line where the two dots are
placed, times 2 for their order.

Equations (22) and (28) are identical up to a shift in dimen-
sion by 4,

(29)

To see why this has happened, consider the representation of
the momentum integrals in terms of Schwinger parameters,
using

1

(k2 + m2)q
=
∫

s>0

sq−1

(q − 1)!
e−s(k2+m2 ) (30)

with
∫

s>0 = ∫∞
0 ds. For the scalar diagram,

(31)

which gives the result in Eq. (22). For the matrix diagram,

(32)

which gives the result of Eq. (28). Interestingly, the combina-
torial factors due to the different ways to insert the two dots
into the triangle are compensated by the factorial factors in
the representation of the propagator (the factors of s4/4! and
s2/2! above).

Let us also consider the factors of the couplings. In the
scalar theory with coupling gYL, the triangle diagram has a
factor g2

YL relative to the bare coupling. In the matrix theory
the diagram again has a factor of g2 relative to the bare vertex,
but it also comes with a factor σLσR from the red/blue dots.
Recalling that σL = σR = σ , we see that gσ in the matrix
theory maps to gYL in the scalar theory.

The other diagrams required for the one-loop β function
are given by the leading renormalization of the propagator,
namely the left-hand side (LHS) of

(33)

This identity holds for any value of the external momentum.
In more detail: In the Schwinger representation, the scalar
diagram gives

(34)

The diagrams of the matrix theory are

(35)

We see that the same nontrivial function of p2/m2 arises in
each case, up to the dimensional shift. (The supersymmetric
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approach in the next section shows that this extends to higher
correlations, so long as all points live in the same d − 4-
dimensional hyperplane.)

As a consequence, at one-loop order the theory (20) has
the same diagrams and combinatorics as the Yang-Lee theory,
with gσ playing the role of gYL. Let us write the one-loop
Yang-Lee (YL) RG equation (12) as

d

d�
gYL = 6 − d

2
gYL + 3

4
g3

YL, (36)

Then the diagrammatic argument above shows that in the
matrix theory,

d

d�
g = 6 − d

2
g + 3

4
(gσ )2g, (37)

where the first term is given by the usual engineering dimen-
sion of g. However, this is not a closed equation for g. A
closed equation is instead obtained if we consider gσ , which
as discussed is the natural definition of the coupling constant
in this theory. By a one-loop calculation that we report in
Appendix B 1, one finds that σ renormalizes trivially,

d

d�
σ = 2σ. (38)

Combining this with Eq. (37) yields the RG equation for the
coupling gσ ,

d

d�
(gσ ) = 10 − d

2
(gσ ) + 3

4
(gσ )3. (39)

This shows the dimensional reduction property at one-loop
order [115], with the flow of (gσ ) mapping to the flow of gYL

in four fewer dimensions.
According to Eq. (38), σ flows to infinity. This closely

parallels the random-field Ising model, where the analogous
quantity is the variance � of the random field. There, the flow
of � to infinity is equivalent to the flow of the temperature
T to zero, reflecting the fact that the universality class of
the phase transition is the same irrespective of whether the
physical (bare) temperature is zero or nonzero.

In known examples of dimensional reduction, the underly-
ing structure is supersymmetry. This motivates looking for a
superfield formulation of the action in Eq. (20). In the next
section we derive a supersymmetric action following Cardy’s
approach [114]. As an aside, we note that one can see a hint
of SUSY by rewriting the low-order diagrams in terms of
Grassmann integrals. One may check that the combinatorial
factors in the diagrams above are properly accounted for by
replacing the propagator by

1

k2 + m2
−→ 1

k2 + m2 + σLθL
k θ̄L

k + σRθR
k θ̄R

k

, (40)

where the θ are Grassmannian variables, and performing
Grassmann integrals over (θ̄L

k , θL
k , θ̄R

k , θR
k ) alongside the in-

tegral over k. The Grassmann integrals then effectively reduce
the dimensionality of the k integral [116]. In contrast to the
Parisi-Sourlas theory [6], we have “left” and “right” Grass-
mann variables, giving dimensional reduction by 4 rather
than 2.

The flow diagram for gσ is qualitatively similar to that
shown in Fig. 1, with dc = 10 rather than 6. The most basic

consequence is similar to the N → 1 case discussed at the
end of Sec. II: below dc the flow is to strong coupling, while
above dc there are (at least) two distinct stable universality
classes for the random tensor network phase transition. One
is described by the Gaussian fixed point at gσ = 0, while the
other is described by a putative strong-coupling fixed point
(which we would need some other method to analyze). The
“tricritical” point separating the two kinds of transition could
be accessed in a model with two tuning parameters, and has
nontrivial exponents that can be computed in perturbation
theory.

While the topology of the flows is similar, the Gaussian
universality class for N → 0 differs qualitatively from that in
Sec. II: even in the Gaussian theory the two-point function of
the field Y contains pieces with distinct index structures that
decay with different powers of distance. (We will discuss the
physical interpretation of these pieces separately [81].) Again
this is analogous to the random-field Ising model, but it is in
contrast to the N → 1 theory where there is a single power
law for 〈XX 〉.

IV. SUPERSYMMETRY & DIMENSIONAL REDUCTION

A. Summary

In this section we argue that the action (20) may be related
to an action for a “superfield” ϒ(x, θ̄L, θL, θ̄R, θR) (i.e., a field
with Grassmann coordinates as well as physical spatial coor-
dinates) that is of the form

L[ϒ] = 1

2
ϒ
(−∇2

S

)
ϒ + m2

2
ϒ2 + gσ

6
ϒ3. (42)

The superspace Laplacian appearing here is

∇2
S = ∇2 + ∂

∂θ̄R

∂

∂θR
+ ∂

∂θ̄L

∂

∂θL
, (43)

and the action is obtained by integrating L[ϒ] over both x and
the Grassmann variables, as discussed below. The superspace
formulation may be used to argue for dimensional reduction
[6,62,77]. The relation between (42) and the original theory
(20) is that a subset of correlation functions are equal between
the two.

The following derivation has three steps, which paral-
lel Cardy’s approach to the random-field Ising model and
branched polymers [62,76,114] (recently developed further
in Refs. [69,71,79]). First, we make a change of basis for
the fields using the “Cardy transform”, and eliminate some
less-relevant terms. Second, we show that in the resulting ac-
tion, some of the fields—whose multiplicity is negative in the
replica limit—can be exchanged for fermionic fields, so that
in a sense the replica limit can be taken explicitly at the level
of the action. The final step is a simple check that the resulting
action for bosons and fermions matches the superfield action
(42), if the superfield is expressed as a sum of conventional
fields by Taylor expanding in its Grassmann arguments. The
intermediate Lagrangians that we encounter below look com-
plicated, but the proliferation of fields eventually reduces to
the Susy Lagrangian (42).

In the following, we aim to demonstrate the mapping only
at the level of perturbation theory, so we will not worry when
we encounter divergent path integrals. We leave open the
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question of whether these path integrals can be defined beyond
perturbation theory.

B. Cardy transformation

As mentioned in Sec. III, the field Yab in Eq. (20) does not
have a definite scaling dimension in the Gaussian theory with
nonzero σ [50]. To see this, we may compute the propagator
in the theory with m2 = g = 0 but with nonzero σ . Taking the
limit N → 0 gives

〈Yab(k)Ya′b′ (−k)〉 = 2σ 2

k6
− σ (δaa′ + δbb′ )

k4
+ δaa′δbb′

k2
. (44)

It is convenient to switch to a basis of fields with definite scal-
ing dimensions in the limit N → 0. In this basis, terms such
as
∑

ab Y 3
ab decompose into terms with different engineering

dimensions, allowing us to simplify the action by discarding
less relevant terms [13].

The Cardy transformation is a change of basis for a field
that carries an SN index a = 1, . . . , N : it amounts to splitting
fields not into representations of SN , but into representations
of the SN−1 subgroup that acts nontrivially on index values
a = 2, . . . , N . (The full symmetry of the original Lagrangian
is hidden in the new basis, but it nevertheless constrains the
RG flows [69,71,79].) Here our field has two SN indices,
corresponding to the left and right SN factors in Eq. (2), so
we make the transformation for each index separately. We
introduce a field yIJ whose indices take values

I, J ∈ {+,−, 1, . . . , N − 2}, (45)

and which is related to Y by

Yab = �va · y · �vb = vI
ayIJv

J
b . (46)

The vectors specifying the change of basis are

�v1 =
(√

σ ,
1

2
√

σ
, �0
)

, �va>1 =
(√

σ ,
−1

2
√

σ
, �ea

)
, (47)

where �0 is the zero vector of length N − 2, and �e2, . . . �eN are
a collection of N − 1 vectors, of length N − 2, satisfying

N∑
a=2

�ea = 0,

N∑
a=2

ei
ae j

a = δi j . (48)

We use i, j for indices that run over the numerical values in
the set (45), i.e., i, j = 1, . . . , N − 2. (Note that in the replica
limit there are −2 possible values for these indices.) We have
included factors of

√
σ in the transformation to simplify the

Lagrangian.
There are two ways to determine the engineering dimen-

sion of the new fields: either one recalls that σ introduced in
the change of variables (46) and (47) has the same engineering
dimension as ∇2, or one reads off the dimensions from the free
theory given below in Eq. (50). Either method yields

dim(yIJ ) = d − 2

2
− #{plus} + #{minus}. (49)

Therefore the field with the lowest dimension is y++, and that
with the highest is y−−.

We now substitute the transformation into the Lagrangian,
and simplify the coefficients by taking the limit N → 0: The
quadratic terms, at m2 = 0, become

L2 = ∇y−+∇y+− + ∇y−−∇y++

+ ∇yi−∇yi+ + ∇y−i∇y+i + 1
2 (∇yi j )(∇yi j )

+ y−−(y−+ + y+−) + 1
2 (y−iy−i + yi−yi−), (50)

where free i and j indices are summed. The final line comes
from the σ term, namely σ

2

∑
(YabYac + YabYcb), written out

in the new basis (the factor of σ has been absorbed into the
field redefinitions). We have not written the mass term (with
coefficient m2) since it has exactly the same form as the first
two lines but without the derivatives. If present, a linear term,
r
∑

ab Yab, becomes (r/σ )(y−−).
Assigning engineering dimensions to fields in the usual

way, on the basis of this quadratic term, gives Eq. (49).
We now use these dimensions to organize the interactions.
When we write a given term such as L3 = g

3!

