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Abstract

There is a plethora of 1-dimensional advected systems with an absorbing boundary: the Toom
model of anchored interfaces, the directed exclusion process where in addition to diffusion par-
ticles and holes can jump over their right neighbor, simple diffusion with advection, and Oslo
sandpiles. All these models share a roughness exponent of ζ = 1/4, while the dynamic exponent
z varies, depending on the observable. We show that for the first three models z = 1, z = 2, and
z = 1/2 are realized, depending on the observable. The Oslo model is apart with a conjectured
dynamic exponent of z = 10/7. Since the height in the latter is the gradient of the position of a
disordered elastic string, this shows that ζ = 5/4 for a driven elastic string at depinning.

1 Introduction
Interfaces subject to quenched disorder describe a variety of physical phenomena [1, 2], such as
domain walls in magnets [3, 4, 5], contact-line depinning [6], fracture [7, 8], or earthquakes [9]. Two
universality classes have to be distinguished: equilibrium and depinning. Though many numerical
studies exist [10, 11, 12], and a field theory was developed [13, 14, 2], there are few exact results.

A notable exception in equilibrium is the roughness exponent ζd=1
RB = 2/3 for a 1+1 dimensional

directed polymer in random-bond (RB) disorder, itself related to the KPZ universality class [15, 1]
with roughness 1/2 and dynamic exponent z = 1/ζd=1

RB = 3/2 [16]. For random-field (RF) disorder
of a d-dimensional interface in d + 1 dimensions in equilibrium, scaling arguments correctly predict
ζdRF = (4 − d)/3, which can experimentally be seen even in dimension d = 0 [17], where it reduces
to the Sinai model [18].

At depinning, there is the single random-field universality class, and no analytic result is known,
apart from d = 0 for which ζd=0

dep = 2− [19]. Based on numerical simulations, it was recently
conjectured [12] that a driven 1-dimensional string has a roughness exponent of ζd=1

dep = 5/4. Here we
aim at demonstrating this value. A key observation is that if the roughness of the string at depinning
is ζd=1

dep = 5/4, the Oslo model [20, 21], of which the height can be viewed as the gradient of the
position of a driven string pulled at one end, has a roughness of ζd=1

Oslo = 1/4.
There are several 1-dimensional systems with a scaling exponent of 1/4, but this is generally in the

temporal domain. E.g. a marked monomer on a polymer grows with time as 〈[h(0, t)− h(0, t′)]2〉 ∼
|t−t′|2H , with H = 1/4. This is obtained from standard scaling arguments as H = ζ/z, with ζ = 1/2
and z = 2. If these systems are advected, i.e. z = 1, the roughness exponent becomes ζ = Hz → 1/4
[22, 23, 24, 25, 26].
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Here we consider a class of models which allow for a hydrodynamic description equivalent to
diffusion of a scalar field h(x, t) combined with advection away from an absorbing boundary at x = 0:

∂th(x, t) = D∇2h(x, t)− µ∇h(x, t) + σξ(x, t),

h(0, t) = 0, 〈ξ(x, t)ξ(x′, t′)〉 = δ(x− x′)δ(t− t′).
(aaEW)

We call it the anchored advected Edwards-Wilkinson equation (aaEW). While in the bulk the sta-
tionary state h(x,∞) can be obtained from a Brownian motion in the comoving frame, close to the
boundary we establish in section 3.5 that 〈h(x,∞)2〉 ∼

√
x, thus ζ = 1/4.

This system possesses three distinct dynamical scaling behaviours, characterized by a dynamical
exponent z = 1 due to the advection, z = 2 for bulk properties in the comoving frame, and z = 1/2
for the decay of the equal-point correlation function (in the steady state),

〈h(x, t)h(x, 0)〉 =
√

x

2π
f(t/x1/2). (1)

The function f is obtained analytically in section 3.7.
The model (aaEW) is the proper thermodynamic description for a variety of systems. We give two

examples – the directed exclusion process (section 2.1) and the Toom interface model (section 2.2).
For the Oslo model (section 5) a similar mapping can be constructed, with a crucial difference: The
local time which sets the clock for an update is advanced by the toppling itself, leading to a different
dynamical exponent, conjectured to be z = 10/7 [12], thus larger than the corresponding exponent
z = 1 in aaEW, but smaller than the one for diffusion (z = 2). Still, the roughness exponent equals
ζ = 1/4, independent of whether one considers bulk or boundary driving. The Oslo model (section
5) achieves this by propagating out from the seed in both directions; the seed position effectively acts
as an absorbing boundary.

In the derivation of a hydrodynamic description as in Eq. (aaEW), additional terms may appear,

∂th(x, t) = D∇2h(x, t)− µ∇h(x, t) +
∑
n≥2

λn [∇h(x, t)]2 + σξ(x, t),

h(t, 0) = 0, 〈ξ(x, t)ξ(x′, t′)〉 = δ(x− x′)δ(t− t′).

(2)

The perturbation with λ2 is the most relevant one, leading to the anchored advected Kardar-Parisi-
Zhang universality class (aaKPZ) discussed in section 4. If this term is forbidden by symmetry, the
next relevant one is λ3. It is marginally relevant, and believed to modify the effective parameters in
the symmetric case [25], but it cannot change the stationary measure in the bulk (section 4.2).

This paper is organized as follows: In section 2 we introduce models in the aaEW and aaKPZ
universality classes, first the directed exclusion process (section 2.1), then Toom’s interface model
(section 2.2); their hydrodynamic description is obtained in section 2.3. In section 3 we derive analytic
results for the aaEW universality class, followed by results for the aaKPZ class in section 4. The Oslo
model is treated in section 5.

