# Roughness and critical force for depinning at 3-loop order 

Mikhail N. Semeikin and Kay Jörg Wiese<br>CNRS-Laboratoire de Physique de l'Ecole Normale Supérieure, PSL, ENS, Sorbonne Université, Université Paris Cité, 24 rue Lhomond, 75005 Paris, France


#### Abstract

A $d$-dimensional elastic manifold at depinning is described by a renormalized field theory, based on the Functional Renormalization Group (FRG). Here we analyze this theory to 3-loop order, equivalent to third order in $\epsilon=4-d$, where $d$ is the internal dimension. The critical exponent reads $\zeta=\frac{\epsilon}{3}+0.04777 \epsilon^{2}-$ $0.068354 \epsilon^{3}+\mathcal{O}\left(\epsilon^{4}\right)$. Using that $\zeta(d=0)=2^{-}$, we estimate $\zeta(d=1)=1.266(20), \zeta(d=2)=0.752(1)$ and $\zeta(d=3)=0.357(1)$. For Gaussian disorder, the pinning force per site is estimated as $f_{\mathrm{c}}=\mathcal{B} m^{2} \rho_{m}+f_{\mathrm{c}}^{0}$, where $m^{2}$ is the strength of the confining potential, $\mathcal{B}$ a universal amplitude, $\rho_{m}$ the correlation length of the disorder, and $f_{\mathrm{c}}^{0}$ a non-universal lattice dependent term. For charge-density waves, we find a mapping to the standard $\phi^{4}$-theory with $O(n)$ symmetry in the limit of $n \rightarrow-2$. This gives $f_{\mathrm{c}}=\tilde{\mathcal{A}}(d) m^{2} \ln (m)+f_{\mathrm{c}}^{0}$, with $\tilde{\mathcal{A}}(d)=-\partial_{n}\left[\nu(d, n)^{-1}+\eta(d, n)\right]_{n=-2}$, reminiscent of log-CFTs.


## I. INTRODUCTION

Many disordered elastic systems undergo a depinning transition. Examples are magnetic domain walls [1-8], earthquakes [9-16], contact lines [17-24], vortex lattices [25-29], charge-density waves [14, 25, 30-32], and many more, see the recent review [33].

They all evolve via an overdamped Langevin equation for the position $u(x, t)$ of site $x$ at time $t$,

$$
\begin{equation*}
\eta \partial_{t} u(x, t)=\nabla^{2} u(x, t)+m^{2}[w-u(x, t)]+F(x, u(x, t)) . \tag{1}
\end{equation*}
$$

The second term on the r.h.s. stems from a confining potential of strength $m^{2}$, centered at $w$. Increasing $w$ adiabatically slowly drives the system. The last term $F(x, u)$ is a shortrange correlated random force, possibly the $u$-derivative of a random potential. It is assumed to be Gaussian with variance (connected part)

$$
\begin{equation*}
{\overline{F(x, u) F\left(x^{\prime}, u^{\prime}\right)}}^{\mathrm{c}}=\delta^{d}\left(x-x^{\prime}\right) \Delta_{0}(u-u) . \tag{2}
\end{equation*}
$$

The overbar denotes a disorder average.
The field theory of depinning is by now well established (see the review [33]). It relies on a functional renormalization group for the disorder correlator $\Delta(u)$, starting from the microscopic disorder $\Delta_{0}(u)$. This idea, already present in the seminal works of Wilson [34] and Wegner\&Houghton [35] was recognized as crucial by D. Fisher in collaboration with Narayan and Balents, [36-43], as well as Leschhorn, Nattermann, Stepanow and Tang [44, 45]. Later, Chauve, Le Doussal and Wiese [46-48] showed that both in equilibrium and at depinning a consistent field theory exists up to 2-loop order. This field theory allows us to deal with the many non-trivial observables arising for pinned manifolds, and especially to treat quantitatively avalanches [49-59], including their distributions of size, velocity and shape in good agreement with simulations [50, 51, 60] and experiments [6].

Systems at depinning are characterized by a jerky motion for its center of mass $u_{w}$,

$$
\begin{equation*}
u_{w}:=\frac{1}{L^{d}} \int \mathrm{~d}^{d} x u(x, t) \tag{3}
\end{equation*}
$$

Here $L$ is the size of the system, and the integral is evaluated once all motion has stopped. The index $w$ refers to the position of the confining potential, which is adiabatically slowly moved forward. The central ingredient of the field theory is the renormalized force correlator, defined by the connected average

$$
\begin{equation*}
\Delta\left(w-w^{\prime}\right):=m^{4} L^{d}{\overline{\left(w-u_{w}\right)\left(w^{\prime}-u_{w^{\prime}}\right.}}^{\mathrm{c}} . \tag{4}
\end{equation*}
$$

On one hand, it can be calculated in a loop expansion, equivalent to an expansion in $\epsilon=4-d$, where $d$ is the internal dimension of the manifold. On the other hand, the prescription (4) can be tested in simulations $[61,62]$ and experiments [8, 63-65]. For equilibrium, the loop expansion was extended to 3-loop order in Refs. [66, 67]. Here we report 3-loop results for the $\beta$-function and the critical force at depinning. Our first central result is the roughness exponent $\zeta$

$$
\begin{equation*}
\zeta=\frac{\epsilon}{3}+0.0477709715 \epsilon^{2}-0.0683544(2) \epsilon^{3}+\mathcal{O}\left(\epsilon^{4}\right) \tag{5}
\end{equation*}
$$

It can numerically be measured by considering the finite-size scaling of the 2-point function in the limit of $m \rightarrow 0$,

$$
\begin{equation*}
\int_{x, y} \overline{[u(x)-u(y)]^{2}} \sim L^{2 d+2 \zeta} \tag{6}
\end{equation*}
$$



FIG. 1. $\Delta(w)$ for $m L=6$ (blue) and $L=1024$. The tangent at $w=0$ defines the correlation length $\rho_{m}$.
or for a finite $m$,

$$
\begin{equation*}
\overline{[u(x)-u(y)]^{2}} \sim m^{-2 \zeta} \text { for } m|x-y| \gg 1 . \tag{7}
\end{equation*}
$$

The second relevant observable is the critical force per site (force density),

$$
\begin{equation*}
f_{\mathrm{c}}:=m^{2} \overline{\left(w-u_{w}\right)} \equiv-\overline{F(x, u(x, t))} \tag{8}
\end{equation*}
$$

The last equality is verified by integrating the equation of motion (1), assuming periodic boundary conditions. We show below that

$$
\begin{align*}
f_{\mathrm{c}} & =m^{2} \overline{\left(w-u_{w}\right)}=f_{\mathrm{c}}^{0}-\mathcal{B} m^{2} \rho_{m}  \tag{9}\\
\mathcal{B} & =1-0.30998 \epsilon+0.570136 \epsilon^{2}+\mathcal{O}\left(\epsilon^{3}\right) \tag{10}
\end{align*}
$$

Here $f_{\mathrm{c}}^{0}$ has a lattice-dependent (but $m$-independent) value, $\mathcal{B}$ is a universal amplitude, $m^{2}$ is given by the experiment, and $\rho_{m}$ is a length scale in the driving direction set by the disorder,

$$
\begin{equation*}
\rho_{m}:=\frac{\Delta(0)}{\left|\Delta^{\prime}\left(0^{+}\right)\right|} \simeq \tilde{\rho} m^{-\zeta} \tag{11}
\end{equation*}
$$

An example for $\Delta(w)$ is given on Fig. 13. For small $m, f_{\mathrm{c}}$ converges to $m^{2-\zeta}$ times a system-specific amplitude $\tilde{\rho}$, set by the microscopic disorder. While $\rho_{m}$ needs to be measured, the confining potential strength $m^{2}$ is imposed in the simulation or experiment. Should it be unknown, or insufficiently well known, in the experiment ${ }^{1}$, it can be extracted from the linear part of the force-extension curve.

The amplitude $\mathcal{B}$ in Eq. (10) is universal, independent of microscopic details. This is a quite astonishing result, as it is rarely possible to have a universal amplitude rather than a universal exponent. As we will see below, the reason this happens here is that the diagrammatic result does not resum into a power-law in $m$, but instead it depends logarithmically on $m$, and varying $\mathcal{B} \ln m$ gives back $\mathcal{B}$. The final result contains a power law, since it is still multiplied by $\rho_{m}$. We explain this in detail in section IV.