∑
ab Y 3

ab in
the new basis, we will obtain terms with varying values for
#{plus} − #{minus} and therefore with different scaling di-
mensions. In view of the field transformation (47), the value
of #{plus} − #{minus} is also the power of σ 1/2 that accom-
panies the term. The most relevant terms are those with the
largest value of #{plus} − #{minus}, or equivalently the high-
est power of σ . The interaction term L3 becomes

L3 = gσ
[

1
2 y2

++y−− + y++
(
y−+y+− + yi−yi+ + y−iy+i + 1

2 yi jyi j
)+ 1

2 (y+−yi+yi+ + y−+y+iy+i ) + yi+yi jy+ j
]
, (51)

plus terms of order g
√

σ (and lower orders in σ ), which are
less relevant. By standard dimension counting, the leading
term shown above is marginal in 10 dimensions, consistent
with the beta function for gσ in Sec. III.

Note that the replica-like indices are now the i, j indices
on yi j . Each of these runs over 1, . . . , N − 2. We write this
as i = 1, . . . , mL for the row index and j = 1, . . . , mR for
the column index, with the replica limit being mL, mR → −2.
Once the subleading terms are dropped, the remaining terms
in L2 + L3 have an O(mL) × O(mR) symmetry under rota-
tions on the i, j indices associated with rows and columns
respectively.

C. Eliminating replicas via fermions

If we retain only the quadratic terms and the most relevant
cubic terms, it is possible (at least formally) to exchange
the replica Lagrangian above for a Lagrangian without repli-
cas but with both commuting and anticommuting fields. The
needed replacements are straightforward at the level of the
quadratic theory, so we describe this case first as motivation
before generalizing the mapping to the interacting theory.

There are three types of fields: fields (e.g., y+−) without
a replica index; fields with either a left (e.g., yi+) or a right
(e.g., y+i) replica index; and the matrix yi j with both. Nothing
needs to be done with the fields of the first type. The other
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types of field must be replaced with fields without a replica
index in such a way that the path integral over these fields is
unchanged [117].

At the level of the quadratic theory, the matrix yi j simply
gives mL × mR → (−2)2 = 4 free scalars, so formally may
be replaced with four real fields, or equivalently two complex
fields, which we denote B and M. We normalize these so that

1
2 (∇yi j )(∇yi j ) → ∇B̄∇B + ∇M̄∇M. (52)

Next consider the fields (yi+, yi−) with a left replica index.
These appear with multiplicity mL → −2. The Gaussian path
integral over these fields gives a determinant raised to the
power −mL/2 → +1, and is therefore equivalent to a path in-
tegral over Grassmann fields (λ+, λ−) and their “conjugates”
(in fact independent Grassmann variables) (λ̄+, λ̄−) [118]. We
normalize the Grassmann fields so that for example

(∇yi−)(∇yi+) → ∇λ̄−∇λ+ + ∇λ̄+∇λ−. (53)

The fields y±i with a right replica index are replaced similarly
with Grassmann variables denoted ρ.

This replacement of −2 bosons with a pair of fermions is
a well-known trick in the context not only of the random-field
Ising model but also many other replica field theories [56]:
for example, it may be used to argue that in the n → −2 limit
the partition function of the O(n) Landau-Ginsburg theory is
equivalent to that of a free Grassmann (fermionic) theory—
this mapping only gives access to a subsector of the correlators
of the O(−2) model, but may be generalized [119–123].

Altogether the quadratic terms in L2 [Eq. (50)] give rise to

L̃2 = ∇y−+∇y+− + ∇y−−∇y++

+ ∇λ̄−∇λ+ + ∇λ̄+∇λ− + ∇ρ̄−∇ρ+
+ ∇ρ̄+∇ρ− + ∇B̄∇B + ∇M̄∇M

+ λ̄−λ− + ρ̄−ρ− + y−−(y+− + y−+). (54)

So far we have considered only the quadratic theory. Let us
now turn to the interacting theory, which includes the leading
interaction terms given by (51). We can no longer use the same
simple logic (based on counting powers of determinants) to
eliminate the replica fields in favor of bosons and fermions
without a replica index: This approach would work for almost

all the terms, but we meet a problem in the term yi+yi jy+ j ,
which has a new index structure compared to the terms already
discussed.

As an aside, we note that a formal way to see that it
is still possible to eliminate replicas is first to write a gen-
eralized action, in which a “left” index i is replaced by a
graded index taking an arbitrary number of mB

L “bosonic”
values and an arbitrary even number of mF

L “fermionic”
values, and similarly for every “right” index, with boson
and fermion numbers mB

R, mF
R. In this process fields such

as y−i become supervectors and yi j becomes a superma-
trix. Index contractions such as y−iy−i are replaced by inner
products that are invariant under the natural global su-
persymmetry, Osp(mB

L |mF
L) × Osp(mB

R|mF
R), that generalizes

O(mL) × O(mR). By examining the integral over only the
fields with a left index, which is Gaussian, we may argue that
the integral over these fields is invariant under the shift

mB
L → mB

L + 2, mF
L → mF

L + 2, (55)

for any fixed values of (mB
R, mF

R ). The same property
holds with left and right indices exchanged. As a re-
sult, we can go from (mB

L = mB
R = −2, mF

L = mF
R = 0) to

(mB
L = mB

R = 0, mF
L = mF

R = 2) without changing the path in-
tegral over these fields. Ultimately, this leaves an action where
the fields that carried a single replica index become fermions,
and yi j is again bosonic.

Here we follow a more direct approach. In a first step,
we consider the integral over the fields carrying a left index.
The integral only over these fields is Gaussian, so we can use
the above trick to exchange them for fermions in the limit
mL → −2. The remaining replica indices are right indices.

The fields carrying a right index now include both fermions
and bosons (because of the fermionization in the first step).
However, these fields again appear only quadratically in the
action, so, for the second step, we can use a generalization of
the above trick for Gaussian superintegrals: Taking the limit of
a negative number of values for the right index is equivalent
to replacing all bosons with fermions and all fermions with
bosons. Having done this, there are no more replica indices.
During this process, is is convenient to group pairs of real
fields into complex fields—the details are in Appendix C. The
final result is

L = (∇y−+∇y+− + ∇y−−∇y++) + (∇λ̄−∇λ+ + ∇λ̄+∇λ− + ∇ρ̄−∇ρ+ + ∇ρ̄+∇ρ−) + (∇B̄∇B + ∇M̄∇M )

+ m2
(
λ̄−λ+ + λ̄+λ− + ρ̄+ρ− + ρ̄−ρ+ + B̄B + M̄M + y−+y+− + y−−y++

)+ [λ̄−λ− + ρ̄−ρ− + y−−(y+− + y−+)]

+ gσ
[

1
2 y−−y2

++ + y++ (λ̄−λ+ + λ̄+λ− + ρ̄+ρ− + ρ̄−ρ+ + B̄B + M̄M + y−+y+−)

+ (y−+ λ̄+λ+ + y+− ρ̄+ρ+) + B̄λ+ρ+ + Bρ̄+λ̄+ + M̄λ̄+ρ+ + Mλ+ρ̄+
]
. (56)

The quadratic terms agree with the previous discussion of the
quadratic theory. We note that if less-relevant interactions are
included this rewriting in terms of bosons and fermions is not
expected to be possible [71].

D. Superfield representation

The Lagrangian (56) admits a compact superspace rep-
resentation. To this aim, we combine the above fields

y++, λ̄+, . . . , y−− into a superfield by defining

ϒ(x, θ̄L, θL, θ̄R, θR) = y++ + θRλ̄+ + θ̄Rλ+ + θLρ̄+ + θ̄Lρ+
+ θ̄RθRy+− + θ̄LθLy−+ + θRθLB̄

+ θ̄Lθ̄RB + θLθ̄RM̄ + θ̄LθRM

+ θR θ̄LθLλ̄− + θ̄LθLθ̄Rλ− + θ̄RθRθLρ̄−
+ θ̄RθRθ̄Lρ− + θ̄LθLθ̄RθRy−− . (57)
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On the right-hand side ϒ has been Taylor expanded in
its Grassmann “coordinates”. This expansion truncates since
each Grassmann variable squares to 0.

The scaling dimensions of the fields y++, λ̄+, . . . , y−−
were given in Eq. (49): these assignments are consistent with
Eq. (57), if we give a momentum dimension (d − 6)/2 to ϒ

and a dimension −1 to the Grassmann coordinates (so that θ

and x have the same dimension).
Next, defining ∫

θ

:=
∫

d θ̄LdθLd θ̄RθR, (58)

the Lagrangian (56) can be written as

L[ϒ] =
∫

θ

[
1

2
(∇ϒ)2 + m2

2
ϒ2 + gσ

3!
ϒ3

+ 1

2
ϒ

(
∂

∂θR

∂

∂θ̄R
+ ∂

∂θL

∂

∂θ̄L

)
ϒ

]
. (59)

In this form, dimensional reduction to the Yang-Lee theory
in Eq. (9) may be proven (at the level of perturbation theory)
following the treatment for random-field systems [6,73], or
branched polymers [7,78]. The general idea was given above
in Eqs. (40) and (41).

The upshot is that as long as we are interested in per-
turbative results involving observables expressible in the
dimensionally reduced theory, i.e., Yang-Lee, we can use
the latter for our computations. This is advantageous, since
five-loop results are available there [103,124]. It remains to
be seen whether the superfield formulation can be used for
nonperturbative results [62,105].

E. Aside: Signs

Let us briefly comment on the signs of couplings in relation
to other examples of dimensional reduction.

The random-field Ising model may be formulated in terms
of an Ising spin φa, with replica index a = 1, . . . , N . The
analog of our σ term arises from averaging over the random
magnetic field h: schematically, e

∑
a hφa = e

σ
2

∑
ab φaφb , with

σ > 0. The action also includes a quartic coupling g > 0.
The quartic coupling in the dimensionally-reduced theory (a
standard scalar φ4 theory) is given by gσ , and is real and
positive.