2 Models in the aaEW and aaKPZ universality classes

2.1 The Directed Exclusion Process (DEP)
In this model, each site x = 1, 2, . . . is either empty or occupied. Particles jump with rate 1 to an
empty neighbor as in the simple exclusion process, but an additional directed transition is introduced,
which allows particles to jump over a particle to its right with rate 1, and holes over a hole to the right
with rate r. The transitions are

1. 10 → 01 with rate 1,
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2. 01 → 10 with rate 1,

3. 110 → 011 with rate 1,

4. 001 → 100 with rate r.

A rate r = 1 preserves the particle-hole symmetry, while breaking the directional (left-right) sym-
metry. We refer to this model as the symmetric DEP (sDEP). The case r 6= 1 is referred to as the
asymmetric DEP (aDEP), which breaks both directional and particle-hole symmetry.

When using periodic boundary conditions, the product measure is stationary. This can be derived
from the (non-detailed) balance equation. Then the total particle current j(ρ) is given by

j(ρ) = 2
[
ρ2(1− ρ)− r(1− ρ)2ρ

]
= 2ρ(1− ρ) [ρ− r(1− ρ)] . (3)

Therefore, ρc = r
1+r

is the critical density, where the overall current vanishes.
In contrast, we consider a large system with closed boundaries, where no particle current is al-

lowed. This leads to self-organized criticality, where particle (or hole) excess will be pushed away to
the right. Taking L → ∞ results in a stationary density ρ = ρc =

r
1+r

in the domain of observation.

2.2 Toom’s interface model
Toom’s model is the subject of many theoretical and numerical studies [27, 22, 28, 29, 30]. As in the
DEP, each site is either empty or occupied, but while in the DEP the jump range is either 1 or 2, in
Toom’s model it is unbounded. More precisely, one chooses a spin i, and flips it with the next spin to
its right which has the opposite sign. The rates, for any k ∈ N, are

(1)k 1 . . . 1︸ ︷︷ ︸
k

0 → 0 1 . . . 1︸ ︷︷ ︸
k

with rate 1,

(2)k 0 . . . 0︸ ︷︷ ︸
k

1 → 1 0 . . . 0︸ ︷︷ ︸
k

with rate r.

When r = 1, as in the DEP, the particle-hole symmetry is preserved, and we refer to the model as the
symmetric Toom model (sToom). When r 6= 1 this symmetry is broken, and we refer to the model as
the asymmetric Toom model (aToom).

In Toom’s model with periodic boundary conditions each stationary state is non-interacting, and
the total particle current is

j(ρ) = ρ(1−ρ)+2ρ2(1−ρ)+3ρ3(1−ρ)+· · ·−r
[
(1− ρ)ρ+ 2(1− ρ)2ρ+ . . .

]
=

ρ

1− ρ
− r(1− ρ)

ρ
.

(4)
This current vanishes at the critical density ρc =

√
r

1+
√
r
. As thoroughly discussed in [22], the system

with closed boundaries and for L → ∞ reaches a stationary state with this density at its left end.

2.3 Continuum theory
As suggested in [22, 29], these models can be described using a continuum theory. We define the
height function h(x, t) as the number of particles between the left boundary (first spin at site 1) and x,
minus its expectation. In the continuum limit we expect it to solve a stochastic differential equation
of the type

∂th(x, t) = c+D∇2h(x, t)− µ∇h(x, t) + λ2

[
∇h(x, t)

]2
+ λ3

[
∇h(x, t)

]3
+ · · ·+ σξ(x, t). (5)

Discarding higher-order terms, we are left with two possible limits: for sDEP and sToom, the particle-
hole symmetry forces the equation to stay invariant under the transformation h 7→ −h, hence the first
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and fourth terms are not allowed (c = λ2 = 0), and we are left with the anchored advected Edwards-
Wilkinson equation

∂th(x, t) = D∇2h(x, t)− µ∇h(x, t) + σξ(x, t),

h(t, 0) = 0, 〈ξ(x, t)ξ(x′, t′)〉 = δ(x− x′)δ(t− t′).
(aaEW)

In aDEP and aToom the constant and quadratic terms are allowed, leading to the anchored advected
KPZ equation

∂th(x, t) = D∇2h(x, t)− µ∇h(x, t) + λ2

[
∇h(x, t)

]2
+ c+ σξ(x, t),

h(t, 0) = 0, 〈ξ(x, t)ξ(x′, t′)〉 = δ(x− x′)δ(t− t′).
(aaKPZ)

Since 〈h(x, t)〉 = 0 by construction, the first two terms on the r.h.s. vanish on average, and hence

c = −λ2〈[∇h]2〉. (6)

An additional term with λ3 6= 0 may lead to logarithmic corrections [31].
A direct derivation of this limit for Toom’s model appears in [22, 29]. We describe here the

derivation for the DEP.

2.4 Continuum limit of the DEP
Let us consider the DEP at the critical density ρc =

r
1+r

. Define η(x, t) to be 1 if there is a particle at
x at time t and 0 otherwise. Then the height function h is defined as h(x, t) :=

∑x
y=1[η(y, t)− ρ].