The situation is even more extraordinary for charge-density waves (CDWs), for which $\zeta=0$. As we discuss in section V, CDWs can be mapped onto the $O(n)$ model in the limit of $n \rightarrow-2$. For this case, Eqs. (9)-(10) reduce to

$$
\begin{align*}
\frac{f_{\mathrm{c}}}{m^{2}} & =\text { const }-\tilde{\mathcal{A}}(d) \ln (m)  \tag{12}\\
\tilde{\mathcal{A}}(d) & =-\partial_{n}\left[\nu(d, n)^{-1}+\eta(d, n)\right]_{n=-2} \tag{13}
\end{align*}
$$

This is reminiscent of log-CFTs [68,69]: when two operators collide as a function of an external control parameter, here $n$, the RG flow becomes non-diagonalizable, and replaced by a rank-2 Jordan-block form, leading to a universal amplitude in front of a logarithm, very much as in Eqs. (12)-(13).

[^0]The reminder of this article is organized as follows: In section II we start with the renormalization-group analysis for depinning. After a brief reminder of how to perform a functional RG, and the problems involved, we derive and analyze in section III the RG $\beta$-function, the critical exponent $\zeta$, and the shape of the renormalized disorder correlator. The critical force is treated in section IV. We then specialize to chargedensity waves in section V , which allows us to use high-order RG calculations for the $O(n)$-model. Section VI confirms our analytical calculations with numerical simulations. Conclusions are offered in section VII. Technical details and results for specific cases are given in various appendices. A table of contents can be found on page 24.

## II. RENORMALIZATION GROUP ANALYSIS

## A. Field theory of the depinning transition, response function

Here we briefly review the basics of perturbation theory and renormalization for depinning as written in Eq. (1). For a detailed introduction we refer the reader to section 3 of Ref. [33].

The equation of motion (1) is enforced with an auxiliary field $\tilde{u}(x, t)[70-74]$.

$$
\begin{array}{r}
\mathcal{S}[u, \tilde{u}, F]=\int_{x, t} \tilde{u}(x, t)\left[\left(\partial_{t}-\nabla^{2}+m^{2}\right)(u(x, t)-w)\right. \\
-F(x, u(x, t))-\eta(x, t)] \tag{14}
\end{array}
$$

Averaging over disorder (denoted by an overline), we obtain the disorder-averaged action $\mathrm{e}^{-\mathcal{S}[u, \tilde{u}]}:=\overline{\mathrm{e}^{-S[u, \tilde{u}, F]}}$, with

$$
\begin{align*}
\mathcal{S}[u, \tilde{u}]= & \int_{x, t} \tilde{u}(x, t)\left[\left(\partial_{t}-\nabla^{2}+m^{2}\right)[u(x, t)-w]-\eta(x, t)\right] \\
& -\frac{1}{2} \int_{x, t, t^{\prime}} \tilde{u}(x, t) \Delta_{0}\left(u(x, t)-u\left(x, t^{\prime}\right)\right) \tilde{u}\left(x, t^{\prime}\right) . \tag{15}
\end{align*}
$$

We used the force-force correlator defined in Eq. (2).
The response function is defined as the answer of the system to a perturbation by the force $\eta(x, t)$.

$$
\begin{equation*}
R\left(x^{\prime}, t^{\prime} \mid x, t\right):=\frac{\delta}{\delta \eta(x, t)} \overline{u\left(x^{\prime}, t^{\prime}\right)}=\left\langle u\left(x^{\prime}, t^{\prime}\right) \tilde{u}(x, t)\right\rangle \tag{16}
\end{equation*}
$$

While the overbar indicates a disorder average, the angular brackets denote averages w.r.t. the action (15). In a translationally invariant system, $R\left(x^{\prime}, t^{\prime} \mid x, t\right)$ does only depend on $x^{\prime}-x$ and $t^{\prime}-t$, and is denoted by

$$
\begin{equation*}
R\left(x^{\prime}-x, t^{\prime}-t\right):=R\left(x^{\prime}, t^{\prime} \mid x, t\right) \tag{17}
\end{equation*}
$$

The most convenient representation is the spatial Fourier transform. For the free theory it reads

$$
\begin{equation*}
R(k, t)=\left\langle u\left(k, t+t^{\prime}\right) \tilde{u}\left(-k, t^{\prime}\right)\right\rangle=\mathrm{e}^{-\left(k^{2}+m^{2}\right) t} \Theta(t) \tag{18}
\end{equation*}
$$

This form allows us to integrate over time, even in presence of a non-trivial time-behavior, as we will see to arise in the next section.

## B. Complications due to the non-analyticity of the disorder

To perform the calculations, we define a graphical notation for the disorder vertex,

$$
\begin{equation*}
\stackrel{t_{0}^{\prime}}{\substack{t_{t}}}=\Delta\left(u(x, t)-u\left(x, t^{\prime}\right)\right) \tilde{u}(x, t) \tilde{u}\left(x, t^{\prime}\right) \tag{19}
\end{equation*}
$$

The arrows represent the response fields $\tilde{u}(x, t) \tilde{u}\left(x, t^{\prime}\right)$, the dashed line the disorder $\Delta\left(u(x, t)-u\left(x, t^{\prime}\right)\right)$, and integration over $x, t$ and $t^{\prime}$ is implicit. (The spatial coordinate $x$ is not written.)

Let us illustrate the problem with one of the many 2-loop diagrams:


An arrow between two points represents the response function (18), with the momentum it carries indicated, and time advancing in the direction of the arrow. An arrow entering into a vertex corresponds to a Wick contraction, and yields a derivative. Labeling the space coordinates at the bottom left by $x$, bottom right by $y$, and top by $z$, the diagram reads (up to a global prefactor)

$$
\begin{align*}
& \int_{k, p} \int_{t_{1}} \int_{t_{2}} \int_{t_{3}} \int_{t_{4}} \Delta^{\prime}\left(u\left(x, t_{2}\right)-u\left(x, t_{1}\right)\right) \\
& \times \Delta^{\prime}\left(u\left(y, t_{4}\right)-u\left(y, t_{3}\right)\right) \Delta^{\prime \prime}\left(u\left(z, t_{5}\right)-u\left(z, t_{6}\right)\right) \\
& \times R\left(k, t_{3}-t_{1}\right) R\left(k+p, t_{2}-t_{3}\right) R\left(p, t_{5}-t_{2}\right) R\left(p, t_{5}-t_{4}\right) \tag{21}
\end{align*}
$$

Since the response functions decay exponentially fast, they imply that $t_{1} \approx t_{2} \approx t_{3} \approx t_{4} \approx t_{5}$, whereas $t_{6}$ and thus $u\left(z, t_{5}\right)-u\left(z, t_{6}\right)$ are arbitrary time and arbitrary position differences respectively. Denoting this possibly large difference in position by $w, \Delta^{\prime \prime}\left(u\left(z, t_{5}\right)-u\left(z, t_{6}\right)\right) \rightarrow \Delta^{\prime \prime}(w)$ can take any (allowed) value. This is not the case for the other arguments, e.g.