The branched polymer theory again involves a field φa

with a = 1, . . . , N : the branched polymers correspond to the
real-space Feynman diagrams for this field. The action has
a cubic coupling g, together with the above-mentioned term
eσ

∑
ab φaφb , but with σ < 0. (This term arises, after absorbing a

constant into the field, from a quartic term e−c
∑

ab φ2
aφ2

b encod-
ing self-repulsion.) The cubic coupling in the dimensionally
reduced theory is given by g

√
σ , and since σ is here negative

this coupling is imaginary. As a result, the branched polymer
theory maps onto the standard Yang-Lee problem with an
imaginary cubic coupling.

For the random tensor network, dimensional reduction
again gives a scalar φ3 theory, but now with a real coupling
gσ in contrast to the Yang-Lee problem.

V. FROM MICROSCOPIC MODELS TO FIELD THEORY

The field theories discussed above have the GN replica
symmetry of the quantum problems of interest. But symmetry
is not enough on its own to guarantee that these field theories
describe any physical measurement problem or random tensor
network. Therefore, here we demonstrate that the above field
theories do describe—at least some—microscopic models.
We show that both theories can be derived, in a controlled way,
for a family of simple random tensor networks, by considering
separately the N → 0 limit and the N → 1 limit.

These networks generalize the model of Ref. [13] by
adding an arbitrary number Nf of “flavors”. When Nf is large,
we obtain the continuum Lagrangians in the weak-coupling
regime, ensuring that the perturbative RG treatment is appro-
priate.

For the tensor network problem, this shows (modulo the
lack of rigor in the replica approach) that the flows, which
we found in the previous sections on the N → 0 theory are
relevant to microscopic random tensor networks. For example,
the Gaussian fixed point is accessible in high dimensions. We
also expect that the corresponding mean-field exponents are
accessible in appropriate tensor networks with an “all-to-all”
connectivity (we will discuss this case in [81]).

The tensor networks that we study may be interpreted as
nonunitary quantum circuits of a certain type. If we consider
the N → 1 limit (instead of the N → 0 limit), we obtain a
replica structure similar to that required to handle quantum
circuits with measurement. We show that in this limit we
obtain the field theory in Sec. II.

However, we caution the reader that the N → 1 limit in
the model below does not correspond to a simple monitored
dynamics with random unitaries and Born-rule measurements.
Formally, this is because the ensemble of tensor networks
does not form a Kraus decomposition of a quantum channel
(Appendix D) [125]. We study the N → 1 limit of the tensor
network below as a toy model that has the same replica sym-
metry as the more natural monitored dynamics, and therefore
plausibly shares the same critical theory. (We will discuss
microscopic models with genuine Born-rule dynamics in
separate work.)

It is striking that the same lattice model can give rise to the
two quite different field theories in Secs. II and III, simply by
changing the replica limit under consideration.

For concreteness, we describe the following derivations for
a 2D tensor network. However, these derivations extend im-
mediately to higher dimensions, with the only changes being
in some finite geometrical factors. The resulting field theories
are expected to have a broader applicability than the specific
models discussed (because perturbing these models does not
lead to new RG relevant couplings). In the main text we sum-
marize the key points, with details given in Appendices E 2
and F.

A. Tensor network with Nf flavors

We start with a square-lattice random tensor network, see
Fig. 2. We label the bonds of the tensor network by j, k, . . ..
Each bond of the tensor network has bond dimension 2Nf ,
and the state of the jth bond is represented as the state of a
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FIG. 2. Part of the square-lattice tensor network T .

collection of Nf Ising spins,

S jμ = ±1, μ = 1, . . . , Nf . (60)

We refer to μ as the flavor. Note that the “bond index” of a
given bond j is the entire set {S jμ}Nf

μ=1 = S j .
Each node tensor T is taken to be independently random.

For a moment, let us denote the bonds involved in a given
node by i = 1, 2, 3, 4, labeled cyclically around the node, and
i = 5 identified with i = 1. The node tensors are taken to be
of the form

TS1,S2,S3,S4 = exp

⎛⎝ 4∑
i=1

Nf∑
μ=1

hμ
i Siμ+

4∑
i=1

Nf∑
μ,ν=1

Jμν
i,i+1SiμSi+1,ν

⎞⎠,

with Gaussian random complex couplings h̃ and J , whose
variances are specified below. Schematically, the terms in the
exponential above are

(61)

The contraction of such random tensors gives a tensor net-
work T (see Fig. 2), which has bond indices associated with
any uncontracted bonds on the boundary of the system. The
physical interpretation of T will depend on the context. For
example, we can think of one of the directions as a “time”
coordinate, and consider a network in the form of an L × T
cylinder that is periodic in the spatial coordinate. This cylinder
has two boundaries, one at the final and one at the initial time,
each with L dangling bonds. In this setting we can think of
T as a nonunitary “evolution operator” that acts on a spin
configuration for L sites.

A natural way to do this is to take the north-east direction
in Fig. 2 to be the time coordinate. Then the tensor network
can be reinterpreted as a nonunitary quantum circuit acting on
a one-dimensional chain. There is some freedom about how
this circuit is drawn, because we can use the standard trick of
regrouping “gates”. Figure 3 shows one way to draw it. The
horizontal bonds are commuting gates, acting on two sites.
The boxes are gates acting on single sites. In the case Nf = 1,
this can be seen to be a version of the “kicked Ising model”
[51–53] in which the gates are nonunitary (Appendix F).

From now on we stick with the tensor network language.
For the most part the boundary conditions will not concern us,

FIG. 3. If we interpret the diagonal direction in Fig. 2 as time,
the tensor network is a nonunitary quantum circuit. In the case
Nf = 1, the circuit acts on a chain of qubits. After regrouping gates
(Appendix E), it can be drawn as above (two time-steps are shown).
The single-site gates are of the form exp(�g.�σ ), where �g ∈ C is a
random “magnetic field”, and the two-site gates (indicated by hor-
izontal bars) are of the form exp(Jσz ⊗ σz ) with random J ∈ C. This
is a nonunitary version of the kicked Ising model. For Nf > 1 it is a
generalization acting on a chain with Nf qubits at each site.

since we are interested in the bulk Lagrangian. However, for
completeness, we give a concrete example of how to construct
physical quantities, using the replica trick, in Appendix D.
The key object in the replica approach is the product of N
copies of the tensor network T and N copies of its complex
conjugate T ∗ (with appropriate boundary conditions).

B. Replicated action on the lattice

When the tensors T defined above are joined together and
the contracted bond indices are summed, we obtain a partition
function for an Ising model with complex couplings. Geo-
metrically, this is a standard 2D square-lattice Ising model:
the Ising lattice sites are located at the middles of the tensor
network bonds, see Fig. 4. That is, we may think of the bond
label j as labeling a site of this square-lattice Ising model.

The partition function is

Z[h, J] =
∑
{S}

exp

⎛⎝∑
j

∑
μ

hμ
j S jμ+

∑
〈i, j〉

∑
μ,ν

Jμν
i j SiμS jν

⎞⎠.

(62)

FIG. 4. The Ising spins S j (red dots) associated to the tensor
network on Fig. 2. They live on the red dashed lattice.
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On each Ising site j, we have grouped together two “magnetic
fields” h̃, one coming from each of the adjacent tensors, to
give the field h [126]. Above, we have suppressed the depen-
dence of Z on possible boundary bond indices that are not
summed over. Boundary conditions will be neglected below,
but see Appendix D.

We take h and J to be random Gaussian variables with
mean zero. If the real and complex parts of h are h� and h�,
and similarly for J , we choose the variances to be

hμ

i�hμ′
j� = hμ

i�hμ′
j� = h2

2N1/2
f

δi jδ
μμ′

, (63)

Jμν

i j�Jμ′ν ′
i′ j′� = Jμν

i j�Jμ′ν ′
i′ j′� = J2

2Nf
δii′δ j j′δ

μμ′
δνν ′

. (64)

The quantities h2 and J2 on the RHS are nonrandom and
should not be confounded with the random variables on the
LHS. The choice of equal variances for the real and imagi-
nary parts simplifies the effective Lagrangian obtained below:
However, moving away from this point does not change the
universal behavior, at least if the perturbation is weak. The
scaling with Nf for the RHS in Eq. (63) is not the only choice,
and for some purposes it may be more natural to take it to be
of order 1.

Next we introduce replicas. We take N powers of Z , and N
powers of its complex conjugate Z∗, and average this product
over disorder. Schematically,

Z . . . Z︸ ︷︷ ︸
N

Z∗ · · · Z∗︸ ︷︷ ︸
N

=
∑
{S}

exp (−S0[S]), (65)

where S0[S] is a lattice action for spins S that carry replica
indices as well as site and flavor indices. We denote the spin
variables that come from forward replicas Z by S, and those
that come from backward replicas Z∗ by S̄ (note that this
bar should not be confused with complex conjugation; S is
a binary real variable). Defining the overlap field

Y aA
j := 1√

Nf

Nf∑
μ=1

Sa
jμS̄A

jμ, (66)

this action is

S0[Y ] = −h2
∑

j

∑
aA

Y aA
j − J2

∑
〈 jk〉

∑
aA

Y aA
j Y aA

k . (67)

However, the partition function is still written as a sum over
the spins S rather than over the field Y . In the limit of large
Nf we can exchange these discrete spins sums for an integral
over Y with an appropriate weight,∑

{Sa
μ,S̄A

μ}
−→

∫
dY e−W (Y ). (68)

The weight W must be included in the action for Y . At leading
order in 1/Nf this weight is Gaussian, simply because YaA is
the sum over a large number of terms in Eq. (66), but there are
corrections at order 1/Nf ,

W (Y ) = 1

2

∑
aA

Y 2
aA + 1

Nf
�W (Y ) + · · · . (69)

�W has a term of order Y 2 and a term of order Y 4 with a
certain index structure [127]. We compute it in Appendix E,
but for brevity we do not write it out here.

Including W , the full lattice action has the form

S[Y ] = J2

2

∑
〈 jk〉

∑
aA

(
Y aA

j −Y aA
k

)2 + 1−zJ2

2

∑
j

∑
aA

(
Y aA

j

)2

− h2
∑

j

∑
aA

Y aA
j + 1

Nf

∑
j

�W (Yj ), (70)

where z = 4 arose from the coordination number of the square
lattice. The term �W (Yj ), although it has a small prefactor, is
important in generating the nontrivial interaction terms.