During a time period dt, the value of h at x changes when particles jump from the left of x to its
right or vice versa:

1. h(x, t+ dt) = h(x, t)− 1 with probability p1 = η(x, t)[1− η(t, x+ 1)]dt,

2. h(x, t+ dt) = h(x, t) + 1 w.p. p2 = [1− η(x, t)]η(t, x+ 1)dt,

3. h(x, t+ dt) = h(x, t)− 1 w.p. p3 = η(x, t)η(x+ 1, t)[1− η(x+ 2, t)]dt,

4. h(x, t+ dt) = h(x, t)− 1 w.p. p4 = η(x− 1, t)η(x, t)[1− η(x+ 1, t)]dt,

5. h(x, t+ dt) = h(x, t) + 1 w.p. p5 = r[1− η(x, t)][1− η(x+ 1, t)]η(x+ 2, t)dt,

6. h(x, t+ dt) = h(x, t) + 1 w.p. p6 = r[1− η(x− 1, t)][1− η(x, t)]η(x+ 1, t)dt.

First, we calculate

〈h(x, t+ dt)− h(x, t)〉 = (−p1 + p2 − p3 − p4 + p5 + p6)dt.

We seperate η(x, t) into its average ρ plus fluctuations, η(x, t) = ρ+∇h(x, t). This yields

〈h(x, t+ dt)− h(x, t)〉 =
[
D∇2h(x, t)− µ∇h(x, t) + λ2

(
∇h(x, t)

)2
+ c
]
dt, (7)

D = 1 + 3r − 6rρ+ 3rρ2 + 3ρ2, (8)
µ = −6rρ2 + 8rρ− 2r − 6ρ2 + 4ρ (9)
λ2 = 6rρ− 4r + 6ρ− 2. (10)

The noise term is obtained from

σ2dt =

〈
1

k

[
k∑

x=1

h(x, t+ dt)− h(x, t)

]2〉
. (11)
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The reason we take a spatial average is to account for correlations: since each of the transitions (1)
and (2) contribute 1 to the sum and transition (3) which is equivalent to (4), and transition (5) which
is equivalent to (6), contribute 2, we obtain〈

1

k

(
k∑

x=1

h(x, t+ dt)− h(x, t)

)2〉
= p1 + p2 + 4p3 + 4p5. (12)

Note that p4, p6 are spatial shifts of p3, p5 hence we must count them only once. This yields

σ2 = 2ρ(1− ρ)(1 + 2r + 2ρ− 2rρ). (13)

Combining these two equations, we obtain for ρ = ρc =
r

1+r

D =
4r + 1

r + 1
, µ =

2r

r + 1
, λ2 = 2(r − 1), σ2 =

2r(5r + 1)

(r + 1)3
. (14)

This is model (aaEW) when r = 1 and (aaKPZ) when r 6= 1. For the symmetric case this gives

D =
5

2
, µ = 1, λ2 = 0, σ2 =

3

2
. (15)

3 Particle-hole symmetric case – the aaEW universality class

3.1 Periodic BC versus anchored interface
As discussed for Toom’s model and the DEP, models in the advected Edwards-Wilkinson universality
class have a stationary measure which depends on the boundary. A similar behaviour is observed
in the continuum limit. If h is a solution of the diffusion equation (aaEW) with periodic boundary
conditions, then h̃(x, t) = h(x− µt, t) solves the non-advected Edwards-Wilkinson equation,

∂th̃(x, t) = ∂th(x− µt, t)− µ∇h(x− µt, t) = D∇2h(x− µt, t) + σξ(x− µt, t)

=D∇2h̃(x, t) + σξ(x, t), 〈ξ(x, t)ξ(x′, t′)〉 = δ(x− x′)δ(t− t′). (16)

(We used that ξ(x, t) and ξ(x−µt, t) have the same correlations.) In particular, the stationary state for
a periodic system of size L is a Brownian motion with periodic boundary conditions (i.e., a Brownian
bridge). For L → ∞, this change of variables is valid on the entire line x ∈ R. However, if we
consider the half line x ∈ [0,∞) with Dirichlet boundary condition h(0) = 0 as in equation (aaEW),
we cannot define h̃ as above, and the stationary state is not a Brownian. This choice of boundary,
corresponding to an anchored interface, is the subject of this article.

3.2 Bulk behaviour
When considering portions of the interface far away from the origin, the effect of the boundary be-
comes negligible, and in particular the stationary state on an interval [x, x+∆x] looks like a Brownian
motion if ∆x � x. This is shown rigorously for Toom’s model in [32, 30], and we expect a similar
behaviour in all models of this universality class.

3.3 Edge behaviour
As mentioned above, unlike the bulk behaviour, the behaviour of the model near the edge is drastically
different from the standard Edwards-Wilkinson universality class [22, 29, 26]. The combination of
the Dirichlet boundary and the advection term transfers temporal correlations into spacial ones. In the
following, we derive analytic results for the edge behaviour in the anchored case.
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3.4 Basic formulas
We solve the advected diffusion equation with Dirichlet boundary conditions, see also [26]1. By
simple rescaling we write equation (aaEW) in the form:

∂th(x, t) = D∇2h(x, t)− µ∇h(x, t) + ξ(x, t), h(x = 0, t) = 0.

〈ξ(x, t)ξ(x′, t′)〉 = δ(x− x′)δ(t− t′).
(17)

Eq. (17) for x > 0 is solved by

h(x, t) =

∫
y>0

∫
t′<t

Pµ(x, t|y, t′)ξ(y, t′). (18)

Here

P0(x, t) =
e−

x2

4Dt

√
4Dπt

,

P µ
0 (x, t) = P0(x, t) e

µx
2D

−µ2t
4D , (19)

P µ(x, t|y, t′) =
[
P0(|x− y|, t− t′)− P0(x+ y, t− t′)

]
e

µ(x−y)
2D

−µ2(t−t′)
4D .