$$
\begin{align*}
\Delta^{\prime}\left(u\left(x, t_{2}\right)-u\left(x, t_{1}\right)\right) & \rightarrow \Delta^{\prime}(u) \text { for } u>0 \text { small } \\
& \simeq \Delta^{\prime}\left(0^{+}\right) \tag{22}
\end{align*}
$$

since $t_{2}>t_{1}$ due to the causality of the response functions $R$, and $u(x, t)$ increases monotonically with time (Middleton theorem [75], see section 3.3 of [33]). The delicate factor is

$$
\begin{equation*}
\Delta^{\prime}\left(u\left(y, t_{4}\right)-u\left(y, t_{3}\right)\right) \simeq \Delta^{\prime}\left(0^{+}\right) \operatorname{sign}\left(t_{4}-t_{3}\right) \tag{23}
\end{equation*}
$$

where we have again expanded for small times. It can have both signs. The integral to be performed is proportional to

$$
\begin{align*}
& \int_{k, p} \int_{-\infty}^{t_{5}} \mathrm{~d} t_{2} \int_{-\infty}^{t_{2}} \mathrm{~d} t_{3} \int_{-\infty}^{t_{3}} \mathrm{~d} t_{1} \int_{-\infty}^{t_{5}} \mathrm{~d} t_{4} \mathrm{e}^{-\left[m^{2}+k^{2}\right]\left(t_{3}-t_{1}\right)} \\
& \times \mathrm{e}^{-\left[m^{2}+(k+p)^{2}\right]\left(t_{2}-t_{3}\right)} \mathrm{e}^{-\left[m^{2}+p^{2}\right]\left(t_{5}-t_{2}\right)} \\
& \times \mathrm{e}^{-\left[m^{2}+p^{2}\right]\left(t_{5}-t_{4}\right)} \operatorname{sign}\left(t_{4}-t_{3}\right) \tag{24}
\end{align*}
$$



FIG. 2. Diagrams at 3-loop order (without insertion of lower order counter-terms)

Without a sign function, all integrals can be evaluated via a single rule

$$
\begin{equation*}
\int_{-\infty}^{t} \mathrm{~d} t^{\prime} \mathrm{e}^{-\left[m^{2}+k^{2}\right]\left(t-t^{\prime}\right)}=\frac{1}{m^{2}+k^{2}} \tag{25}
\end{equation*}
$$

In contrast, Eq. (24) leads to the unusual combination

$$
\begin{align*}
& \int_{k, p} \frac{1}{\left[k^{2}+m^{2}\right]\left[(k+p)^{2}+m^{2}\right]^{2}\left[p^{2}+m^{2}\right]} \\
& -\int_{k, p} \frac{1}{\left[k^{2}+m^{2}\right]\left[(k+p)^{2}+m^{2}\right]^{2}\left[(k+p)^{2}+p^{2}+2 m^{2}\right]} \tag{26}
\end{align*}
$$

The first line is a standard diagram

$$
\begin{equation*}
\underbrace{\infty}=\int_{k, p} \frac{1}{\left[k^{2}+m^{2}\right]\left[(k+p)^{2}+m^{2}\right]^{2}\left[p^{2}+m^{2}\right]} \tag{27}
\end{equation*}
$$

In contrast, the second line of Eq. (26) is a genuinely new contribution. What we will see in the following is that up to 3loop order, for the effective disorder correlator, and the force at depinning, all these new diagrams cancel. In contrast, in dynamic diagrams, i.e. those correcting the dynamic exponent $z$, these novel contributions appear.

In the next section, we list all diagrams contributing to the renormalization of $\Delta(w)$ up to 3-loop order. Each dynamic diagram, as plotted in Eq. (20), reduces to a static (momentum) diagram upon dropping the temporal information, i.e. dropping the direction in which an arrow goes, as well as the times at the vertex. Graphically this amounts to the temporal reduction


In order to alleviate the notations, we only draw the temporally reduced (static) representation for each diagram in the next section. This should not be confounded with the momentum integral itself. Surprisingly, for each correction to the disorder, the only momentum integral which survives after summation over all temporal configurations is the temporally reduced diagram read as a momentum integral, as in Eq. (27).

## C. Diagrams correcting the disorder

Denoting by $\delta^{(\ell)}$ the contributions at $\ell$-loop order, the corrections to the disorder up to 3-loop order are given by

$$
\begin{align*}
\delta^{(1)} \Delta(w)= & (a)  \tag{29}\\
\delta^{(2)} \Delta(w)= & (A)+(B)  \tag{30}\\
\delta^{(3)} \Delta(w)= & (h)+(i)+(j)+(k)+(l)+(m)+(n) \\
& +(o)+(p)+(q) \tag{31}
\end{align*}
$$

The different diagrams are given on Fig. 3. To simplify the expressions and for easier comparison with the statics, we write the diagrams as minus a total second derivative, s.t. the expression would be the correction to the potential correlator $R(w)$ (i.e. $\Delta(w)=-R^{\prime \prime}(w)$ ). The additional terms at depinning, as compared to the statics, are underlined. We note that not all terms can be integrated explicitly, the notable exception being $\sim \Delta^{\prime \prime}(w)^{2}$.

## III. THE $\beta$-FUNCTION AND ITS FIXED POINT

## A. The $\beta$-function

Using the above diagrams and the integrals tabulated in appendix A, we write the dimensionfull effective disorder correlator $\Delta_{\text {eff }}(w)$

$$
\begin{equation*}
\Delta_{\mathrm{eff}}(w)=\Delta_{0}(w)+\delta^{(1)} \Delta(w)+\delta^{(2)} \Delta(w)+\delta^{(3)} \Delta(w)+\ldots \tag{32}
\end{equation*}
$$

The r.h.s. is a function of the bare disorder $\Delta_{0}(w)$, its derivatives, and $m$. The $\beta$-function for the renormalized (effective) dimensionfull disorder correlator $\Delta_{\text {eff }}(w)$ as a function of the bare disorder $\Delta_{0}(w)$ is defined as

$$
\begin{align*}
\partial_{\ell} \Delta_{\mathrm{eff}}(w) & :=-\left.m \partial_{m} \Delta_{\mathrm{eff}}(w)\right|_{\Delta_{0}}  \tag{33}\\
& =\epsilon\left[\delta^{(1)} \Delta(w)+2 \delta^{(2)} \Delta(w)+3 \delta^{(3)} \Delta(w)+\ldots\right]
\end{align*}
$$

There are two steps left: first, rewrite Eq. (32) as a rule

$$
\begin{equation*}
\Delta_{0}(w) \rightarrow \Delta_{\mathrm{eff}}(w)-\delta^{(1)} \Delta(w)-\delta^{(2)} \Delta(w)-\delta^{(3)} \Delta(w) \tag{34}
\end{equation*}
$$

where as above $\delta^{(i)} \Delta(w)$ are functions of the bare disorder $\Delta_{0}(w)$ (and its derivatives). Applying this rule three times to $\partial_{\ell} \Delta_{\text {eff }}(w)$ gives $\partial_{\ell} \Delta_{\text {eff }}(w)$ as a function of $\Delta_{\text {eff }}(w)$ instead of $\Delta_{0}(w)$.

In a second step, define

$$
\begin{equation*}
\tilde{\Delta}(w):=\epsilon I_{1} m^{2 \zeta} \Delta_{\mathrm{eff}}\left(w m^{-\zeta}\right) \tag{35}
\end{equation*}
$$

This rescaling with $\epsilon I_{1}$ and the roughness exponent $\zeta$ allows to obtain a fixed point. Rescaling with $\epsilon I_{1} \sim m^{-\epsilon}$ instead of $m^{-\epsilon}$ eliminates cumbersome numerical factors.

This yields the $\beta$-function for the renormalized dimensionless disorder $\tilde{\Delta}(w)$,

$$
\begin{aligned}
\partial_{\ell} \tilde{\Delta}(w)= & (\epsilon-2 \zeta) \tilde{\Delta}(w)+\zeta w \tilde{\Delta}^{\prime}(w)-\partial_{w}^{2}\left[\frac{1}{2}(\tilde{\Delta}(0)-\tilde{\Delta}(w))^{2}\right] \\
- & \partial_{w}^{2}\left[\left(-\frac{1}{2}-\frac{\epsilon}{4}+C_{3} \epsilon\right)\left(\tilde{\Delta}^{\prime}\left(0^{+}\right)^{2} \tilde{\Delta}(w)+(\tilde{\Delta}(w)-\tilde{\Delta}(0)) \tilde{\Delta}^{\prime}(w)^{2}\right)\right] \\
- & \partial_{w}^{2}\left[\frac{3}{4} \zeta(3)\left(\tilde{\Delta}^{\prime}(w)^{4}-2 \tilde{\Delta}^{\prime}\left(0^{+}\right)^{2} \tilde{\Delta}^{\prime}(w)^{2}+8 \tilde{\Delta}^{\prime}\left(0^{+}\right)^{2} \tilde{\Delta}^{\prime \prime}(0) \tilde{\Delta}(w)\right)\right. \\
& \quad+2 \tilde{\Delta}^{\prime}(w)^{2}\left(\tilde{\Delta}^{\prime}\left(0^{+}\right)^{2}+(\tilde{\Delta}(w)-\tilde{\Delta}(0)) \tilde{\Delta}^{\prime \prime}(w)\right) \\
& \left.\quad+C_{3}\left((\tilde{\Delta}(w)-\tilde{\Delta}(0))^{2} \tilde{\Delta}^{\prime \prime}(w)^{2}-\frac{1}{2} \tilde{\Delta}^{\prime}(w)^{4}+(\tilde{\Delta}(0)-\tilde{\Delta}(w)) \tilde{\Delta}^{\prime}(w)^{2} \tilde{\Delta}^{\prime \prime}(w)-6 \tilde{\Delta}^{\prime}\left(0^{+}\right)^{2} \tilde{\Delta}^{\prime \prime}(0) \tilde{\Delta}(w)\right)\right] \\
+ & 2 \tilde{\Delta}^{\prime}\left(0^{+}\right)^{2} \tilde{\Delta}^{\prime \prime}(w)^{2}+\mathcal{O}\left(\tilde{\Delta}^{5}\right)
\end{aligned}
$$