The next step depends crucially on the replica limit that
we wish to consider. First we consider the N → 0 limit. In
this limit we work with the unconstrained matrix Y . Subse-
quently we consider the N → 1 limit, where we must proceed
differently, splitting Y into massless and massive modes and
eliminating the massive modes. (That is not possible at N → 0,
because in that limit all the modes are massless at the critical
point [13].)

C. Obtaining the continuum action for N → 0 theory

As it stands, this action is not written in a very convenient
form, because of the linear term. The next step is to shift the
field by a constant, Y aA → Y aA + u, in order to eliminate this
term. In general, after making such a shift, we are still left
with a nonzero mass term

∑
a,A(Y aA)2. However, there is a

massless line in the (h, J ) phase diagram where this mass
vanishes. For simplicity, let us focus on this massless line,
which at large Nf is given by (Appendix E 2)

Jc(h)2 = 1

z

(
1 −

(
9h4

2Nf

)1/3

+ · · ·
)

. (71)

The entangled phase is at J2 > Jc(h)2.
When the shift is made, the nontrivial �W term in Eq. (70)

generates linear, quadratic, and cubic terms. In Appendix E 2
we find that after making the shift, and rescaling the field by a
factor of J , the action takes the form

S[Y ] = 1

2

∑
〈 jk〉

∑
aA

(
Y aA

j − Y aA
k

)2

+ σ

2

∑
j

(∑
aAB

Y aA
j Y aB

j +
∑
abA

Y aA
j Y bA

j

)

+ g
∑

j

∑
aA

(
Y aA

j

)3 + · · · , (72)

with constants given by

σ = 1

J2

(
9h4

2Nf

)1/3

, g = − 1

J3

(
2h2

9N2
f

)1/3

, (73)

where we took the limit N → 0 to simplify the expressions.
As discussed in Sec. III, the coupling relevant for perturbation
theory is not g but the combination

gσ = − h2

Nf J5
. (74)

104203-13



ADAM NAHUM AND KAY JÖRG WIESE PHYSICAL REVIEW B 108, 104203 (2023)

In Eq. (72) we have omitted terms that either have more index
sums, or higher powers of the field. This is because we now
shift our focus from the case d = 2 to higher dimensions: At
least for d > 6, these omitted terms are less relevant according
to the discussion of scaling dimensions in Sec. IV. While we
have described the derivation for a square lattice in d = 2, it
may be repeated for any lattice and in any dimension d . There
will be modified geometrical constants in converting sums to
integrals and lattice differences to derivatives, but otherwise
the structure will be the same. The key point is that when Nf is
large, the expected continuum action is obtained in the regime
of small gσ where perturbative RG is justified.

In Eq. (72) the equation is still written on the lattice. The
continuum Lagrangian follows immediately from a derivative
expansion,

L[Y ] = 1

2

∑
aA

(∇Y aA)2 + σ

2

(∑
aAB

Y aAY aB +
∑
abA

Y aAY bA

)

+ g
∑
aA

(Y aA)3. (75)

Keeping the lowest order in the derivative expansion is justi-
fied here, as discussed in Appendix E 2.

Finally let us comment on boundary conditions. Recall that
using the replica trick to compute entropies requires pairwise
index contractions between layers at the boundaries of the cir-
cuit (see Appendix D for a summary). For the N-layer circuit,
there are N! ways to pair the T and T ∗ layers, and a given
choice may be represented by a permutation σ ∈ SN . Such
a choice imposes a symmetry-breaking boundary condition
for Y . Indeed the microscopic boundary condition for Y in
Eq. (75) is given in Appendix D as

Y aA = J
√

Nf
(
R(σ )

aA + O
(
N−1/6

f

))
, (76)

where R(σ ) is the permutation σ represented as a matrix of
ones and zeros, and where the dominant subleading term
inside the brackets is due to the shift of the field Y �→ Y + u
that we performed.

D. Continuum action for the N → 1 theory

Finally we return to Eq. (70) in order to consider the
N → 1 limit. We separate the field Y into pieces that trans-
form in distinct representations of the global GN symmetry
group

Y aA := X aA + La + RA + φ. (77)

On the right-hand side, any field with an index vanishes if
that index is summed. This is a decomposition into four irre-
ducible representations of the SN × SN symmetry, but L and R
combine into a single irrep of the full GN symmetry [128].

We substitute this decomposition into the lattice action in
Eq. (70) using the form for �W given in Appendix E, and
shift φ to the minimum of the potential. The key observation
is that when N > 0, the fields L, R, and φ remain massive at
the point where X becomes massless. As a result, they can
simply be integrated out of the critical theory.

(We must be careful because the difference in masses is
small in absolute terms when Nf � 1, namely of order N−1/3

f .
Despite this, the interactions are sufficiently weak at large Nf

to ensure that integrating out the massive fields only gives
subleading renormalizations of the couplings in the resulting
theory for X .)

On the critical line, integrating out the massive fields
and dropping terms of order higher than O(X 4) leads to
(Appendix E 3)

L[X ] = 1

2

∑
aA

(∇X aA)2 + g

3!

∑
aA

(X aA)3, (78)

with

g = − 1

J3

(
192h2

N2
f

)1/3

. (79)

Here we have taken the N → 1 limit, and we have rescaled
X so that the derivative term is normalized conventionally. At
leading order in Nf , the critical line in the (h, J ) plane is again
given by J2

c (h) = 1/z + · · ·. Varying J2 will induce a squared
mass m2 in the above Lagrangian, which at leading order is
given by z(J2

c − J2), where again z = 4 is the coordination
number of the square lattice.

The boundary condition on X corresponding to a permuta-
tion σ is as in Eq. (76), except that only the traceless part of
the RHS is taken.

VI. CONCLUSIONS

Our aim has been to develop “Landau-Ginsburg-Wilson”
field theories for entanglement transitions, based on the pair-
ing order parameter Yab. Our main results are as follows. First,
the Lagrangians can be obtained from microscopic tensor
network models in a controlled way, establishing the existence
of two distinct field theories, one for the N → 0 limit and
one for the N → 1 limit. Second, the RG flows for these
theories have an unexpected structure, indicating the existence
of separate weak- and strong-coupling universality classes for
entanglement transitions in high dimensions.

Third, at the formal (perturbative) level, a supersymmetric
structure appears in the N → 0 theory of the random tensor
network, leading to an unusual example of dimensional re-
duction (by four dimensions, rather than by two as in famous
examples of dimensional reduction in statistical mechanics).

High-dimensional systems are not likely to be accessible,
but the existence of simple mean-field theories for the two
kinds of problem is relevant to more realistic models, which
have all-to-all connectivity rather than being spatially local
(we will describe this in more detail separately). Mean-field
theory may also be relevant, on intermediate scales, to certain
low-dimensional systems. It would be interesting to explore
these phenomena numerically.

It is interesting to explore whether the mean-field scaling
predicted by the Landau theories also applies for appropriate
ensembles of tree tensor networks [13,42,55,129] or tree-like
measurement processes [37]. Such mean-field universality
classes would be distinct from the universality classes found
in trees made from strongly random tensor components [130].
Therefore trees may show an analog of the phenomenon found
here in high dimensions, with distinct weak- and strong-
coupling universality classes.
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The present methods generalize to cases where the tensor
networks or the quantum dynamics have a global symmetry.
(The simplest case is a Z2 symmetry, which leads to quartic
rather than cubic interactions: preliminary investigations of
the N = 1 theory again show a flow to strong coupling in
low dimensions.) In settings with global symmetries the field
theories may be a useful tool for analyzing phase diagrams,
even when the critical behavior is not solvable.

Our derivation of the field theories started from a class of
tensor networks, which can be formulated as Ising models
with complex couplings. The N → 0 limit describes networks
of uncorrelated local tensors. The N → 1 limit gives a dif-
ferent ensemble, which is a type of measurement problem.
However, it should be noted that the resulting ensemble dif-
fers from a simple monitored quantum circuit, which obeys
an additional restriction (see the discussion of the Kraus
property in Appendix D). It will be important to revisit the
continuum limit for quantum circuit models that involve only
uncorrelated unitaries and Born-rule measurements. It will
be interesting to see whether this more restricted class of
models is able to access both the weak-coupling regime and
the strong-coupling regime in high dimensions.

A final question for the future is whether the field theo-
ries allow any approximate treatment of the strong-coupling
regimes, for example using functional renormalization group
methods. If so, this could give an analytical handle on the
low-dimensional entanglement transitions, which are most ac-
cessible to simulations.
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APPENDIX A: COMBINATORIAL FACTORS
IN THE POTTS MODEL

The standard treatment of the Potts model [97,98] in-
volves rewriting the field 	α , satisfying the constraint∑N

α=1 	α = 0, in terms of N − 1 unconstrained fields φi, with
i = 1, . . . , N − 1, via 	α = �eα · �φ. Here {�eα} are N vectors
�eα , of dimension N − 1, s.t.

�eα · �eβ :=
N−1∑
i=1

ei
αei

β = δαβ − 1

N
, (A1)

ei ◦ e j :=
N∑

α=1

ei
αe j

α = δi j, (A2)

N∑
α=1

ei
α = 0. (A3)

The Potts Lagrangian [131] is given by Eq. (8). Writing the
kinetic term in terms of �φ shows that the propagator for
the original 	α field is (δαα′ − 1

N )/(k2 + m2) [in analogy to
Eq. (15) for the matrix theory].

As an explicit example of a perturbative correction in the
Potts model, we recall how the renormalization of the cubic
vertex works to leading order. We split the propagator into
the difference of two terms: δαα′/(k2 + m2), which we denote

with a thick solid line, and 1/[N (k2 + m2)], which we denote
with a dashed line (times 1/N).

Graphically, the one-loop diagram can be written as

(A4)

One sees that a solid line, which forces the adjacent indices
to be equal, comes with a factor of 1, whereas a broken line,
which does not force the adjacent indices to be equal, comes
with a factor of −1/N . The diagrams in the third and fourth
line vanish due to Eq. (A3), thus are not reported in the final
result. The remaining terms force all field indices to be equal,
thus renormalize the interaction This leads

to the combinatorial factor of reported in

Eq. (13) for the N-state Potts model as compared to YL.
For the correction to �(2), the leading contribution is

(A5)

The last term does not contribute due to rule (A3), resulting in

(A6)

This leads to the combinatorial factor of

given in Eq. (13).
For the MPT, we have to repeat our analysis for a matrix

field Xαβ . The key observation is that each of the index con-
tractions (for row/column indices) works independently, so
that the only thing we have to do is to square the combinatorial
factor for each diagram, leading to the rules of Eq. (17).