3.5 Analytic result for the variance of the height
The roughness exponent ζ is given by the behaviour of 〈h(x, t)2〉 in the steady state,

〈
h(x, t)2

〉
=

∫
y1>0

∫
t1<t

P µ(x, t|y1, t1)
∫
y2>0

∫
t2<t

P µ(x, t|y2, t2) 〈ξ(y1, t1)ξ(y2, t2)〉

=

∫
y>0

∫
t′<t

P µ(x, t|y, t′)2. (20)

This is independent of t, and we will drop t from now on. To proceed, we use the Fourier-transform
of the propagator (19),

P µ(x, t|y, 0) = e−
µ2t
4D

+
µ(x−y)

2D

√
4Dπt

[
e−

(x−y)2

4Dt − e−
(x+y)2

4Dt

]
=

∫
dk

2π

[
eik(x−y) − eik(x+y)

]
e−k2Dt−µ2t

4D
+ µ

2D
(x−y). (21)

From now on, we set µ = D = 1. We can recover the full µ, D and σ-dependence by remarking that

〈
h(x)2

〉
µ
=

σ2

µ

〈
h
(µx
D

,
µ2t

D

)2〉
µ=D=σ=1

. (22)

Then ∫
y>0

∫
t>0

P µ=1(x, t|y, 0)2 =
∫
k,p

−16 kpex[1+i(k+p)]

[2(k2 + p2) + 1][(k − p)2 + 1][(k + p)2 + 1]
. (23)

Integrating Eq. (23) over k yields

〈
h(x)2

〉
µ=1

=

∫ ∞

−∞

dp

2πi

16pe−
√

p2+ 1
2
x+ipx+x

(4p2 + 1)2
. (24)

1In [26] µ has opposite sign, which is equivalent to studying the equation on the negative half line (−∞, 0].
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Eq. (24) can be simplified, using for the denominator∫ ∞

0

dt t e−at =
1

a2
, (25)

and for e−
√

p2+ 1
2
x ∫

s>0

e−as− 1
4s

2
√
πs3/2

= e−
√
a. (26)

Then the integral over p can be done, leading to

〈
h(x)2

〉
µ=1

=

∫
s>0

∫
t>0

2tx e
− x2

4sx2+16t
− sx2

2
− 1

4s
−t+x

πs3/2(sx2 + 4t)3/2
. (27)

Setting s → 4st/x2, and integrating over t yields

〈
h(x)2

〉
µ=1

=

∫
s>0

exx2K0

(
(2s+1)x

2
√
s
√
s+1

)
4πs3/2(s+ 1)3/2

. (28)

K0 is the Bessel K0-function. This can further be simplified, by first setting y =
√

s/(1 + s), and
second 2u = y + y−1. The final result is〈

h(x)2
〉
µ=1

=
x2ex

π

∫ ∞

1

K0(xu) du =
xex

π

∫ ∞

x

K0(u) du. (29)

The integral is known analytically,〈
h(x)2

〉
µ=1

=
x ex

2

[
1− x

(
LLL−1(x)K0(x) +LLL0(x)K1(x)

)]
. (30)

The function LLLn(x) is the modified Struve-function. For µ 6= 1 this reads according to Eq. (22)〈
h(x)2

〉
=

x eµx

π

∫ ∞

µx

K0(u) du. (31)

One can approximate the Bessel function for large argument as

K0(x) = e−x

[√
π

2x
+O(x− 3

2 )

]
. (32)

Then the integration can be done analytically,〈
h(x)2

〉
'

eµxx erfc
(√

µx
)

√
2

=

√
x√

2πµ
+O(x− 1

2 ). (33)

This gives a roughness exponent

ζ =
1

4
. (34)

3.6 Approximate calculation for large x

From Figure 1 we see that, for large x, we can approximate Eq. (18) as

h(x, t = 0) =

∫ ∞

0

dy

∫ 0

−∞
dt′P µ(x, t|y, t′)ξ(y, t′)

≈
∫ ∞

−∞
dy

∫ 0

− x
µ

dt′ P µ
0 (x− y,−t′)ξ(y, t′)

=

∫ ∞

−∞
dy

∫ x
µ

0

dt′ P µ
0 (x− y,−t′)ξ(y, t′). (35)
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Figure 1: Sketch of the domain contributing to the integral (35). Support in space at given time t′

is restricted to the diffusion parabola as indicated. This implies that for 0 < t′ < t the Dirichlet
propagator can be approximated by the free propagator, and the space integral extended to ∞. By the
same argument, times t′ > t do not contribute.

Then 〈
h(x)2

〉
≈
∫ ∞

−∞
dy

∫ x
µ

0

dt′ P µ
0 (x− y, t′)2

=
1√
8π

∫ x
µ

0

dt′√
t′
=

√
x

2πµ
. (36)

This reproduces the result of Eq. (33).

3.7 Decay of the auto-correlation function
We wish to calculate (with µ = D = 1)

〈h(x, t)h(x, 0)〉 =
∫
y>0

∫
t′<0

Pµ(x, 0|y, t′)Pµ(x, t|y, t′). (37)

With the help of Eq. (35), this can be approximated as

〈h(x, t)h(x, 0)〉 ≈
∫
y

∫
0≤t′≤x

P µ
0 (y, t

′)P µ
0 (y + t, t+ t′). (38)

Therefore

〈h(x, t)h(x, 0)〉 '
∫ ∞

−∞

dk

2π

∫ ∞

−∞

dp

2π

∫
y

∫
0≤t′≤x

eik(x−y+t′)−k2t′eip(x−y+t+t′)−p2(t+t′)

=

∫
0≤t′≤x

∫ ∞

−∞

dk

2π
e−k2(t+2t′)−ikt =

∫
0≤t′≤x

e
− t2

4(t+2t′)

2
√
π
√
t+ 2t′

=
1

4

√
t

π

∫ 2x
t

0

dy
e−

t
4(1+y)

√
1 + y

=
t

8
√
π

[
Γ
(
− 1

2
,

t2

4(t+ 2x)

)
− Γ

(
− 1

2
,
t

4

)]
. (39)
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The Γ-function decays as a power-law corrected Gaussian for large second argument. As we are
interested in both large x and large t, the second term vanishes; the first one implies that the proper
scaling variable is t/

√
x, reducing the denominator of the first term from t+ 2x → 2x. As a result,

〈h(x, t)h(x, 0)〉 '
√

x

2π
f

(
t√
x

)
, f(0) = 1, f(y)

y→∞
−−→ 0,

f(y) =
y

4
√
2
Γ
(
− 1

2
,
y2

8

)
.