$$
\begin{equation*}
C_{3}=\frac{\psi^{\prime}\left(\frac{1}{3}\right)}{6}-\frac{\pi^{2}}{9} \tag{37}
\end{equation*}
$$

The first two terms are a consequence of the rescaling (35), while the remaining ones are the direct loop corrections: the 1-loop term is on the first line, the 2-loop terms on the second line, followed by the 3-loop contributions.

## B. Fixed point

Eq. (36) has a discrete set of fixed points, among which one is fully attractive, and represents the dominant random-field universality class, see e.g. [33]. While we could in principle follow the flow to this attractive fixed point, it is better


FIG. 3. All diagrams correcting the disorder up to 3-loop order. All $\Delta$ are bare $\Delta_{0}$, with the index suppressed for compactness of notation. While we calculated the corrections to $\Delta(w)$, we report its integrated form $\delta R(w):=-\int_{0}^{w} \mathrm{~d} w^{\prime} \int_{0}^{w^{\prime}} \mathrm{d} w^{\prime \prime} \delta \Delta(w)$ for compactness. This is the correction to the potential correlator $R(w)$. The non-underlined terms are present in the statics [66], the underlined ones are additional contributions at depinning. We note that the following expressions are proportional to each other, $(o) \sim(l)$, and $(h) \sim(j)$. The momentum integrals, which correspond to the icons in the same line, are given in appendix A.
to directly write down the fixed-point equation, which gives $\zeta$ and $\tilde{\Delta}(w)$ to 3-loop order. While at 1-loop order we can do this analytically, much of the information for 2-loop and 3-loop order has to be obtained numerically. Useful analytic constraints are obtained by integrating Eq. (36) over $w$,

$$
\begin{align*}
0= & \int_{0}^{\infty} \partial_{\ell} \tilde{\Delta}(w) \mathrm{d} w \\
= & (\epsilon-3 \zeta) \int_{0}^{\infty} \tilde{\Delta}(w) \mathrm{d} w \\
& -\left(1-2 C_{3} \epsilon+\frac{\epsilon}{2}\right) \tilde{\Delta}^{\prime}\left(0^{+}\right)^{3} \\
& +3\left(2-3 C_{3}+2 \zeta(3)\right) \tilde{\Delta}^{\prime}\left(0^{+}\right)^{3} \tilde{\Delta}^{\prime \prime}(0) \\
& +2 \tilde{\Delta}^{\prime}\left(0^{+}\right)^{2} \int_{0}^{\infty} \tilde{\Delta}^{\prime \prime}(w)^{2} \mathrm{~d} w \tag{38}
\end{align*}
$$

We used that $\tilde{\Delta}(w)$ is decaying fast to zero for $w \rightarrow \infty$, thus all boundary terms at infinity vanish. In particular $\lim _{w \rightarrow \infty} w \tilde{\Delta}(w)=\lim _{w \rightarrow \infty} \tilde{\Delta}^{\prime}(w)=\ldots=0$. We make the ansatz

$$
\begin{align*}
\tilde{\Delta}(w) & =\frac{\epsilon}{3} y(w)+\frac{\epsilon^{2}}{18} y_{2}(w)+\epsilon^{3} y_{3}(w)  \tag{39}\\
\zeta & =\frac{\epsilon}{3}+\zeta_{2} \epsilon^{2}+\zeta_{3} \epsilon^{3}+\ldots  \tag{40}\\
y(0) & =1, \quad y_{2}(0)=0, \quad y_{3}(0)=0 \tag{41}
\end{align*}
$$

(The numerical factors $1 / 3$ and $1 / 18$ are for historical reasons, to agree with the conventions of [47]).

## C. 1-loop order

After integrating the 1-loop solution twice, this yields (see e.g. [33], section 2.6)

$$
\begin{equation*}
\frac{w^{2}}{2}-y(w)+\log (y(w))+1=0 \tag{42}
\end{equation*}
$$

This is a simple expression for $w(y)$. Mathematica knows the inverse function $y(w)$ as a ProductLog,

$$
\begin{equation*}
y(w)=-W\left(-\mathrm{e}^{-\frac{w^{2}}{2}-1}\right) \tag{43}
\end{equation*}
$$

Its series expansion is

$$
\begin{align*}
y(w)= & 1-w+\frac{w^{2}}{3}-\frac{w^{3}}{36}-\frac{w^{4}}{270}-\frac{w^{5}}{4320}+\frac{w^{6}}{17010} \\
& +\frac{139 w^{7}}{5443200}+\frac{w^{8}}{204120}+\frac{571 w^{9}}{2351462400} \\
& -\frac{281 w^{10}}{1515591000}+\ldots \tag{44}
\end{align*}
$$

Integrals we need later are

$$
\begin{align*}
& a_{1}:=\int_{0}^{\infty} \mathrm{d} w y(w)=0.7753042451883378  \tag{45}\\
& a_{2}:=\int_{0}^{\infty} \mathrm{d} w y^{\prime \prime}(w)^{2}=0.44750763980522135 \tag{46}
\end{align*}
$$

Simple analytical integral representations are obtained by converting the $w$ integrals into $y$ integrals:

$$
\begin{align*}
a_{1}= & \sqrt{2} \int_{0}^{1} \sqrt{y-\log (y)-1} \mathrm{~d} y  \tag{47}\\
a_{2}=\frac{2}{3}+\sqrt{2} & \int_{0}^{1} \frac{y \sqrt{y-\log (y)-1}}{(y-1)^{5}} \\
& \times[(y-1)(y+5)-2(2 y+1) \log (y)] \mathrm{d} y \tag{48}
\end{align*}
$$

## D. 2-loop order

As a first consequence of the integral relation (38) we find to order $\epsilon^{2}$

$$
\begin{equation*}
-\zeta_{2} \int_{0}^{\infty} y(w) \mathrm{d} w-\left(\frac{y^{\prime}(0)}{3}\right)^{3}=0 \tag{49}
\end{equation*}
$$

Eq. (38) at 2-loop order then yields

$$
\begin{align*}
\zeta_{2} & =\frac{1}{27 a_{1}} \\
& =0.04777097154682305779461454163450931593852 \\
& =\frac{0.1433129146404691733838436249035279478156}{3} . \tag{50}
\end{align*}
$$

We then need $y_{2}(w)$. A good approximation is obtained by solving the 2 -loop $\beta$-function perturbatively around 0 , and then producing a fit for $y_{2}(w) / y(w)^{2}$,

$$
\begin{align*}
y_{2}(w) \approx & \left(-1.14012 w-1.31245 w^{2}-0.927184 w^{3}\right. \\
& -0.509678 w^{4}-0.23776 w^{5}-0.0983357 w^{6} \\
& -0.0370205 w^{7}-0.0129135 w^{8}-0.00422806 w^{9} \\
& \left.-0.00131226 w^{10}+\ldots\right) y(w)^{2} \tag{51}
\end{align*}
$$

A second approximation stems from the observation that $y_{2}(w) \approx$ const $w y^{\prime}(w)$, which would arise when the secondorder solution just changes its amplitude, and this amplitude change is absorbed via a rescaling, sending $w \rightarrow w[1+\mathcal{O}(\epsilon)]$. We can therefore write (with more terms used in practice)

$$
\begin{equation*}
y_{2}(w) \approx[1.14012+\mathcal{O}(w)] w y^{\prime}(w) \tag{52}
\end{equation*}
$$

Another approximation is to do a Taylor expansion on $y_{2}(w) /\left(w y^{\prime}(w)\right)$, and then use the diagonal Padé for its approximation. We show for illustration a relative low-order approximant,

$$
\begin{equation*}
y_{2}(w)=\frac{1.14012-0.597926 w+0.0931393 w^{2}+\ldots}{1-0.342252 w+0.0465221 w^{2}+\ldots} w y^{\prime}(w) \tag{53}
\end{equation*}
$$

Later we need

$$
\begin{equation*}
a_{3}:=\int_{0}^{\infty} y_{2}(w) \mathrm{d} w=-0.636336\left(1 \pm 7 \times 10^{-5}\right) \tag{54}
\end{equation*}
$$

The error bar is from a numerical solution of the FP equation, combined with the approximations (51)-(53).