Finally we observe that results for Yang-Lee are recovered
for N → ∞.

APPENDIX B: THE DIMENSIONALLY
REDUCED THEORY

1. Correction to σL and σR

In Eq. (20) there is a term proportional to σL, and
another one proportional to σR. Let us discuss the per-
turbative corrections to σR. Write �σR [Y ] := ∫

x
1
2 (1 + δZσ )

σR
∑

a,A,B YaA(x)YaB(x), where δZσ contains its perturbative
corrections we wish to calculate. Analogously, we define
�diag[Y ] := ∫

x

∑
a,A

1
2 (1 + δZ )(∇YaA)2.
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Taking into account the field renormalization, the correc-
tion to σL is

δσL

σL
= 1 + δZσ

1 + δZ
− 1 = δZσ − δZ + · · · , (B1)

Another way to interpret this ratio is to observe that each
insertion of a red or blue dot comes with an additional prop-
agator, of which the perturbative correction is given in the
denominator.

The field renormalization δZ is contained in diagram (35),

(B2)

To extract δZ , we take a p2 derivative,

(B3)

The correction δZσ is

(B4)

There is an equivalent correction to σL (the blue dot). In
summary

(B5)

We note a similar relation for the subdominant diagram cor-
recting

∑
abAB YaAYbB (without prefactor),

(B6)

It looks like there is an exact compensation for the subdomi-
nant term in the two-point function as well.

2. Another one-loop example

In a cubic theory, the quartic vertex is generated at fourth
order in the cubic coupling, and is proportional to

(B7)

In the disordered theory, this diagram becomes

(B8)

This is the dimensionally reduced version of Eq. (B7).

3. An example for dimensional reduction at two-loop order

The first two-loop diagram of the pure theory reads (with
parameters s1, s2, and s3 from top to bottom)

(B9)

For illustration, we first evaluate the corresponding diagram
for a disordered vector model (σL = 0, and NR = 1)

L[	] =
N∑

i=1

1

2
[∇	i(x)]2 + m2

2
	i(x)2 + g

3!
	3

i

−σ

2

N∑
i, j=1

	i(x)	 j (x). (B10)

Combinatorics for the vector theory: lines are upper “u”, mid-
dle “m”, and lower “l”, allowing for (1) = (ul), (2) = (ml),
(3) = (um),

(B11)

For the tensor theory we mark again with blue and red dots; we
do not draw twice if obtained as all red and blue exchanged,
that are accounted for by an explicit factor of 2. We give
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diagrams [(1) × (1)], twice [(1) × (2)], twice [(1) × (3)],
[(2) × (2)], twice [(2) × (3)] and [(3) × (3)]:

(B12)

APPENDIX C: REPLACING CARDY FIELDS
WITH FERMIONS

Our starting point is the replica Lagrangian L = L2 + L3

[Eqs. (50) and (51)] written in the Cardy field basis

yIJ , I, J ∈ {+,−, 1, . . . , m}, (C1)

with m ≡ N − 2, and m → −2 in the limit N → 0. Lowercase
indices i, j run over the numerical values 1, . . . , m: in this
Appendix we refer to these as the replica indices. Our aim
here is to map the Lagrangian to one for fields that carry no
such indices.

It is sufficient to consider the terms in L that involve i, j in-
dices. As many of the terms repeat the same index structures,
it is enough to discuss a subset of them: the quadratic terms in

L′
2 = ∇yi−∇yi+ + ∇y− j∇y+ j + 1

2 (∇yi j )(∇yi j )

+ 1
2 (y− jy− j + yi−yi−), (C2)

and the cubic term with the distinct index structure

L′
3 = gσ [yi+yi jy+ j]. (C3)

For clarity we use i for left indices and j for right indices,
although they run over the same set of values.

First, we exchange the (real) fields that carry replica indices
for half the number of complex fields. Any field Ai with a
single left replica index i = 1, . . . , m (for example yi+) is
replaced by a pair of complex conjugate fields, denoted A′

α ,
A′

ᾱ , which carry an index α = 1, . . . , m/2,

A′
α = 1√

2
(A2α−1 + iA2α ), A′

ᾱ = 1√
2

(A2α−1 − iA2α ).

(C4)

The equivalent replacement is made for fields with right in-
dices (which after the transformation we label by β). For the
field yi j we make the transformations for both indices, so that
(for example)

y′
αβ = 1

2 (y2α−1,2β−1 + iy2α−1,2β + iy2α,2β−1 − y2α,2β ). (C5)

From now on we drop the primes on the new fields. Note that
complex conjugating a field replaces unbarred indices with
barred ones and vice versa.

With the above convention (repeated indices summed)

AiBi = AᾱBα + BᾱAα, (C6)

if Ai, Bi are fields carrying a single replica index, and

1
2 yi jyi j = yᾱβ̄yαβ + yαβ̄yᾱβ . (C7)

The terms under examination become

L′
2 = (∇yᾱ−∇yα+ + ∇yᾱ+∇yα−)

+ (∇y−β̄∇y+β + ∇y+β̄∇y−β )

+ (∇yᾱβ̄∇yαβ + ∇yᾱβ∇yαβ̄ )

+ (y−β̄y−β + yᾱ−yα−), (C8)

L′
3 = gσ [yᾱ+y+βyαβ̄ + yᾱ+y+β̄yαβ

+ yᾱβ̄y+βyα+ + yᾱβy+β̄yα+]. (C9)

We have placed the terms with an ᾱ index to the left and those
with an α index to the right, to match the rewriting of the
action in Eq. (C12) below. The ordering does not matter at this
point (since the fields are commuting) but becomes important
when we introduce fermions.

The second step is the “fermionization” of the fields that
carry a left replica index (denoted by α in the above formulas).
These fields make up a collection of m/2 → −1 complex
vectors, indexed by α, of the form

wα = (yα+, yα−, yα,1, . . . , yα,m/2, yα,1̄, . . . , yα,m/2)T , (C10)

together with their complex conjugates

(wα )† = (yᾱ+, yᾱ−, yᾱ,1̄, . . . , yᾱ,m/2, yᾱ,1, . . . , yᾱ,m/2). (C11)
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The action may be written in the schematic form (spatial
dependence is suppressed)

S =
m/2∑
α=1

(wα )†Awα + Srest, (C12)

where Srest and the kernel A depend only on the fields
without a left index. The integral over the fields wα ,
(wα )† is a Gaussian integral over complex bosons, giving
(det A)−m/2 → (det A) in the replica limit. Therefore it is
equivalent to the corresponding integral in which we replace
the multiplet {wα}m/2

α=1 of vectors with a single fermionic vec-
tor, and similarly for the conjugates. When we make this
replacement we use the notation

yα,± → λ±, yᾱ,± → λ̄±, yα,β → ηB
β,

yᾱ,β̄ → η̄B
β, yα,β̄ → η̄M

β , yᾱ,β → −ηM
β . (C13)

Note that ηB, η̄B, ηM , and η̄M are independent Grassmann vari-
ables: the above naming convention with barred and unbarred
variables is for notational convenience in the next step. The
additional minus sign in the last line ensures that ∇η̄M

β ∇ηM
β in

the equation for L′
2 has the same sign as the preceding terms.

The replacement gives the Lagrangian terms

L′
2 → (∇λ̄−∇λ+ + ∇λ̄+∇λ−)

+ (∇y−β̄∇y+β + ∇y+β̄∇y−β )

+ (∇η̄B
β∇ηB

β + ∇η̄M
β ∇ηM

β

)
+ (y−β̄y−β + λ̄−λ−), (C14)

L′
3 → gσ

[−η̄M
β λ̄+y+β + y+β̄ λ̄+ηB

β

+ η̄B
βλ+y+β + y+β̄λ+ηM

β

]
. (C15)

We have ordered the fields with a β̄ index on the left and those
with a β index on the right (taking account of minus signs
from exchanging Grassmann fields). As a result, the action is
in an analogous form to Eq. (C12). Defining, for each value of
β, a supervector and its conjugate

ψβ = (
y+β, y−β, ηB

β, ηM
β

)T
, (C16)

(ψβ )† = (
y+β̄ , y−β̄ , η̄B

β, η̄M
β

)
, (C17)

the action is in the form

S ′ =
m/2∑
β=1

(ψβ )†Bψβ + S ′
rest, (C18)

where S ′
rest and B are independent of the fields with a right

(β) index. The kernel B is a supermatrix. Standard formulas
for integration over supervectors [56,132] show (in analogy
to the previous step) that taking the limit m/2 → −1 for the
multiplicity is equivalent to replacing bosons with fermions
and fermions with bosons. The names of the new fields after
the replacement are chosen to be

η̄B
β → B̄, ηB

β → B, y+,β → ρ+,

y+,β̄ → ρ̄+, ηM
β → −M, η̄M

β → −M̄. (C19)

(and similarly for y−,β etc.) Note that B, B̄, M, M̄ are bosonic,
while ρ± and ρ̄± are Grassmannian.

This finally gives

L2 = (∇λ̄−∇λ+ + ∇λ̄+∇λ−)

+ (∇ρ̄−∇ρ+ + ∇ρ̄+∇ρ−)

+ (∇B̄∇B + ∇M̄∇M )

+ (ρ̄−ρ− + λ̄−λ−) (C20)

and

L3 = gσ [B̄λ+ρ+ + Bρ̄+λ̄+ + M̄λ̄+ρ+ + Mλ+ρ̄+], (C21)

matching the corresponding terms in Eq. (56) of the main text.
The full Eq. (56) is obtained by restoring the remaining terms
in L2 + L3. This is straightforward since these terms either
do not involve i, j indices (i.e., they depend only on y±± and
are left unchanged by the transformation in this Appendix) or
they involve the same index structures that appear in L′

2 and
are transformed similarly.