(40)

We tested this against a numerical integration of the exact expression. This worked, but only for large
x and t; for small times our approximation converges from the wrong side. f(y) has series expansions
for small and large y

f(y) = 1− 1

2

√
π

2
y +

y2

8
− y4

384
+

y6

15360
+ ...

f(y) = e−
y2

8

[
4

y2
− 48

y4
+

960

y6
+ ...

]
.

(41)

Putting back the dependence on µ, D and σ yields with Eq. (22)

〈h(x, t)h(x, 0)〉 ' σ2

√
x

2πµD
f

(
µ2t√
Dxµ

)
. (42)

3.8 Dynamic exponents z = 2, z = 1 and z = 1/2

Our calculations above teach us that

z =


2 for bulk observables in the comoving (advected) frame
1 for bulk observables in the fixed frame
1
2

for 〈h(x, t)h(x, 0)〉
(43)

In particular, we stress that at a time scale t ∼ L we reach stationarity on the interval [0, L] (see also
[32, 30]).

3.9 Numerical verification
In the symmetric case, we expect the (centered) height function h in both Toom’s model and the DEP
to converge to the solution of the aaEW equation (aaEW) (up to possible logarithmic corrections). In
order to test this, we compare the correlation 〈h(x, t)h(x, 0)〉 to Eq. (42).

In Fig. 2 we show this comparison for Toom’s model. It is worth noting, as already mentioned in
[22], that there are no finite-size effects in this simulation. We see that the analytic prediction (42)
is well verified. (We did not check the dependence on parameters µ, D, and σ). For more thorough
numerical studies of this model we refer the reader to [22, 29, 33].)

In Fig. 3 we show the same plot for the symmetric DEP. There are noticeable finite-size effects,
but for large systems the rescaled correlator 〈h(x, t)h(0, 0〉x−1/2 plotted against t/x2 seemingly con-
verges. Remarkably, we obtain not only the correct exponent ζ = 1

4
, but also the correct coefficient:

after rescaling Eq. (17) to account for the coefficients D and σ in Eq. (aaEW), and plugging in D,µ
and σ found in Section 2.4, we obtain

〈h(x)2〉 ≈ σ2

√
2πµD

√
x =

√
9

20π

√
x ≈ 0.378

√
x.

9



Figure 2: Simulation of the height correlations in the symmetric Toom model of size L = 210, after
N = 5.5 · 107 iterations. Top left: Height-correlation function for x = 2 (small, red), x = 4, x = 8,
... to x = 210 (largest, violet). Trop right: convergence (same color code) of the scaling function f(t)
against the function of Eq. (40) (black dashed), with two arbitrary scales. Bottom left: the ratio of
measured f(t) to analytic prediction. Bottom right: f(t) on a log-scale.

This relation, including the coefficient of 0.378 is verified numerically, as can be seen on Fig. 3. On
the other hand, the rescaling factor for the argument of f is off by a factor of about 1.66,

〈h(x, t)h(0, 0)〉x−1/2 ≈
√

9

20π
f

(
1.66

√
2

5

t√
x

)
. (44)

This factor, which seemingly affects time scales only, may be due to the presence of sub-sub-leading
corrections ∼ (∇h)3 in the equation of motion. The presence of this type of corrections has been dis-
cussed in Refs. [31, 33]. As a marginal perturbation (∇h)3 gives logarithmic corrections, which may
be of the form lnL or ln t. Our simulation suggests that the combination σ2

√
µD

does not renormalize,
while each coefficient by itself may renormalize. In particular the combination µ3/D renormalizes
by a factor of 2.8 at L = 213. We show in section 4.2 that σ2/D does not renormalize in the bulk. In
summary, static observables seem not to renormalize, while temporal correlations do.

The code used to simulate the DEP is available as a part of the arXiv version of this paper.

3.10 Discrete argument
The exponent z = 1

2
in the aaEW universality class can also be derived directly in the discrete model,

without passing to the continuum limit.
Consider the height function h(L) of the sDEP at fixed position L. This function only changes

when a particle or a hole at L or L + 1 jumps to the right of L. Since the density is approximately
1/2, at any such jump h(L) increases by 1 with probability close to 1/2 and decreases by 1 with
probability close to 1/2. However, due to density fluctuations, this probability is not exactly 1/2.
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Figure 3: Simulation of sDEP for L = 213, after N = 5 · 1012 iterations. Top left: Height-correlation
function for x = 2 (small, red), x = 4, x = 8, ... to x = 213 (largest, violet). Trop right: convergence
(same color code) of the scaling function f(t) against the function of Eq. (40) (black dashed), with
two fitted scales, and dropping the first data point. The amplitude is as predicted in Eq. (44). Bottom
left: the ratio of measured f(t) to analytic prediction. Bottom right: f(t) on a log-scale.