## E. 3-loop order

The integral relation (38) to next order reads

$$
\begin{align*}
0= & -\zeta_{3} a_{1}-\frac{\zeta_{2}}{6} a_{3} \\
& -\left(-2 C_{3}+\frac{1}{2}\right) \frac{y^{\prime}(0)^{3}}{3^{3}}-3 \frac{y^{\prime}(0)^{2}}{3^{2}} \frac{y_{2}^{\prime}(0)}{18} \\
& +3\left(2-3 C_{3}+2 \zeta(3)\right) \frac{y^{\prime}(0)^{3}}{3^{3}} \frac{y^{\prime \prime}(0)}{3} \\
& +2 \frac{y^{\prime}(0)^{2}}{3^{2}} \frac{a_{2}}{3^{2}} . \tag{55}
\end{align*}
$$

Inserting everything we calculated above, we find ${ }^{2}$
$\zeta_{3}=\left\{\begin{array}{cl}-0.0683545 & \text { from Eq. (51) at order } 30 \\ -0.0683547 & \text { from Eq. (51) at orders } 30 \text { to } 40 \\ -0.068354436 & \text { from Eq. (52) at order } 30 \\ -0.068354414 & \text { from Eq. (53) from Padé } \\ -0.0683544 & \text { with } a_{3} \text { from shooting for } y_{2}(w)\end{array}\right.$


FIG. 4. $\zeta(\epsilon)$ in different schemes: 1-loop (black, dashed), direct 2loop (cyan), direct 3-loop (green), as well as two Padé appoximants, Padé ${ }_{1,2}$ (red) and Padé ${ }_{2,1}$ (blue). For the latter, we also show the Padé-Borel resummation as explained in the main text. The black dots are the result of numerical simulations for $d=2,3$, and the exact values $\zeta=5 / 4$ in $d=1$ as well as $\zeta=2$ in $d=0$.

This series stops at order $t^{3}$ (3-loop order). As above, the Padé-approximant which behaves well for large $t$ is Padé ${ }_{2,1}$

$$
\begin{equation*}
\zeta_{\text {Padé }_{2,1}}^{\text {Borel }}(t)=\frac{\frac{t}{3}+0.182872 t^{2}}{1+0.47696 t} \tag{62}
\end{equation*}
$$

Using this, we obtain an approximation ${ }^{3}$ for $\zeta$,

$$
\begin{equation*}
\zeta^{\text {Padé-Borel }}(\epsilon):=\int_{0}^{\infty} \frac{\mathrm{d} t}{\epsilon} \zeta_{\text {Padé }_{2,1}}^{\text {Borel }}(t) \mathrm{e}^{-t / \epsilon} \tag{63}
\end{equation*}
$$

Let us use this as reference for the best 3-loop approximation. We remark that in $d=3$ there is a marked improvement, and the $\epsilon$-expansion result is now spot on the numerical solution, probably even more precise than the latter. In $d=2$ the improvement in precision is also noticable, with a relative

| method | $d=0$ | $d=1$ | $d=2$ | $d=3$ |
| :---: | :---: | :---: | :---: | :---: |
| numeric/exact | 2 | $5 / 4$ | $0.753(2)$ | $0.355(10)$ |
| 1-loop | $4 / 3$ | 1 | $2 / 3$ | $1 / 3$ |
| direct 2-loop | 2.09767 | 1.42994 | 0.85775 | 0.38110 |
| direct 3-loop $^{-2.27702}$ | -0.41563 | 0.31092 | 0.31275 |  |
| Padé $_{1,2}$ | 0.33033 | 0.38454 | 0.41260 | 0.30799 |
| Padé $_{2,1}$ | 1.44701 | 1.08123 | 0.71615 | 0.35299 |
| Padé-Borel $_{2,1}$ | 1.47806 | 1.10053 | 0.72539 | 0.35512 |
| improved | 2 | 1.26567 | 0.75341 | 0.35716 |
| twice improved | 2 | 1.25 | 0.75182 | 0.35658 |

TABLE I. Comparison of the various approximations for $\zeta$ and numerical values.

[^1][^2]deviation of less than $4 \%$. In $d=1$ the relative error is now at $12 \%$, while $d=0$ is out of reach.

To improve the precision, we can use the information in $d=0$, where $\zeta=2$ (with $\sqrt{\ln }$ corrections); this fixes the coefficient of an additional quartic term,

$$
\begin{equation*}
\zeta^{\text {improved }}(\epsilon)=\zeta^{\text {Padé-Borel }}(\epsilon)+0.00203884 \epsilon^{4} \tag{64}
\end{equation*}
$$

With this correction, the prediction in $d=1$ becomes 1.266 , very close to the analytically known value of $\zeta=5 / 4$ [76]. Using in addition $\zeta(d=1)=5 / 4$, we find

$$
\begin{align*}
\zeta^{\text {twice improved }}(\epsilon)= & \zeta^{\text {Padé-Borel }}(\epsilon)+0.00126488 \epsilon^{4} \\
& +0.00019349 \epsilon^{5} \tag{65}
\end{align*}
$$

This is summarized in table I. Our best predictions and error estimates for the unknown dimensions $d=2$ and $d=3$ thus are

$$
\begin{align*}
\zeta_{d=2}^{\mathrm{best}} & =0.752(1)  \tag{66}\\
\zeta_{d=3}^{\text {best }} & =0.357(1) \tag{67}
\end{align*}
$$

## G. The $\beta$-function in minimal subtraction

The minimal subtraction scheme takes a prominent role in high-order RG calculations. How can this be implemented here? The idea is to make an ansatz for $\Delta_{\mathrm{r}}(w)$ as a functional of $\Delta_{0}(w)$, and then to write the effective $\Delta_{\text {eff }}(w)$ in Eq. (32) as a function of $\Delta_{\mathrm{r}}(w)$, keeping only singular terms (minimal subtraction). Since $\Delta_{\text {eff }}(w)$ is an observable, it must be finite when expressed in terms of $\Delta_{\mathrm{r}}(w)$. This uniquely fixes $\Delta_{\mathrm{r}}\left[\Delta_{0}\right]$. Let us make the ansatz

$$
\begin{align*}
& \Delta_{\mathrm{r}}(w)=\Delta_{0}(w)+\delta^{(1)} \Delta(w)+\mathcal{S} \circ \delta^{(2)} \Delta(w)+\delta^{(3)} \Delta(w) \\
& +\frac{1}{8}\left(\mathcal{F} \circ I_{A}\right) I_{1}\left[7\left(\Delta_{0}(w)-\Delta_{0}(0)\right) \Delta_{0}^{\prime}(w)^{2} \Delta_{0}^{\prime \prime}(w)\right. \\
& +\Delta_{0}^{\prime}(0)^{2}\left(6 \Delta_{0}^{\prime \prime}(0) \Delta_{0}(w)+\left(\Delta_{0}(w)-\Delta_{0}(0)\right) \Delta_{0}^{\prime \prime}(w)\right) \\
& \left.+\Delta_{0}^{\prime}(w)^{4}+2\left(\Delta_{0}(0)-\Delta_{0}(w)\right)^{2} \Delta_{0}^{(3)}(w) \Delta_{0}^{\prime}(w)\right] \\
& +\ldots \tag{68}
\end{align*}
$$