APPENDIX D: BRIEF RECAP
OF THE REPLICA APPROACH

We start with the random tensor network, made of uncor-
related random tensors. For a concrete example, we consider
the geometry mentioned in the main text, where the second
coordinate is treated as “time” and the tensor network forms
an L × T cylinder. Let the bond indices for initial time bound-
ary be Si

1, . . . , Si
L, and those for the final time boundary be

Sf
1, . . . , Sf

L. The full network is then a tensor T with elements

T
(
Sf

1, . . . , Sf
L; Si

1, . . . , Si
L

)
. (D1)

It can be viewed as a transition amplitude for a nonunitary
evolution operator that acts on a spin configuration on L sites.
Let us use a matrix notation: the list Sf

1, . . . , Sf
L together is the

“row” index of T , and Si
1, . . . , Si

L its “column” index.
Next, let us recall that the replica limit may be used to study

the entanglement properties of this tensor network [5,13]. The
basic object is the product of N copies of T and N copies
of the complex conjugate T ∗. By forming appropriate index
contractions of such a product, and then taking the replica
limit N → 0, we may express any desired average.

As a concrete example of this, we can quantify correla-
tions between the initial and final time [10] using the Rényi
entropies Sn defined by

exp (−(n − 1)Sn) := Tr(T T †)n

(Tr T T †)n
. (D2)

The limit SvN := limn→1 Sn is the von Neumann entropy. For-
mally, these entropies characterize the spectrum of singular
values of the matrix T . If the singular values of T form the
set c{√p1,

√
p2, . . .}, where c is an overall constant, which

normalizes the pi so that they sum up to 1, then

exp (−(n − 1)Sn) =
∑

i

pn
i , (D3)

SvN = −
∑

i

pi ln pi. (D4)
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Physically, if we think of the action of T as a nonunitary
evolution of an L-site system, which starts out in a maximum
entropy state, then SvN quantifies how much entropy the sys-
tem has left at the final time [10].

In the replica approach, we write the generating function
for Sn in the form

exp(−k(n − 1)Sn) = lim
N→0

[Tr(T T †)n]k (Tr T T †)N−kn. (D5)

Here the overline is an average over the random tensors.
In principle, if we can compute the limit N → 0 on the
right-hand side, then the resulting generating function (with
argument k) contains information on all the cumulants of the
random variable Sn,

exp(−k(n − 1)Sn) = exp

( ∞∑
r=1

kr (n − 1)r

r!
Sr

n
c

)
. (D6)

Having obtained the cumulants, it is also possible to take the
subsequent limit n → 1 to obtain the von Neumann entropy.
See Ref. [82] for an example where this approach was used to
obtain exact results.

By taking N to be an integer, with N � kn, the object
appearing inside the average on the RHS can be written in
terms of index contractions of the tensor product

N︷ ︸︸ ︷
T ⊗ · · · ⊗ T ⊗

N︷ ︸︸ ︷
T ∗ ⊗ · · · ⊗ T ∗. (D7)

Let us think of the 2N terms in this product as 2N “layers”
of a multilayer tensor network. Concretely, these index con-
tractions mean that boundary indices are contracted pairwise
between T and T ∗ layers, in a manner prescribed by the
matrix products and traces in Eq. (D5). To see this, let us
simplify notation by writing TSf Si in place of T (Sf , Si ). Two
simple cases are

Tr T T † =
∑
Sf ,Si

TSf SiT ∗
Sf Si

, (D8)

Tr(T T †)2 =
∑

Sf ,Si,S′
f ,S

′
i

TS′
f SiT ∗

Sf Si
TSf S′

i
T ∗

S′
f S′

i
. (D9)

Once we write each T in terms of its constituent tensors, we
obtain the partition function of an “Ising model” with 2N
layers. The Ising spins in the bulk are summed over freely,
with the weight described in the main text. The Ising spins at
the two temporal boundaries are identified between layers in
a pairwise fashion [generalizing Eq. (D9)].

To connect with the standard notation, we recall that the
pattern of pairing at a given boundary can be expressed
in terms of a permutation σ ∈ SN . Let the T layers be
labeled a = 1, . . . , N and let the T ∗ layers be numbered
b = 1, . . . , N . Then the permutation σ pairs the T layer
numbered a with the T ∗ layer numbered b = σ (a). At the
initial-time boundary we can take σ to be the identity per-
mutation. At the final time boundary we can take σ to be the
product of k disjoint n cycles.

In terms of our overlap order parameter Y ab, these bound-
ary conditions impose a large boundary value for some of the
elements of Y . On the boundary links of the tensor network,

the corresponding Ising spins satisfy

Sa
μ = S̄σ (a)

μ , (D10)

where σ is the appropriate permutation and we have sup-
pressed the position index. Therefore, by the definition of Y
in Eq. (66), components of Y of the form Y a σ (a) are given by
sums of terms of the form (Sa)2 = 1, giving

Y a σ (a) = √
Nf . (D11)

By contrast, other components of Y are sums of terms that can
be positive or negative and (by standard central-limit theorem
reasoning) are naively smaller by order N−1/2

f . Therefore (as
stated in the main text)

YaA = √
Nf
(
R(σ )

aA + O
(
N−1/2

f

))
, (D12)

where R(σ )
ab = δb,σ (a) is the permutation written as a matrix.

So this is essentially a fixed boundary condition for Y . After
the shift Y ab �→ Y ab + u discussed in Appendix E 2, there is
a subleading term inside the brackets that is independent of
the indices and of order N−1/6

f compared to the leading term.
[In the expression Eq. (76) in the main text we have also
taken into account a rescaling by J performed below to put
the kinetic term in the standard form.]

Next we briefly consider the effect of taking N → 1 rather
than N → 0. Above, the physical average was defined as the
Gaussian average over the fields appearing in the random
tensors,

Ephys(· · · ) := (· · · ). (D13)

Let us modify this definition to

Emod(· · · ) := N × (· · · ) Tr T T †, (D14)

with normalization constant

N =
(

Tr T T †
)−1

. (D15)

In other words, we are reweighting the probability measure
for the random tensors by Tr T T †, which itself depends on
the tensors. When we apply the replica trick, the additional
factor of Tr T T † in Eq. (D14) means that we need to take
N → 1 in Eq. (D5) rather than N → 0 [133].

The structure in Eq. (D14) also appears in monitored dy-
namics. For comparison, consider the example of a circuit
made up of unitaries and projection operators representing
measurements of σ̂ z for qubits [134]. In that context, the
nonunitary circuit T can be viewed as a Kraus operator (in the
Kraus decomposition of the quantum channel defined by the
measurement process), and the factor of Tr T T † in Eq. (D14)
is the probability of the measurement outcomes. The differ-
ence is that, here, the operators T do not make up a Kraus
decomposition [135]

(D18)

Therefore, while it is certainly possible to interpret the av-
erage defined in Eq. (D14) in terms of a physical process,
this process is not simply given by applying random unitaries
together with weak Born-rule measurements. It can be thought
of as a partially postselected dynamics, where the probabili-
ties arising from Born’s rule are modified by a postselection
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process. We use it as an example of a problem that shares the
replica symmetry group with more physically natural mon-
itored systems (i.e., the symmetry group GN with N → 1).
This makes it plausible that more realistic microscopic models
for monitored dynamics share the same continuum descrip-
tion. Direct derivations of pure Born-rule dynamics will be
discussed elsewhere.

APPENDIX E: DERIVATION OF FIELD
THEORIES FROM LATTICE

As discussed in Sec. V, the flavor number Nf can be used
for a controlled derivation of the continuum field theories
(in the weak-coupling regime where perturbative RG is ap-
propriate). Here we give a full description of this derivation.
For simplicity and concreteness we work with a 2D tensor
network, but the derivation generalizes to any tensor-network
geometry, using tensors of the same structure as those below.

The first part of the discussion applies to both limits, N →
0 and N → 1. In Appendix E 2 we derive the field theory
for the limit N → 0, with an unconstrained matrix field Y aA.
Note that in this Appendix we put the replica indices as super-
scripts, to allow room for other indices, and to distinguish row
from column indices we use lowercase for the former and up-
percase for the latter. For the measurement limit N → 1, there
is another step, which is to isolate the massless part of the
field that satisfies the constraints

∑
α X αβ = 0,

∑
β X αβ = 0:

we do this subsequently in Appendix E 3.

1. Replicated action on the lattice

The tensor network has been defined in Sec. V. We repeat
its form,

Z[h, J] =
∑
{S}

exp

⎛⎝∑
j

∑
μ

hμ
j S jμ+

∑
〈i, j〉

∑
μ,ν

Jμν
i j SiμS jν

⎞⎠.

(E1)

After introducing replicas as in Eq. (65), we take the average
(denoted by an overline) over the quenched random variables

h and J via, e.g.,

exp

⎛⎝∑
μ

∑
a

Sa
μ

(
hμ

� + ihμ

�
)+

∑
μ

∑
A

S̄A
μ

(
hμ

� − ihμ

�
)⎞⎠

= exp

⎛⎝ h2

√
Nf

∑
μ,a,A

Sa
μS̄A

μ

⎞⎠. (E2)

This motivates defining the overlap matrix

Y aA := 1√
Nf

∑
μ

Sa
μS̄A

μ. (E3)

Averaging the J terms similarly gives

S0[Y ] = −h2
∑

j

∑
aA

Y aA
j − J2

∑
〈 jk〉

∑
aA

Y aA
j Y aA

k . (E4)

The multireplica partition function still involves a sum over
spins,

Z =
∑

{Sa
jμ,S̄a

jμ}
exp(−S0). (E5)

In the limit of large Nf , we may exchange these discrete
sums for an integral over Y , with an appropriate weight e−W

absorbed into the potential. It is sufficient to consider a single
position j,

1

22N×Nf

∑
{Sa

μ,S̄A
μ}

−→
∫

dXe−W (Y ). (E6)

We have W (Y ) = W (−Y ) by the symmetry (S, S̄) → (−S, S̄)
of the flat measure on S and S̄. When Nf → ∞, Y becomes
Gaussian, since it is a sum of a large number of variables.
As a result, W is of the form W = 1

2

∑
aA(Y aA)2 + O(Y 4).

Once we have computed W , the full lattice action is given as
S = S0 + W .