When the density is slightly above 1/2 there are more particles, and h is more likely to decrease.
Conversely, when the density fluctuates below 1/2, it is more likely to increase. The exact correction
is complicated, depending on non-trivial correlations, but to first order we may assume that it induces
a drift −αh(L) with α > 0, possibly L-dependent. We conclude that h(L) behaves as a random walk
with a drift term −αh(L), equivalent to diffusion in a confining potential α

2
h(L)2. For this process,

we know that h(L) fluctuates on a scale α−1/2 and that its relaxation time is of order 1/α. Finally,
since ζ = 1

4
, the fluctuations of h are of order L1/4. Comparing this scaling with α−1/2 suggests that

α scale as L−1/2, and hence z = 1
2
.

4 Asymmetric case – the aaKPZ universality class

4.1 Introduction
The aaKPZ universality class can be analysed in a similar manner. As in the symmetric case, the
stationary state in the periodic or infinite system is that of Brownian motion, and the bulk behaviour
is determined by the KPZ equation in the comoving frame. The edge behaviour in the aaKPZ univer-
sality class can then be studied using methods close to those described above [22, 23, 24, 25], yielding
a roughness exponent ζ = 1

3
, and dynamical exponents z = 3

2
for bulk observables in the comoving

frame, z = 1 for bulk observables in the fixed frame, and z = 2
3

for 〈h(x, t)h(x, 0)〉.
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4.2 Protection of the stationary measure
Consider the equation of motion (17), with a subleading KPZ-term, and a subsubleading term ∼
(∇h)3, 2

η∂th(x, t) = D∇2h(x, t)− µ∇h(x, t) + λ2[∇h(x, t)]2 + λ3[∇h(x, t)]3 + ...+ ξ(x, t). (45)

In the absence of boundaries, the measure Pt[h] satisfies the Fokker-Planck equation

η∂tPt[h] = σ2

∫
x

δ2

δh(x)2
Pt[h]−

∫
x

δ

δh(x)

{(
D∇2h(x)− µ∇h(x, t) +

∑
n≥2

λn [∇h(x)]n
)
Pt[h]

}
.

(46)
Similar to what happens for KPZ, (see e.g. [2], section 7.12), for µ = λi = 0, a steady-state solution
∂tPss[h] = 0 can be found by asking that

σ2 δ

δh(x)
Pss[h] = D∇2h(x)Pss[h]. (47)

This is solved by

Pss[h] = N exp

(
− σ2

2D

∫
x

[∇h(x)]2
)
. (48)

What is the effect of the additional terms? Inserting the steady state into Eq. (46) yields

η∂tPss[h] = −
∫
x

δ

δh(x)

{(
−µ∇h(x, t) +

∑
n≥2

λn [∇h(x)]n
)
Pss[h]

}

=
σ2

D

∫
x

∇2h(x)

(
−µ∇h(x, t) +

∑
n≥2

λn [∇h(x)]n
)
Pss[h]

=
σ2

D

∫
x

∇

(
−µ

2
[∇h(x, t)]2 +

∑
n≥2

λn

n+ 1
[∇h(x)]n

)
Pss[h] = 0. (49)

Note that by going from the first to the second line, we have dropped the derivative of the terms inside
the big round brackets, since they are a total derivative. The last line vanishes, again due to the fact
that this is a total derivative.

This calculation shows that as long as we consider a system without boundaries, the steady state
is independent of µ and λn. When we consider the system from an RG perspective, this means that
σ2/D is not renormalized. There is nothing, however, to protect η/D. In the presence of a boundary,
we do not expect bulk properties to renormalize differently, thus the effective η, D, µ, and λi to be
unchanged if a boundary is introduced.

Let us mention, that from an RG perspective there may appear additional renormalizations on the
boundary, and since 〈h(x, t)h(x, 0)〉 depends on the distance x to the boundary, they could appear
there. Since the static 2-point function 〈h(x, t)2〉 shows no corrections, and temporal-derivative terms
are marginal in the bulk, we do not expect this to be the case. It would be interesting to render this
intuitive argument more rigorous.

5 Oslo model

5.1 Definition
The Oslo model describes the evolution of a sand pile, given by its height h (number of grains) at each
horizontal position (see Fig. 4). In a real sandpile, whether a grain at site i slides downhill depends

2Here we extend an argument initially given for the KPZ equation. While it may be well known in this more general
form, we could not find a reference in the literature. J. Krug mentions it in his Diplomarbeit of 1985 at Munich university.
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Figure 4: Left: a stable configuration of the Oslo model. The latter is a cellular automaton version of
the right half of the rice pile at the top. Middle bottom: the variable z defined in Eq. (50). Right: the
critical value of z for the stable configuration in the middle.

on the local slope z(i), the friction with its neighbors of contact, and its orientation. The Oslo model
is a simple 1-dimensional model for this phenomenon, which depends only on the local slope z(i),
and a random variable zc(i). It was introduced in [20, 21], and is defined as follows: Consider the
height function h(i) in the left of Fig. 4. To each height profile h(i) associate a stress field (slope)
z(i) defined by

z(i) := h(i)− h(i+ 1). (50)

In addition, at each position there is a threshold zc(i). A toppling is invoked if z(i) > zc(i), i > 1.
The toppling rules are

z(i) → z(i)− 2, z(i± 1) → z(i± 1) + 1. (51)

They can be interpreted as moving a grain from the top of the column at site i to the top of the column
at site i+ 1,

h(i) → h(i)− 1, h(i+ 1) → h(i+ 1) + 1. (52)

After such a move, the threshold zc(i) for site i is updated,

zc(i) → new random number. (53)

In its original version, the random number is 1 or 2 with probability 1/2. To obtain Fig. 4 we used a
random number drawn uniformly from the interval [0, 2]. This reduces the critical slope.