Here $\mathcal{S}$ extracts the singular (in $\epsilon$ ) part of a diagram, while $\mathcal{F}$ extracts its finite part, $(\mathcal{S}+\mathcal{F}) \circ I \equiv I$. The expression in the square brackets is what is obtained if one inserts the 1-loop expression into the 2-loop expression (repeated counter-term). This operation is successful, as

$$
\begin{align*}
& \Delta_{\mathrm{eff}}(w)=\Delta_{\mathrm{r}}(w)+\frac{4 C_{3}-1}{8} \times \\
& \times\left[2\left(\Delta_{\mathrm{r}}(0)-\Delta_{\mathrm{r}}(w)\right) \Delta_{\mathrm{r}}^{\prime \prime \prime}(w) \Delta_{\mathrm{r}}^{\prime}(w)\right. \\
& \left.\quad-\Delta_{\mathrm{r}}^{\prime \prime}(w)\left(\Delta_{\mathrm{r}}^{\prime}(0)^{2}+5 \Delta_{\mathrm{r}}^{\prime}(w)^{2}+2\left(\Delta_{\mathrm{r}}(w)-\Delta_{\mathrm{r}}(0)\right) \Delta_{\mathrm{r}}^{\prime \prime}(w)\right)\right] \tag{69}
\end{align*}
$$

The ensuing $\beta$-function is longer than that in Eq. (36), and we refrain from putting it here. It is more interesting to look at
the difference,

$$
\begin{align*}
& \partial_{\ell} \tilde{\Delta}(w)-\left.\partial_{\ell} \Delta_{\mathrm{r}}(w)\right|_{\Delta_{\mathrm{r}}=\tilde{\Delta}} \\
& =-\frac{4 C_{3}-1}{4} \partial_{w}^{2}\left[\epsilon(\tilde{\Delta}(0)-\tilde{\Delta}(w))\left(\tilde{\Delta}^{\prime}(0)^{2}+\tilde{\Delta}^{\prime}(w)^{2}\right)\right] \\
& -\frac{4 C_{3}-1}{8} \partial_{w}^{2}\left[\tilde{\Delta}^{\prime}(w)^{4}\right. \\
& \quad+2(\tilde{\Delta}(w)-\tilde{\Delta}(0)) \tilde{\Delta}^{\prime}(w)^{2} \tilde{\Delta}^{\prime \prime}(w) \\
& \quad+2(\tilde{\Delta}(0)-\tilde{\Delta}(w)) \times \\
& \left.\quad \times\left((\tilde{\Delta}(w)-\tilde{\Delta}(0)) \tilde{\Delta}^{\prime \prime}(w)^{2}-6 \tilde{\Delta}^{\prime}\left(0^{+}\right)^{2} \tilde{\Delta}^{\prime \prime}(0)\right)\right] \tag{70}
\end{align*}
$$

A consistency check is that this yields the same $\zeta_{3}$. Integrating this equation over all $w$ yields

$$
\begin{align*}
& \int_{0}^{\infty} \partial_{\ell} \tilde{\Delta}(w)-\left.\partial_{\ell} \Delta_{\mathrm{r}}(w)\right|_{\Delta_{\mathrm{r}}=\tilde{\Delta}} \mathrm{d} w \\
& =\frac{4 C_{3}-1}{2} \epsilon \tilde{\Delta}^{\prime}\left(0^{+}\right)^{3}+\frac{9\left(1-4 C_{3}\right)}{4} \tilde{\Delta}^{\prime}\left(0^{+}\right)^{3} \tilde{\Delta}^{\prime \prime}(0) \tag{71}
\end{align*}
$$

Using Eqs. (39) and (44) shows that this vanishes at the required order $\epsilon^{4}$. Thus $\zeta$ is independent of the scheme up to 3-loop order.

## IV. THE CRITICAL FORCE

While renormalization of the disorder was already considered in the original 2-loop calculation [46, 47], the dependence of the critical force at depinning was only considered in simulations [62], but not via RG. Here we address this issue. Since this calculation is novel, we give explicit results for each of the dynamic diagrams involved up to 2-loop order.

## A. 1 loop

The diagram in question is

$$
\begin{align*}
& \begin{array}{r}
t_{x}^{t_{2}} \\
=\tilde{u}\left(x, t_{2}\right) \int_{t_{1}, k} \Delta_{0}^{\prime}\left(u\left(x, t_{2}\right)-u\left(x, t_{1}\right)\right) \mathrm{e}^{-\left(t_{2}-t_{1}\right)\left(k^{2}+m^{2}\right)} \\
\times \Theta\left(t_{1}<t_{2}\right)
\end{array} \\
& \begin{array}{r}
\simeq \tilde{u}\left(x, t_{2}\right) \int_{t_{1}, k}\left[\Delta_{0}^{\prime}\left(0^{+}\right)+\Delta_{0}^{\prime \prime}\left(0^{+}\right)\left(t_{2}-t_{1}\right) \dot{u}\left(x, t_{2}\right)+\ldots\right] \\
=\tilde{u}\left(x, t_{2}\right) \int_{k} \frac{\Delta_{0}^{\prime}\left(0^{+}\right)}{k^{2}+m^{2}}+\frac{\Delta_{0}^{\prime \prime}\left(t^{+}\right)}{\left(k^{2}+m_{1}\right)\left(k^{2}\right)^{2}} \dot{u}\left(x, t_{2}^{2}\right)+\ldots
\end{array}
\end{align*}
$$

The first term is the correction to the critical force, the second term the correction to friction. In summary,

$$
\begin{align*}
\delta f_{\mathrm{c}}^{(1)} & =\Delta^{\prime}\left(0^{+}\right) I_{\mathrm{tp}}  \tag{73}\\
I_{\mathrm{tp}} & =\bigcirc=\int_{k} \frac{1}{k^{2}+m^{2}}=\frac{2 m^{2}}{(d-4)(d-2)}\left(\epsilon I_{1}\right) \tag{74}
\end{align*}
$$



FIG. 5. All spatial diagrams for corrections of $F_{\mathrm{c}}$ and $\eta$; the first three diagrams (without label) are the 1- and 2-loop contributions. The remaining nine diagrams $(r)$ to $(z)$ are 3-loop contributions.

See appendix A 2 for the integral.

## B. 2 loop

At 2-loop order, there a seven contributions to the critical force. Including all combinatorial factors, these read

$$
\begin{equation*}
\mathcal{F}^{(2)} f_{\mathrm{c}}=\mathcal{F}_{1}+\mathcal{F}_{2}+\mathcal{F}_{3}+\mathcal{F}_{4}+\mathcal{F}_{5}+\mathcal{F}_{6}+\mathcal{F}_{7} \tag{75}
\end{equation*}
$$

The non-trivial diagram $\mathcal{F}_{3}$ is

$$
\begin{align*}
& \mathcal{F}_{3}=\Delta^{\prime}\left(0^{+}\right) \Delta^{\prime \prime}\left(0^{+}\right) \int_{k, q} \int_{t_{1}, t_{2}, t_{3}} \\
& \quad \times \mathrm{e}^{-k^{2} t_{1}-(k+q)^{2} t_{2}-q^{2} t_{3}-m^{2}\left(t_{1}+t_{2}+t_{3}\right)} \operatorname{sign}\left(t_{3}-t_{1}\right) \\
& =\int_{k, q} \frac{k^{2}-q^{2}}{\left(k^{2}+m^{2}\right)\left(q^{2}+m^{2}\right)\left(k^{2}+q^{2}+2 m^{2}\right)\left((k+q)^{2}+m^{2}\right)} \\
& =0 . \tag{83}
\end{align*}
$$

Further cancelations read

$$
\begin{equation*}
\mathcal{F}_{2}+\mathcal{F}_{5}+\mathcal{F}_{6}=0, \quad \mathcal{F}_{4}+\mathcal{F}_{7}=0 \tag{84}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\sum_{i=1}^{7} \mathcal{F}_{i}=\mathcal{F}_{1}=-\Delta^{\prime}\left(0^{+}\right) \Delta^{\prime \prime}(0) I_{\mathrm{ss}} \tag{85}
\end{equation*}
$$