There are probably more efficient ways to compute W
but here is one way. (We neglect multiplicative factors in
the partition function.) First, introduce a representation of a
δ-function to enforce the definition (E3),

e−W (Y ) ∼
〈∫ (∏

aA

dλaA

)
exp

(
iλaAY aA − i

N1/2
f

λaASa
μS̄A

μ

)〉
, (E7)

where the brackets denote the normalized sum 2−2N×Nf
∑

{Sa
μ,S̄a

μ}, i.e., the flat average over S and S̄. Let us formally expand in the
second term above (and abbreviate the notation a little),

e−W (Y ) ∼
∫

dλ eiλ·Y
[

1 − 1

2Nf
λaAλbB

〈
Sa

μSb
ν

〉〈
S̄A

μS̄B
ν

〉+ 1

4!N2
f

λaAλbBλcCλdD
〈
Sa

μSb
νSc

λSd
κ

〉〈
S̄A

μS̄B
ν S̄C

λ S̄D
κ

〉+ · · ·
]
. (E8)

Using 〈Sa
μSb

ν〉 = δabδμν we see that the second term in the brackets ∼λ · λ gives the first term in the expansion of the expected
Gaussian weight,

e−W (Y ) ∼
∫

dλ eiλ·Y
(

1 − 1

2
λaAλaA + 1

4!N2
f

λaAλbBλcCλdD
〈
Sa

μSb
νSc

λSd
κ

〉〈
S̄A

μS̄B
ν S̄C

λ S̄D
κ

〉+ · · ·
)

. (E9)

Let us absorb the Gaussian part explicitly,

e−W (Y ) ∼
∫

dλ eiλ·Y − 1
2 λ·λ

(
1 + 1

4!N2
f

λaAλbBλcCλdD
〈
Sa

μSb
νSc

λSd
κ

〉〈
S̄A

μS̄B
ν S̄C

λ S̄D
κ

〉− 1

8
(λ · λ)2 + · · ·

)
. (E10)
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The needed averages are of the form 〈
Sa

μSb
νSc

λSd
κ

〉 = (
δab
μνδ

cd
λκ + 2 terms

)− 2δabcd
μνλκ , (E11)

where the parentheses include the three ways of pairing the four spins. δab
μν = δabδμν , and δabcd

μνλκ = δabcdδμνλκ (and δabcd is 1 only
if a = b = c = d). We refer to the terms in brackets in (E11) as paired terms.

Inserting this formula for the averages into the quartic term in Eq. (E10) gives several terms. The leading-order terms are those
with two free sums over flavor indices. These come from choosing a paired term from the average over S, and the corresponding
paired term from the average over S̄. There are three such terms. They give 1

8 (λ · λ)2, canceling the final term in Eq. (E10).
All other terms give a single free flavor-index sum, so are of order 1/Nf once the prefactor is taken into account. Let us define

gabcd = (δabδcd + 2 terms) − 2δabcd , (E12)

which is the same structure of contractions as in (E11), but without the flavour indices. Next, set

f abcd
ABCD = δabδcdδABδCD + 2 terms, (E13)

which is a sum over the three pairing patterns, with the same pattern for both row (lower case) and column (upper case) indices.
Finally, define

Habcd
ABCD = gabcd gABCD − f abcd

ABCD. (E14)

Here, the final term is subtracting off one of the terms that come from expanding the two g tensors, since this term is of order
(Nf )0, and was shown above to cancel. Therefore

e−W (Y ) ∼
∫

dλ eiλ·Y − 1
2 λ·λ

(
1 + 1

4!Nf
Habcd

ABCDλaAλbBλcCλdD + O
(
λ6/N2

f

))
=
∫

dλ exp

(
iλ · Y − 1

2
λ · λ + 1

4!Nf
Habcd

ABCDλaAλbBλcCλdD + O
(
λ6/N2

f

))
. (E15)

Each additional power of λ2 in the exponent comes with an additional factor of 1/Nf [136].
Shifting λ → λ + iY gives

e−W (Y ) ∼
∫

dλ e− 1
2 λ·λ− 1

2 Y ·Y exp

(
1

4!Nf
Habcd

ABCD(λ + iY )aA(λ + iY )bB(λ + iY )cC (λ + iY )dD + · · ·
)

. (E16)

At leading order in 1/Nf , it is sufficient to take the first term in a cumulant expansion, where we average over λ with
〈λaAλbB〉λ = δabδAB. As a result,

e−W (Y ) = e− 1
2 Y ·Y exp

(
1

4!Nf
Habcd

ABCD〈(λ + iY )aA(λ + iY )bB(λ + iY )cC (λ + iY )dD〉λ
)

. (E17)

Adding S0[Y ] and the contribution from W (Yj ), summed over all sites j, we obtain the action as

S[Y ] = S0[Y ] +
∑

j

W (Yj )

= J2

2

∑
〈 jk〉

∑
aA

(
Y aA

j − Y aA
k

)2 − h2
∑

j

∑
aA

Y aA
j + 1 − zJ2

2

∑
j

∑
aA

(
Y aA

j

)2

− 1

4!Nf

∑
j

∑
abcdABCD

Habcd
ABCD〈(λ j + iYj )

aA(λ j + iYj )
bB(λ j + iYj )

cC (λ j + iYj )
dD〉λ, (E18)

where z = 4 is the coordination number of the 2d Ising lattice.
The above construction generalizes to other lattices: for example in d = 3 we could take the tensors T to live on the sites

of the diamond lattice, in which case the spins S live on the sites of the pyrochlore lattice, with z = 6. In general the spins S
live on the “medial lattice”, whose sites are centered on the bonds of the initial tensor network. (Generically this lattice may
have more than one site in the unit cell: in this case, taking the continuum limit involves isolating the locally “uniform” mode
and integrating out the “staggered” modes with a unit cell. However, this may be done trivially as a result of the weakness of
interactions at large Nf .)

2. Derivation of field theory for the N → 0 limit

In order to simplify the action, we proceed differently for the N → 0 and N → 1 limits. In the N → 0 limit we must work
with the unconstrained field Y , while for the N → 1 limit it is possible to isolate a part of Y transforming in a single irreducible
representation of GN symmetry.
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We consider the N → 0 case first. We are free to shift the field by a constant,

Y aA
j �→ Y aA

j + u. (E19)

Since there is no Y → −Y symmetry, we must impose a convention for fixing u. A natural choice is to choose u so that
the coefficient of the linear term

∑
aA Y aA vanishes. This is analogous to shifting to the minimum of the potential in a more

conventional Landau-Ginsburg theory. Then the massless line, i.e., the critical line in the (h, J ) plane, is defined by the condition
that the coefficient of the mass

∑
aA(Y aA)2 also vanishes.

In order to both determine the equation J = Jc(h) for the critical line, and to find the values of the other couplings on the
critical line, it is sufficient to impose two equations: the vanishing of the couplings for both

∑
aA Y aA and

∑
aA(Y aA)2. Solving

these two equations determines, first, the relation between J and h required for criticality, and, second, the value for u required
to put the action in the standard form.

The shift in Eq. (E19) gives

S[Y ] = J2

2

∑
〈 jk〉

∑
aA

(
Y aA

j − Y aA
k

)2 − h2
∑

j

∑
aA

Y aA
j + 1 − zJ2

2

∑
j

∑
aA

(
Y aA

j + u
)2 + �S, (E20)

with

�S ≡ − 1

4!Nf

∑
j

∑
abcdABCD

Habcd
ABCD〈(λ j+iu+iYj )

aA(λ j+iu+iYj )
bB(λ j+iu+iYj )

cC (λ j+iu+iYj )
dD〉λ. (E21)

The above term generates quadratic, cubic, and quartic terms in Y when it is expanded out. For the tensor network with nonzero
h fields we can neglect the quartic terms as we are only interested in the terms with the largest tree-level scaling dimensions.
For the same reason, we also neglect quadratic and cubic terms that have “too many” index sums and are therefore irrelevant
according to the dimensional analysis sketched around Eq. (49).

We therefore want the action in the following form:

S[Y ] = J2

2

∑
〈 jk〉

∑
aA

(
Y aA

j − Y aA
k

)2 + r
∑

j

∑
aA

Y aA
j + m2

2

∑
j

∑
aA

(
Y aA

j

)2

+ σ

2

∑
j

(∑
aAB

Y aA
j Y aB

j +
∑
abA

Y aA
j Y bA

j

)
+ g

∑
j

∑
aA

(
Y aA

j

)3 + · · · (E22)

Before we impose a condition fixing u, these coefficients
depend on u.

In order to expand out the action it is helpful to note the
following identities, which we obtained both graphically and
with computer algebra,

Habcd
ABCDδcdδCD = −2δabcdδ

ABCD (no sum), (E23)∑
cdCD

Habcd
ABCDδcdδCD = −2δabδAB, (E24)

∑
bcdBCD

Habcd
ABCDδcdδCD = −2, (E25)

∑
cdCD

Habcd
ABCD = 2(N − 2)(δab + δAB)

+ 4(1 − N )δabδAB + 2, (E26)∑
bcdBCD

Habcd
ABCD = 2(3N2 − 6N + 2). (E27)

(Note that N is the number of replicas, not to be confused with
the number Nf of flavors.) In expanding out �S , it is helpful
to note that the tensor H is invariant under permutations,
so long as the upper- and lower-case indices are permuted
together.

