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Sorbonne Université, Université Paris Cité, 24 rue Lhomond, 75005 Paris, France.

We use an exact mapping of the Manna model, or equivalently conserved directed percolation, onto disordered
elastic manifolds at depinning to show that particle-density fluctuations in these two models are hyperuniform.
The structure factor of the particle density behaves for small q as S(q) ∼ |q|σ with σ = 4− d− 2ζ, where ζ
is the roughness exponent at depinning. In dimension d = 1, σ = 1/2, while for all dimensions 0.6 > σ ≥ 0.
Our results fit well known simulations in the literature, except in d = 1, where we perform our own simulations
to confirm our findings.

Hyperuniformity. Consider a particle system of size L,
where the total number Ntot of particles is conserved. We
ask how many particles NR are in a part of the system of size
R ≪ L. If the system is translationally invariant, then

⟨NR⟩ =
Ntot

LD
Rd. (1)

How does NR fluctuate? We expect that

var(NR) =
〈
N2

R

〉
− ⟨NR⟩2 ∼ Rκ. (2)

One can show [1] that (except for fine-tuned models [2])

d− 1 ≤ κ ≤ d. (3)

A Poisson process has κ = d, a regular lattice κ = d − 1.
When κ < d the system is said to be hyperuniform. This ter-
minology was introduced in [3] for κ = d−1, but is now used
for any κ < d [4]. Alternatively, one can consider the struc-
ture factor of the Fourier transform nq of the density n(x). Its
small-q behavior is

S(q) = ⟨nqn−q⟩ ∼ qσ, κ+ σ = d. (4)

We are interested in class-III hyperuniform systems [5], which
correspond to 0 < σ ≤ 1. Larger values of σ are possible
[5, 6], κ then freezes at its lower bound κ = d− 1.

The Manna sandpile and conserved directed percolation.
For sandpile models, hyperuniformity was first observed in
[7], and later in [4, 8–11]. It renders simulations better con-
vergent, allowing larger sizes for the Manna or Oslo models
than for the depinning of disordered elastic manifolds. Here
we evaluate σ analytically for the Manna model (MM) and
conserved directed percolation (CDP).

There was a long debate whether the Manna model, or the
corresponding CDP theory, are in the same universality class
as disordered elastic manifolds or whether they instead belong
to a different universality class, the directed-percolation (DP)
class. This question was finally settled by showing that the
Manna model is equivalent to the CDP equations [12], and
that an exact mapping exists between CDP and disordered
elastic manifolds [13]. Let us recall this mapping: CDP can
be written in terms of two fields, a density of particles n(x, t),

and an activity ρ(x, t),

∂tρ(x, t) = ∇2ρ(x, t) +
[
2n(x, t)−1

]
ρ(x, t)− 2ρ(x, t)2

+
√
2ρ(x, t) ξ(x, t), (5)

∂tn(x, t) = ∇2ρ(x, t). (6)

Here ξ(x, t) is a standard white noise

⟨ξ(x, t)ξ(x′, t′)⟩ = δd(x− x′)δ(t− t′). (7)

Consider now the Manna model [14]. If we denote the frac-
tion of i times occupied sites as ai, then (for each site x and
time t)

∑∞
i=0 ai = 1, the number of particles is

∑∞
i=1 i ai =

n, and the activity
∑∞

i=2(i − 1) ai = ρ. The last defini-
tion, introduced in [12], gives a higher toppling rate to triple
and higher occupied sites than the standard definition of the
Manna model. Since we are interested in densities close to
the transition, this does not matter [12]. The benefit of this
definition is the existence of the exact sum rule

n− ρ+ e = 1, (8)

where e := a0 is the fraction of empty sites.
Instead of writing coupled equations for n(x, t) and ρ(x, t),

with the help of the sum rule (8) we can write coupled equa-
tions for ρ(x, t) and e(x, t),

∂te(x, t) = [1−2e(x, t)]ρ(x, t) +
√
2ρ(x, t) ξ(x, t), (9)

∂tρ(x, t) = ∇2ρ(x, t) + ∂te(x, t). (10)

In this formulation, it is easy to show the equivalence to dis-
ordered elastic manifolds [13, 15]. To this aim define

ρ(x, t) = ∂tu(x, t) (the velocity of the interface), (11)
e(x, t) = F(x, t) (the force acting on it). (12)

The second equation (10) is the time derivative of the equation
of motion of an interface, subject to a random force F(x, t),