The sunset diagram $I_{\mathrm{SS}}$ reads

$$
\begin{align*}
I_{\mathrm{ss}} & = \\
& =\int_{k, p} \frac{1}{\left(k^{2}+m^{2}\right)\left(p^{2}+m^{2}\right)\left[(k+p)^{2}+m^{2}\right]} \tag{86}
\end{align*}
$$

It is evaluated in appendix A 4,

$$
\begin{equation*}
I_{\mathrm{ss}}=m^{2}\left[-\frac{3}{2 \epsilon^{2}}-\frac{9}{4 \epsilon}-\frac{3\left(7-4 C_{3}\right)}{8}+\ldots\right]\left(\epsilon I_{1}\right)^{2} \tag{87}
\end{equation*}
$$

## C. 3 loop

At 3-loop order there are nine diagrams, shown on Fig. 5. Diagram $(r)$ reads

$$
\begin{equation*}
(r)=\Delta^{\prime}\left(0^{+}\right)\left[3 \Delta^{\prime \prime}(0)^{2}+2 \Delta^{\prime \prime \prime}\left(0^{+}\right) \Delta^{\prime}\left(0^{+}\right)\right] \tag{88}
\end{equation*}
$$

The integral is calculated in appendix A 9,

$$
\begin{align*}
I_{r} & = \\
& =m^{2}\left(\epsilon I_{1}\right)^{3}\left[-\frac{1}{\epsilon^{3}}-\frac{17}{6 \epsilon^{2}}+\frac{36 C_{3}-67}{12 \epsilon}+\mathcal{O}\left(\epsilon^{0}\right)\right] . \tag{89}
\end{align*}
$$

After some tedious calculations, one surprisingly finds that all remaining contributions vanish,
$(s)=(t)=(u)=(v)=(w)=(x)=(y)=(z)$.

## D. Critical force to 3-loop order and flow-equation

Up to UV-cutoff dependent terms,

$$
\begin{align*}
f_{\mathrm{c}}= & \Delta_{0}^{\prime}\left(0^{+}\right) I_{\mathrm{tp}}-\Delta_{0}^{\prime}\left(0^{+}\right) \Delta_{0}^{\prime \prime}\left(0^{+}\right) I_{\mathrm{ss}} \\
& +\left[2 \Delta_{0}^{\prime \prime \prime}(0) \Delta_{0}^{\prime}(0)^{2}+3 \Delta_{0}^{\prime}(0) \Delta_{0}^{\prime \prime}(0)^{2}\right] I_{r}+\ldots \tag{91}
\end{align*}
$$

The following flow is finite (the $\Lambda$-dependent terms have disappeared under the $m$ variation)

$$
\begin{align*}
& -m \partial_{m}\langle u-w\rangle \equiv m \partial_{m}\left[f_{\mathrm{c}} m^{-2}\right] \\
& =-\epsilon m^{-2}\left\{\Delta_{0}^{\prime}\left(0^{+}\right) I_{\mathrm{tp}}-2 \Delta_{0}^{\prime}\left(0^{+}\right) \Delta_{0}^{\prime \prime}\left(0^{+}\right) I_{\mathrm{ss}}\right. \\
& \\
& \quad+3\left[2 \Delta_{0}^{\prime \prime \prime}(0) \Delta_{0}^{\prime}(0)^{2}+3 \Delta_{0}^{\prime}(0) \Delta_{0}^{\prime \prime}(0)^{2}\right] I_{r}  \tag{92}\\
& \\
& \left.\quad+\mathcal{O}\left(\Delta_{0}^{4}\right)\right\}
\end{align*}
$$

The following step is to replace $\Delta_{0}(w)$ by $\Delta_{\text {eff }}(w)$ using Eq. (34). In the next step, we use a generalization of Eq. (35)

$$
\begin{equation*}
\Delta_{\mathrm{eff}}(w)=\frac{m^{-2 \zeta}}{\epsilon I_{1} \lambda^{2}} \tilde{\Delta}\left(\lambda w m^{\zeta}\right) \tag{93}
\end{equation*}
$$

The factor of $\lambda$ is a number which can be chosen freely, due to the invariance of the $\beta$-function under this rescaling. (The reader easily checks that $\tilde{\Delta}(w)$ solves the RG flow equation (36), independently of $\lambda$.) $\lambda$ is fixed by the experiment or simulation. The easiest way to achieve this is to divide Eq. (93) by its first $w$ derivative,

$$
\begin{equation*}
\frac{m^{-\zeta}}{\lambda} \frac{\tilde{\Delta}(0)}{\left|\tilde{\Delta}^{\prime}\left(0^{+}\right)\right|}=\frac{\Delta_{\mathrm{eff}}(w)}{\left|\Delta_{\mathrm{eff}}^{\prime}(w)\right|}=: \rho_{m} \tag{94}
\end{equation*}
$$

The scale $\rho_{m}$ is the correlation length of the effective disorder in the driving direction, measured in section VI. Eq. (94) can be written as

$$
\begin{equation*}
\frac{m^{-\zeta}}{\lambda}=\frac{\rho_{m}}{\tilde{\rho}}, \quad \tilde{\rho}:=\frac{\tilde{\Delta}(0)}{\left|\tilde{\Delta}^{\prime}(0)^{+}\right|} \tag{95}
\end{equation*}
$$

The last combination, $\tilde{\rho}$, is a theoretical object, depending on the choice of scheme to solve the FRG-equation, see the ansatz (39). Using Eq. (95) to eliminate $\lambda$, we rewrite Eq. (93) as

$$
\begin{equation*}
\Delta_{\mathrm{eff}}(w)=\frac{\rho_{m}^{2}}{\epsilon I_{1}} \tilde{\Delta}\left(w / \rho_{m}\right) \tag{96}
\end{equation*}
$$

For the perturbative calculation of $f_{\mathrm{c}}$, there are two important points: First, the integrals $I_{\mathrm{tp}}, I_{\mathrm{ss}}$ and $I_{\mathrm{r}}$ can be combined into the dimensionless combinations

$$
\begin{align*}
\frac{I_{\mathrm{tp}}}{m^{2} \epsilon I_{1}} & =\frac{2}{(\epsilon-2) \epsilon}  \tag{97}\\
\frac{I_{\mathrm{ss}}}{m^{2}\left(\epsilon I_{1}\right)^{2}} & =-\frac{3}{2 \epsilon^{2}}-\frac{9}{4 \epsilon}-\frac{3}{8}\left(7-4 C_{3}\right)+\ldots  \tag{98}\\
\frac{I_{\mathrm{r}}}{m^{2}\left(\epsilon I_{1}\right)^{3}} & =-\frac{1}{\epsilon^{3}}-\frac{17}{6 \epsilon^{2}}+\frac{36 C_{3}-67}{12 \epsilon}+\ldots \tag{99}
\end{align*}
$$

Second, a global factor of $m^{-\zeta} / \lambda=\rho_{m} / \tilde{\rho}$ appears from the single $\Delta^{\prime}\left(0^{+}\right)$, whereas $\Delta^{\prime \prime}(0)$ and $\Delta^{\prime}\left(0^{+}\right) \Delta^{\prime \prime \prime}\left(0^{+}\right)$do not give additional factors of $m^{ \pm \zeta}$ or $\lambda$. Therefore Eq. (92), expressed in terms of the renormalized dimensionless disorder