In this article we consider a sysmtem of size L with absorbing (Dirichlet) boundary conditions
on the left boundary (site 1) and free (Neumann) boundary conditions on the right boundary (site L).
That is, in the h variable, a toppling at 1 happens when z(1) > zc(1), and it moves a grain from site
1 to site 2. On the right boundary, a toppling at L happens when h(L) > zc(L), and it removes one
grain from h. We can formulate this in the language of the z variables: when a toppling at 1 occurs,
z(1) decreases by 2 and z(2) increases by 1 (i.e., the particle that should have gone to the left exits
the system). When a toppling at L occurs, z(L) decreases by 1 and z(L− 1) increases by 1 (i.e., the
particle that should have gone to the right stays at L).

For further reading on the Oslo model, we refer to Refs. [34, 35, 12, 36, 37, 38].
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5.2 Phenomenology of the Oslo model
Assume that we start with a system containing many grains. Thanks to the Dirichlet boundary con-
dition for h to the right, the system looses grains (h-particles) there until it reaches a critical slope.
This critical slope is equivalent to a critical density of z-particles, which leave the system at the left.3

We note here that sites with no z-particles or a single z-particle are always stable, sites with two z-
particles could be stable or unstable, and particles with three or more z-particles are always unstable.
This means that the critical slope must be between 1 and 2 (in fact, it equals approximately 1.8).

An important feature of the Oslo model is that it is Abelian (commutative). In our definition we
explained which topplings are invoked, but we did not mention the order in which they occur. It is not
difficult to see that the final configuration, after all topplings, does not depend on this order: z(i) is
given by the number of incoming particles (the topplings at i−1 and i+1) and the number of outgoing
particles (twice the topplings at i). Since a toppling at one site cannot render another site inactive, the
total number of topplings at each site does not depend on the order, hence the final configuration also
does not depend on the order.

Thanks to the Abelianity of the model, we are allowed to choose freely the order of topplings.
In order to compare the Oslo model with the models presented above, we choose the same type of
dynamics, making each site topple with rate 1 if z(i) > zc(i).

The Oslo model has been studied extensively, and impressively accurate simulations of its critical
exponents are known [12]. For the sake of this paper we wish to mention two of these exponents.
First, the roughness exponent is conjectured [12] to be ζ = 1

4
, that is,

〈
[h(i)− h(j)]2

〉
∼ |i− j|2ζ . In

the language of the z-particles, this is a hyperuniform state [39], i.e., the number of particles between
i and j fluctuates as |i− j|ζ � |i− j|1/2. The second relevant exponent is the dynamic exponent zOslo,
conjectured [12] to be zOslo =

10
7

.

5.3 Why is ζ = 1
4 in the Oslo model?

5.3.1 Local time and global time

The quenched noise of the Oslo model may be thought of as a local time shift: zc is only updated
after a toppling, while an annealed version would update zc at a fixed rate. We therefore define the
local time at a site x as the number of toppling events at x. This delays the topplings as compared to
the models discussed in sections 3, but when the topplings occurr, their dynamics is faster, so as to
“catch up”. As a result, we expect the dynamical critial exponent z to be smaller than 2, and indeed
zOslo ≈ 10

7
< 2.

5.3.2 Hydrodynamic behaviour during the lifetime of an avalanche

A key observation for the Oslo model is that, during an avalanche, the local time and the global time
propagate approximately at the same rate. Therefore, as long as we are interested in the evolution of
an avalanche at times which are much shorter than its survival time, we may replace the quenched
noise with an annealed one.

5.3.3 Comparing the Oslo model with aaEW

As discussed in the previous section, we consider time scales much shorter than the lifetime of an
avalanche. We can therefore assume that the system evolves according to a hydrodynamic limit of
the type in equation (5), with an anchored boundary (at the left). In this model, the analogue of the
particles in the DEP or the Toom model are the stress variables z.

3Note that since due to Eq. (50) z is the derivative of h. Thus Neumann boundary conditions for h are Dirichlet
boundary conditions for z, and vice versa.
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Figure 5: Top line: The Oslo model at driving rate r = 0, L = 256, x = 1, 2, 4, ..., 256 (from red over
yellow, green, cyan, blue to violet). The last point is at x = L, drawn in dashed. It behaves differently
from bulk points. The dashed gray line has power 2ζ/z with best-fit values as indicated; the dotted
line corresponds to the theoretical prediction 2ζ/z = 7/20 (ζ = 1/4, z = 10/7.) Bottom line: ibid
with driving rate r = 1/5, and L = 1024. See the discussion in section 5.4.

Unlike the DEP or Toom’s model, in the Oslo model not only the number of z-particles is con-
served but also their center of mass, i.e.,

∂t

∫ y

w

h(x, t) dx = topplings at w − topplings at y. (54)

Let us consider each of the terms in Eq. (5): The diffusion term D∇2h and the advection term µ∇h
integrate to ∫ y

w

dxD∇2h(x, t) =D[∇h(y, t)−∇h(w, t)], (55)∫ y

w

dxµ∇h(x, t) = µ[h(y, t)− h(w, t)], (56)

both bounded uniformly in the interval length y−w (i.e. they remain bounded even if y−w becomes
large). The quadratic and constant terms are given by∫ y

w

dx
[
λ2∇(h(x, t))2 + c

]
(57)

The zero-current condition (6) implies that this term vanishes on average. However its fluctuations
grow with y − w, so cannot be bounded uniformly. This means that λ2 = 0. The cubic term∫ y

w

dxλ3[∇h(x, t)]3 (58)
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is also a fluctuating term which cannot be bounded uniformly, unless λ3 = 0. In summary, the con-
servation of the center of mass forces ∂th(x, t) to be a total derivatives, which is a stronger constraint
than the particle-hole symmetry in Toom or the directed exclusion process4.