∂tu(x, t) = ∇2u(x, t) + F(x, t). (13)

Since ρ(x, t) is positive for each x, u(x, t) is monotonously
increasing. Instead of parameterizing F(x, t) by space x and
time t, it can be written as a function of space x and interface
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FIG. 1. The exponent σ of the structure factor S(q) ∼ |q|σ as a
function of dimension d for Manna model. Solid line from the ϵ-
expansion of [17], red dots (with error bars) from [18, 19]. Numerical
simulations in green are from [20] as cited in [8]. The Dark green
data point is from Fig. 2. In gray are the different ϵ-expansion results,
σ = ϵ/9 (dashed) [8], σ = 2ϵ/9 (dotted)[21] and σ = ϵ/3 (dot-
dashed) (leading term of Eq. (22)).

position u(x, t). Setting F(x, t) → F
(
x, u(x, t)

)
, the first

equation (9) becomes

∂tF(x, t) → ∂tF
(
x, u(x, t)

)
= ∂uF

(
x, u(u, t)

)
∂tu(x, t)

=
[
1− 2F

(
x, u(x, t)

)]
∂tu(x, t)

+
√
2∂tu(x, t)ξ(x, t). (14)

For each x, this equation is equivalent to an Ornstein-
Uhlenbeck [16] process F (x, u), defined by

∂uF (x, u) = 1− 2F (x, u) +
√
2 ξ(x, u), (15)

⟨ξ(x, u)ξ(x′, u′)⟩ = δd(x− x′)δ(u− u′). (16)

It is a Gaussian Markovian process with mean ⟨F (x, u)⟩ =
1/2, and variance in the steady state of〈[

F (x, u)− 1
2

] [
F (x′, u′)− 1

2

]〉
=

1

2
δd(x− x′)e−2|u−u′|.

(17)
Writing the equation of motion (13) as

∂tu(x, t) = ∇2u(x, t) + F
(
x, u(x, t)

)
, (18)

it is the equation of motion of an interface with position
u(x, t), subject to a disorder force F

(
x, u(x, t)

)
. The latter

is δ-correlated in the x-direction, and short-ranged correlated
in the u-direction. In other words, this is a disordered elastic
manifold subject to Random-Field (RF) disorder. As a conse-
quence, results for disordered elastic manifolds can immedi-
ately be used for CDP and the Manna model.

Hyperuniformity in the Manna model. After these re-
minders, let us calculate the particle-density correlation func-
tion. We first have to identify n(x, t) with the appropriate

random-manifold field. Using Eq. (6), and the identification
(11), we find ∂tn(x, t) = ∇2∂tu(x, t), or after integration
over time

n(x, t) = ∇2u(x, t) + n0. (19)

Here n0 is the conserved mean density of particles, i.e. the
conserved total number of particles divided by the volume.
(We used

∫
x
∇2u(x, t) = 0.) As a consequence, for equal

time t,

⟨n(x)n(y)⟩c ∼ |x− y|2ζ−4. (20)

In Fourier space this reads

Sq := ⟨nqn−q⟩ ∼ |q|σ, σ = 4− d− 2ζ. (21)

Denoting ϵ = 4 − d, σ has ϵ expansion, see [22, 23] (2-loop)
and [17] (3-loop)

σ = ϵ− 2ζ =
ϵ

3
− 2ζ2ϵ

2 − 2ζ3ϵ
3 +O(ϵ4) (22)

ζ2 = 0.0477709715468230578... (23)
ζ3 = −0.0683544(2). (24)

In dimension d = 1 we know that ζ = 5/4 [4, 19], s.t.

σ(d = 1) = 1/2. (25)

The exponent σ vanishes in dimensions d = 4 (ϵ = 0) and
d = 0: up to logarithmic corrections ζ = 2 there. Using
ζ(d = 2) = 0.753± 0.002 [18] and ζ(d = 3) = 0.355± 0.01
[18], we find for the remaining dimensions

σ(d = 2) = 0.494(4), σ(d = 3) = 0.29(2). (26)

Thus 0 ≤ σ < 1 in all dimensions, the signature given in
Eqs. (3)-(4) for a class-III hyperuniform system. This is sum-
marized in Fig. 1 (red dots with error bars). Also shown is the
prediction (21) using the 3loop-result of [17] (blue line), and
numerical simulations for the Manna model [20].