The contribution to the linear term in �S is

�S1[Y ] = − 1

3!Nf

∑
all indices

Habcd
ABCDY aA

j (u3 − 3uδcdδCD)

= γ
∑
aA j

Y aA
j , (E28)

γ = − 1

3Nf
[3u + (3N2 − 6N + 2)u3]. (E29)

Next, consider the quadratic terms in �S ,

�S2[Y ]

= 6

4!Nf

∑
all indices

Habcd
ABCDY aA

j Y bB
j 〈(λcC + iu)(λdD + iu)〉λ

= 1

4Nf

∑
all indices

Habcd
ABCDY aA

j Y bB
j (δcdδCD − u2). (E30)

With the help of Eqs. (E24) and (E25) this yields

�S2 = σ

2

∑
j

(∑
aAB

Y aA
j Y aB

j +
∑
aBA

Y aA
j Y bA

j

)

+μ
∑

j

∑
aA

(
Y aA

j

)2 − u2

2Nf

∑
j

∑
abAB

Y aA
j Y bB

j (E31)

σ = u2 2 − N

Nf
, μ = −1 + 2(1 − N )u2

2Nf
. (E32)
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The final term in Eq. (E31) will be dropped as it is irrelevant
in the regime of interest. Finally the cubic term is given by the
term linear in u in �S (E21),

�S3 = − u

3!Nf

∑
all indices

Habcd
ABCDY aA

j Y bB
j Y cC

j

= − 2u

3Nf

∑
j

∑
aA

(
Y aA

j

)3 + · · · (E33)

The dropped terms have triple and quadruple replica sums.
For future reference, let us also note the quartic term ob-

tained from Eqs. (E21) and (E14), although we will not use
this for the generic theory,

�S4 = − 1

6Nf

∑
j

∑
aA

(
Y aA

j

)4

+ 1

4Nf

∑
j

[∑
abA

(
Y aA

j Y bA
j

)2 +
∑
aAB

(
Y aA

j Y aB
j

)2

]

− 1

4Nf

∑
j

∑
abAB

Y aA
j Y aB

j Y bA
j Y bB

j . (E34)

Combining the terms we have obtained from the expansion of
�S with the other terms in Eq. (E20), the coefficients in the
action (E22) are

r = −h2 + u(1 − zJ2)

− 1

3Nf
[3u + (3N2 − 6N + 2)u3], (E35)

m2 = (1 − zJ2)−1 + 2(1 − N )u2

Nf
, (E36)

σ = u2 2 − N

Nf
, (E37)

g = − 2u

3Nf
. (E38)

Let us specify to the limit N → 0

r = −h2 + u(1 − zJ2) − 3u + 2u3

3Nf
, (E39)

m2 = (1 − zJ2)−1 + 2u2

Nf
, (E40)

σ = 2u2

Nf
, (E41)

g = − 2u

3Nf
. (E42)

Finally, we can impose the two conditions r = 0, m2 = 0
that were discussed above. It is clear from the first of these
conditions that u must be much larger than one. Working to
leading order in u,

u =
(

3Nf h2

4

)1/3

+ · · · , (E43)

Jc(h)2 = 1

z

[
1 −

(
9h4

2Nf

)1/3

+ · · ·
]
. (E44)

We see that at large Nf the critical coupling Jc(h) becomes
independent of h.

On the critical line, and finally rescaling the field
Y aA

j → Y aA
j /J , the action takes the form

S[Y ] = 1

2

∑
〈 jk〉

∑
aA

(
Y aA

j − Y aA
k

)2

+ σ

2

∑
j

(∑
aAB

Y aA
j Y aB

j +
∑
abA

Y aA
j Y bA

j

)

+ g
∑

j

∑
aA

(Y aA
j )3 + · · · (E45)

with the couplings σ , g given by inserting Eq. (E43) into
Eqs. (E37) and (E38),

σ = 1

J2

(
9h4

2Nf

)1/3

, g = − 1

J3

(
2h2

9N2
f

)1/3

. (E46)

As discussed in Sec. III, the coupling constant relevant for
perturbation theory is not g but the combination

gσ = − h2

Nf J5
. (E47)

In Eq. (E45) the equation is written on the lattice. The contin-
uum form follows immediately from a derivative expansion,
for example,

1

2

∑
〈 j,k〉

(
Y aA

j − Y aA
k

)2 � 1

2

∫
d2x [∇Y aA(x)]2. (E48)

Keeping the lowest order in the derivative expansion is justi-
fied here. The reason for this is standard. Higher terms in the
derivative expansion are non-negligible for high-momentum
modes (those with wavelengths comparable to the lattice spac-
ing). The weakness of the bare interactions means that these
modes can be integrated out with only a negligible effect on
the low-momentum modes of interest.

We have discussed the case of the square lattice explicitly
because of its simple geometry, but as noted above the ex-
pansion can be performed for any lattice without qualitative
changes.

3. Derivation of field theory for the N → 1 limit

In order to address the N → 1 limit, relevant to the mea-
surement transition, we separate the field X into pieces that
transform in distinct representations of the global GN symme-
try group. Going back to Eq. (E20), let us write

Y aA := X aA + La + RA + φ, (E49)

where X vanishes if any index is summed, and similarly for L
and R. This is a decomposition into four irreducible represen-
tations of SN × SN symmetry (though L and R combine into a
single irrep of the full GN symmetry of the model) [137].

Writing the action as

S[Y ] =
∑

j

V[Yj] + (derivative terms), (E50)

we examine the form of V that results from the above substi-
tution. At linear order in the fields, we have

V1[Y ] = N2rφ, (E51)
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where r was given in Eq. (E35). When N → 1, this is

r = −h2 + u(1 − J2z) − 3u − u3

3Nf
. (E52)

In a moment, we will fix the field shift u so that this linear
term vanishes.

For the quadratic terms, it is useful to note that(∑
aA

Y aA

)2

= N4φ2, (E53)

∑
aA

(Y aA)2 =
∑
aA

(X aA)2 + N2φ

+ N

[∑
a

(La)2 +
∑

A

(RA)2

]
, (E54)

∑
aAB

Y aA
j Y aB

j +
∑
abA

Y aA
j Y bA

j

= 2N3φ2 + N2

[∑
a

(La)2 +
∑

A

(RA)2

]
. (E55)

Using these formulas, and the results for the quadratic terms
in Eq. (E31), we obtain the (bare) mass terms in the limit of
N → 1,

V2[Y ] = m2

2

∑
aA

(X aA)2

+ m2 + σ

2

(∑
a

(La)2 +
∑

A

(RA)2

)

+ m2 + 2σ − N−1
f u2

2
φ2. (E56)

The coefficients are given by setting N → 1 in expressions
(E36) and (E37),

m2 = (1 − zJ2) − 1

Nf
, σ = u2

Nf
, (E57)

so that Eq. (E56) simplifies to

V2[Y ] = m2

2

∑
aA

(X aA)2

+ m2 + N−1
f u2

2

(∑
a

(La)2 +
∑

A

(RA)2

)

+ m2 + N−1
f u2

2
φ2. (E58)

The key point here is that at the critical point, where X
becomes massless (m2 = 0), the other fields have positive
masses. Therefore we will be able to integrate them out of
the critical theory.

Let us mention as an aside that the procedure we are fol-
lowing for N → 1 cannot be applied to the N → 0 case. If
the constants in Eq. (E56) are rederived for the N → 0 case,
it is found that all three masses vanish simultaneously. This is
why, in the previous section, it was necessary to retain all of
the degrees of freedom in X for the critical theory.

Let us consider the theory close to the line where the bare
mass m2 vanishes. We fix the value of u by requiring that r in
Eq. (E52) vanishes. This equation may be written as

r = −h2 + m2u + u3

3Nf
. (E59)

If m2 is small (smaller than order N−1/3
f ) we must take

u = (3h2Nf )1/3 (E60)

to leading order in Nf .
Next, we may consider the cubic terms, which come

from inserting the decomposition of X into the first line of
Eq. (E33). First, there is a term that involves only X ,

V3[Y ] = − 2u

3Nf

∑
aA

(X aA)3 + · · · (E61)

The other terms involve either the massive fields (L, R, φ)
alone, or couplings between X and the massive fields. By
counting powers of Nf [138], we may check that integrating
out the massive fields only contributes a subleading correction
to the cubic coupling of X . Integrating out the massive fields
also renormalizes the mass of X , but only by an amount, which
is much smaller than the difference in bare mass between the
fields. This, together with the finite renormalization of the
mass in the resulting theory for X alone, just contributes to
a small shift to the position of the critical line, which is given
to leading order in Nf by

J2
c = 1

z
. (E62)

Again, this critical line is, at leading order in Nf , a horizontal
line in the (h, J ) plane.

We now have an action for X alone. Absorbing again a
factor of J into each field by setting X → X/J , this becomes

S[X ] = 1

2

∑
〈 jk〉

∑
aA

(
X aA

j − X aA
k

)2 + m̃2

2

∑
aA

(X aA)2

+ g

3!

∑
aA

(X aA)3, (E63)

where

m̃2 = 1 − zJ2 + · · · , g = − 1

J3

(
192h2

N2
f

)1/3

. (E64)

As discussed at the end of the previous subsection, this may be
directly converted into a continuum action by replacing lattice
differences with derivatives.

APPENDIX F: DETAILS OF RELATION BETWEEN
SQUARE TENSOR NETWORK FOR Nf = 1 AND

NONUNITARY KICKED ISING MODEL

When we view the diagonal direction in Fig. 2 as time,
we have a quantum circuit, with a brickwork structure. For
Nf = 1, this circuit acts on a one-dimensional chain of qubits.
Each tensor T defines the matrix elements of a two-site gate
V via

TS1,S2,S3,S4 = 〈S4, S3|V |S1, S2〉, (F1)
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where |±1,±1〉 are basis states, and each V is independently
random. The gate V above may be written in terms of Pauli
X and Z operators for the two spins it acts on. Up to an
unimportant constant of proportionality (the following kinds
of rewriting are standard, see e.g., Refs. [52,53]),

V ∝ exp (J3Z ⊗ Z )[W1 ⊗ W2] exp (J1Z ⊗ Z ), (F2)

where

W1 = exp(h̃4Z ) exp( f1X ) exp(h̃1Z ), (F3)

W2 = exp(h̃3Z2) exp( f2X2) exp(h̃2Z2), (F4)

with tanh f1 = e−2J4 , tanh f2 = e−2J2 .
Now when we consider the entire circuit, the fact that op-

erators of the form eJZ⊗Z in (F2) commute means that we can
redraw the circuit as in Fig. 3. The horizontal bars represent a
layer of commuting gates applied at the same time. The boxes
are the “W ” gates in Eq. (F2). In the discussion around Fig. 3
these single-site gates written as e�g.σ . This is always possible,

e.g.,

e�g1 �σ = exp(h̃4Z ) exp( f1X ) exp(h̃1Z ) (F5)

(here we are mixing two notations for Pauli operators σ x = X
etc.). This is a standard decomposition of an SL(2,C) matrix.
The probability distribution for g is nontrivial and is inherited
from the Gaussian distributions of the original variables.

The resulting circuit acts on a chain of spin-1/2 degrees
of freedom �σr (r ∈ Z). Neglecting boundary conditions, it is
a product of single-time-step time-evolution operators of the
schematic form

K (t ) = exp

(∑
r

�g(r, t )�σr

)

× exp

(∑
r

J (r, t )σ z
r σ z

r+1

)
. (F6)

It would be possible to generalize this rewriting to large Nf ,
and it would also be possible to take a continuous-time limit
by appropriate scalings of the couplings.
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