The argument above tells us that, for times shorter than LzOslo , the Oslo model has an aaEW
behaviour. Since zOslo > zaaEW = 1, we are allowed to consider the model up to times LzaaEW . By then
the surface reaches a roughness of ζaaEW = 1

4
, which remains the roughness of the Oslo surface.

5.4 Adiabatic versus finite advection in the Oslo model
In Fig. 5 we show the auto-correlation function in the Oslo model, as a function of “grain-time” t: the
protocol is to add one grain, and then to let the full system relax during n = 1/r iterations, or until
all sites are stable. As a result, the time t in this simulation is the number of added grains, and r the
driving rate. What we measure is the auto-correlation function in the steady state,〈

[h(x, t)− h(x, 0)]2
〉
≡
〈
[h(x, t+ t′)− h(x, t′)]

2
〉
. (59)

One observes on Fig. 5 that for adiabatic driving (r → 0)

(i) For each x, it reaches a plateau after some time τx. The larger x, the larger τx.

(ii) A scaling collapse can be achieved by the ansatz〈
[h(x, t)− h(x, 0)]2

〉
' x2ζfx (t/x

z) ⇐⇒ fx(t) =
〈
[h(x, txz)− h(x, 0)]2

〉
, (60)

where fx(t) → f(t) for x = 1, 2, 4, ..., L/2.

(iii) The best scaling collapse is achieved by ζ = 0.258 (close to the predicted ζ = 1/4), and
z = 1.24, definitely smaller than z = 10/7 = 1.42857.

(iv) The last point x = L behaves differently, and its scaling function fL(t) does not collapse
together with the others onto a master curve. While fx(t) ∼ t2ζ/z with a power given by
ζ = 0.258, and z = 1.24, the last point has a slope approaching 2ζ/z = 7/20.

Let us now turn to a finite driving rate r = 1/5, i.e. after adding one grain on the left, we try to topple
each site 5 times. Having a finite injection rate, t can both be interpreted as the number of injected
grains, or time (divided by 5). We now observe that

(i) Using the theoretically predicted values of ζ = 1/4 and z = 10/7 results in a decent scaling
collapse, which improves for larger x.

(ii) The slope of f(t) in a logarithmic scale does not seem to approach 2ζ/z, except for the last
point.

(iii) Things improve for larger system sizes.

(iv) Remarkably, while we studied smaller driving rates r = 1/20 and r = 1/10 (not shown) even
at the large driving rate of r = 1/5 the plots are almost unchanged as compared to r = 0,
indicating that we are still in a critical state.

(v) This critical state at large driving can be described by the anchored advected Edwards Wilkinson
equation (17).

This confirms our findings that the roughness ζ = 1/4 in the Oslo model has the same origin as in the
anchored Edwards-Wilkinson equation (aaEW).

4We already point out that this is related to the fact that h(x, t) can be thought of as the gradient of a field u(x, t), see
Eq. (62).
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5.5 Oslo and quenched Edwards-Wilkinson
Here we give the relation to depinning in the Edwards-Wilkinson model, of a string of size L [20, 21,
12, 2]. The latter has an equation of motion,

∂tu(i, t) = ∇2u(i, t) + F (i, u(i, t)), (61)

which we read discretized in time t and space u. The random forces F (i, u) are uncorrelated Gaussian
random variables with unit variance. To connect this to the Oslo sandpile, define

u(i) :=
L∑

j=i+1

h(i) + #{grains fallen off at the right end}. (62)

As a consequence, the discrete Laplacian

∇2u(i) = z(i), (63)

and the random force F (i, u) stems from the fact that if u(i) → u(i) + 1, F (i, u) → F (i, u + 1) is
a new random variable, which identifies with zc(i) in the Oslo model. The interpretation is that of a
string pulled at site i = 0 (its left end), with Neumann boundary conditions (no force) at the right end.
Its average profile is parabolic,

〈u(i)〉 ≈ 〈z〉
2
(L− i)2 +#{grains fallen off at the right}.

(64)

As the disorder is renewed after each displacement, it falls into the random-field universality class of
depinning [2]. Since ∇u ∼ h, a roughness exponent ζ = 1

4
for h is the same as a roughness exponent

ζqEWd=1 =
5

4
(65)

for u. This is what we wanted to show.

6 Conclusion
As we have shown, there is a large class of models which have a roughness exponent of ζ = 1/4. This
encompasses the Toom model, advected diffusion with an absorbing boundary, the symmetric directed
exclusion process, and the Oslo model. Observing that the height in the Oslo model corresponds to
the slope of the height in the quenched Edwards-Wilkinson model, we showed that the roughness
exponent of the latter is ζqEW = 5/4. This puts onto a firm basis the recent conjecture [12] that the
numerically observed exponent of ζqEWd=1 = 1.25 [11] is exactly ζqEWd=1 = 5/4.

While these models have the same roughness exponent, their dynamical exponent z can be quite
different, and depend on the observable. We identified z for the first three models, the anchored
advected universality class, where we observed a dynamical exponent of z = 2, z = 1 and even
z = 1/2, depending on the obversable. Our correspondence to the Oslo model cannot (yet) provide
its dynamic exponent z, conjectured to be z = 10/7, since the arguments use both a global and a local
time, which are distinct in this case. Given that z = 10/7 is again a simple fraction, we hope that an
exact argument may be found as well.
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