Numerical checks. There is some tension between [20]
and our exact result σ(d = 1) = 1/2. For this reason we
performed numerical simulations for systems of sizes up to
L = 104. The results of the latter compensated for the pre-
dicted behavior are shown on the left of Fig. 2. There are
strong finite-size corrections which make understandable the
relatively small value given in [20]. However, in the rele-
vant limit of small q, the data are consistent with σ = 0.5
(red dashed line), while the cyan (bright) lines for σ = 0.45
and σ = 0.55 are the confidence interval reported on Fig. 1.
We also show the results for a generalized Laplace-transform
Lβ◦C(t) :=

∑
q e

−|q|βtCq , with β = 1 the standard Laplace-
transform, introduced to reduce the statistical noise. β = 1
was used e.g. in [24], β = 2 is now popular under the
name “diffusion spreadability” [25]. Our data analysis shows
β = 1, 2 or 4 to be equivalent for all practical purposes. As
Fig. 2 for β = 2 shows, the noise is indeed reduced, but it is
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FIG. 2. Left: the compensated structure factor Sqq
−1/2 in a ln-ln plot for a periodic system of size L = 105, with 8 × 107 samples. The red

dashed line with slope 0 indicates the behavior Sq ∼ √
q, the cyan curves power laws with an exponent deviating by ±0.05, indicating our

interval of confidence.
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FIG. 3. Left: fit (red dashed) of S2
q (solid blue used for fit, green not

used) for L = 105 with S2
q ≃ 5.31·10−6q ln(16111/q) . Right: The

compensated correlation function C(x)x3/2 for even (blue squares)
and odd (red discs) distances x. In dashed weakly filtered data as
guide for the eye. One sees strong even/odd lattice effects, which
start to disappear at x ≈ 30.

more difficult to chose the proper domain to fit too. All these
fits indicate that σ = 0.5± 0.05.

The reader may wonder where this problem in such a large
system comes from, and whether there might be systematic
corrections. While there is no proper theoretical motivation,
on a phenomenological level the deviations from a pure power
law are well fitted with a logarithm, as Fig. 3 attests. To pro-
ceed, it is instructive to plot the density correlations as a func-
tion of distance. For short even distances, we find positive
correlations, due to events where one grain is moved to the
right, and one to the left. These positive correlations become
negative for x ≥ 8, but one has to wait to x ≈ 30 until even
and odd correlations become comparable. This indicates that
ℓ = 30 is the minimal coarse graining size, taking out one
and a half decades from the range to which one can fit S1,
certainly one reason for its slow convergence. One may also
wonder whether this is related to the saturation of the apparent
roughness exponent at depinning ζdepapp(d = 1) ≈ 1 [26, 27].

A hyperuniformity exponent of 1/2 is also observed in the

related Oslo model [4].
Relation to the literature. Our results contradict two works

from the literature: σ = ϵ/9 [8] and σ = 2ϵ/9 [21]. None
of these works use functional RG, which seems to be cru-
cial to account for the non-trivial structure present at 2-loop
and [22, 23] 3-loop order [17] at depinning. Ref. [21] does
this calculation in terms of active and passive particles. The
density of the latter is a linear combination of fields used
here, np = a1 ≈ n − 2ρ; since n − n0 = ∇2u and
ρ = ∂tu, the scaling dimensions of the two terms differs by
z − 2 = O(ϵ). As a result, np is not a proper scaling field
of the RG, a problem known in other contexts [28]. Since the
two fields are degenerate at ϵ = 0, their respective O(ϵ) cor-
rections are easily attributed to the O(ϵ) correction of their
linear combination nP. Another problem in [21] is the in-
troduction of an additional noise in Eqs. (4) and (5) which
does not vanish in the absorbed state ρ = 0. It would be pos-
sible to addd

√
ρ(x, t)∇η⃗(x, t), with

〈
ηi(x, t)ηj(x′, t′)

〉
=

δd(x − x′)δ(t − t′)δij , or ∇[
√
ρ(x, t)η⃗(x, t)], but compar-

ing ∇2ρ ∼ Lζ−z−2 to
√
ρ(x, t)∇η⃗(x, t) ∼ L

ζ−z
2 −1− d+z

2 we
conclude that the latter is irrelevant as long as d + ζ > 2,
which is satisfied for all d > 0.

Conclusions. In this letter, we have shown how hyperuni-
formity in the Manna model is related to depinning. This
equivalence yields precise theoretical predictions for the hy-
peruniformity exponent in all dimensions.

I thank Duyu Chen and Ran Ni for sharing their knowledge
on hyperuniform systems.
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