FIG. 6. The amplitude $\mathcal{B}$ in Eq. (104). 1-loop (blue solid), 2-loop (red, dashed), 3-loop (green, dot-dashed).
$\tilde{\Delta}$, and scales $m$ and $\rho$, reads

$$
\begin{align*}
& m \partial_{m}\left[f_{\mathrm{c}} m^{-2}\right] \\
& =\frac{2}{2-\epsilon} \frac{m^{-\zeta}}{\lambda}\left[-\tilde{\Delta}^{\prime}\left(0^{+}\right)\right. \\
& \quad+3 \tilde{\Delta}^{\prime}\left(0^{+}\right) \tilde{\Delta}^{\prime \prime}(0)\left(1+\epsilon\left(1-C_{3}\right)+\ldots\right) \\
& \quad+\left(C_{3}-6\right) \tilde{\Delta}^{\prime}\left(0^{+}\right)\left(3 \tilde{\Delta}^{\prime \prime}(0)^{2}+2 \tilde{\Delta}^{\prime \prime \prime}(0) \tilde{\Delta}^{\prime}\left(0^{+}\right)\right)+\ldots \\
& \left.\quad+\mathcal{O}\left(\tilde{\Delta}^{4}\right)\right] \\
& =\tilde{\mathcal{A}} \frac{m^{-\zeta}}{\lambda}=\tilde{\mathcal{A}} \frac{\rho_{m}}{\tilde{\rho}} . \tag{100}
\end{align*}
$$

We grouped all terms for a given loop-order in the same line, and expanded as far as necessary in $\epsilon$. Inserting the RF fixed point, we find

$$
\begin{align*}
\tilde{\mathcal{A}}=\frac{2}{2-\epsilon} & {\left[-\tilde{\Delta}^{\prime}\left(0^{+}\right)\right.} \\
& +3 \tilde{\Delta}^{\prime}\left(0^{+}\right) \tilde{\Delta}^{\prime \prime}(0)\left(1+\epsilon\left(1-C_{3}\right)+\ldots\right) \\
& +\left(C_{3}-6\right) \tilde{\Delta}^{\prime}\left(0^{+}\right)\left(3 \tilde{\Delta}^{\prime \prime}(0)^{2}+2 \tilde{\Delta}^{\prime \prime \prime}(0) \tilde{\Delta}^{\prime}(0)\right)+\ldots \\
& \left.+\mathcal{O}\left(\tilde{\Delta}^{4}\right)\right] \\
=\frac{\epsilon}{3}+ & 0.007784584 \epsilon^{2}+0.0170387 \epsilon^{3}+\mathcal{O}\left(\epsilon^{4}\right) \tag{101}
\end{align*}
$$

To solve Eq. (100) we use that $\rho_{m} \sim m^{-\zeta}$, to obtain

$$
\begin{equation*}
\frac{f_{\mathrm{c}}}{m^{2}}=-\frac{\tilde{\mathcal{A}}}{\zeta} \frac{\rho_{m}}{\tilde{\rho}}+m \text {-independent term. } \tag{102}
\end{equation*}
$$

This is equivalent to

$$
\begin{align*}
f_{\mathrm{c}} & =f_{0}-\mathcal{B} \rho_{m} m^{2}+\mathcal{O}\left(m^{2}\right)  \tag{103}\\
\mathcal{B} & :=\frac{\tilde{\mathcal{A}}}{\zeta \tilde{\rho}}=1+0.070061 \epsilon+0.0127138 \epsilon^{2}+\mathcal{O}\left(\epsilon^{3}\right),  \tag{104}\\
\tilde{\rho} & =1-0.190020 \epsilon+0.27397 \epsilon^{2}+\mathcal{O}\left(\epsilon^{3}\right) \tag{105}
\end{align*}
$$



FIG. 7. The combination $\mathcal{B} \zeta \equiv \tilde{\mathcal{A}} / \tilde{\rho}$. 1-loop (blue solid), 2-loop (red, dashed), 3-loop (green, dot-dashed).

|  | $d=1$ | $d=2$ | $d=3$ | $d=4$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathcal{B}$ (direct) | 1.32 | 1.19 | 1.08 | 1 |
| $\zeta \mathcal{B}$ (Padé-Borel) | 1.21 | 0.78 | 0.374 | 0 |
| $\mathcal{B}$ (using $\zeta \mathcal{B}$ ) | 0.96 | 1.036 | 1.048 | 1 |
| $\mathcal{B}$ (estimate and error bars) | $1.3(4)$ | $1.1(1)$ | $1.06(2)$ | 1 |
| $\mathcal{B}$ (numerics) | $1.8(1)$ | - | - | - |

TABLE II. Values for $\mathcal{B}$ using either a direct resummation of $\mathcal{B}$ in Eq. (104) (first line), or the combination $\zeta \mathcal{B}$ (second), which is then divided by the numerically known value of $\zeta$ (third line). The fourth line is an estimate, based on the trend of the direct extrapolation, and our lack of confidence in the precision of the results. For the numerical value see section VID.

Note that we added a term $f_{0} \sim \Lambda^{d-2} \Delta_{0}^{\prime}\left(0^{+}\right)$due to the leading UV divergence of the tadpole diagram (C5) which diverges with the UV cutoff $\Lambda$ as $\Lambda^{d-2}$, times the bare $\Delta_{0}^{\prime}\left(0^{+}\right)$: since this is a strong UV divergence, we used $\Delta^{\prime}\left(0^{+}\right)$at the start of the RG flow, i.e. the microscopic $\Delta_{0}^{\prime}\left(0^{+}\right)$.

We tried resummations for $\tilde{\mathcal{A}}, \mathcal{B}$ and $\zeta \mathcal{B} \equiv \tilde{\mathcal{A}} / \tilde{\rho}$. The series for $\mathcal{B}$ has only positive terms, thus the result increases at each order and we do not know how to resum. The combination $\zeta \mathcal{B}$ reported on Fig. 7 is alternating, and both the diagonal Padé resummation, as the diagonal Padé-Borel resummation lie close to each other and the 1-loop result. We report all 3loop values in table II. The prediction for $\mathcal{B}$ from the extrapolation of $\zeta \mathcal{B}$ uses the best numerically available values for $\zeta$. We tried to improve the extrapolation by linking to the exactly known critical force in dimension $d=0$. As can be seen in appendix D , there is an additional $\ln m$ divergence which prevents from exploiting this result.

## v. CRITICAL FORCE FOR CDWS

## A. Summary of known results

In $[30,77]$ it was shown that charge-density waves at depinning map onto the $O(n)$ model in the limit of $n \rightarrow-2$. The
latter further maps onto loop-erased random walks [30, 7779]. In particular, the dynamic exponent $z$ in CDWs equals the fractal dimension of loop-erased random walks. In $\phi^{4}$ theory, this fractal dimension is given by the dimension of the traceless rank-2 tensor,

$$
\begin{equation*}
\mathcal{T}^{i j}=\phi^{i} \phi^{j}-\delta^{i j} \frac{1}{n} \sum_{k=1}^{n}\left(\phi^{k}\right)^{2} . \tag{106}
\end{equation*}
$$

An interesting question is whether the critical force also has a representation in $\phi^{4}$ theory. We show below that this is the case, and the critical force formally behaves as a logarithmic opeartor in a log-CFT.

## B. Critical force for CDWs

We first consider the CDW side. Following the conventions of Ref. [77], we parameterize the disorder-force correlator $\Delta(u)$ for CDWs as

$$
\begin{equation*}
\Delta(u)=\Delta(0)-\frac{g}{2} u(1-u) \tag{107}
\end{equation*}
$$

The fixed point for the $\beta$-function (36) is

$$
\begin{align*}
\Delta(0) & =\frac{\epsilon}{36}+\frac{\epsilon^{2}}{108}-\frac{\epsilon^{3}}{648}\left(1+18 C_{3}\right)+\mathcal{O}\left(\epsilon^{4}\right)  \tag{108}\\
g & =\frac{\epsilon}{3}+\frac{2 \epsilon^{2}}{9}+\frac{\epsilon^{3}}{9}\left[1-2 C_{3}-2 \zeta(3)\right]+\mathcal{O}\left(\epsilon^{4}\right) . \tag{109}
\end{align*}
$$

Thus $\Delta^{\prime \prime \prime}\left(0^{+}\right)=0$, and Eq. (91) for the critical force simplifies to

$$
\begin{equation*}
f_{\mathrm{c}}=\frac{g}{2} \bigcirc-\frac{g^{2}}{2} \longrightarrow+\frac{3}{2} g^{3} \longleftrightarrow+\ldots \tag{110}
\end{equation*}
$$

## C. $\Gamma^{(2)}$ as a function of $n$

The vector $\phi^{4}$-theory related to CDWs is [77]

$$
\begin{equation*}
\mathcal{S}[\vec{\phi}]=\int_{x} \frac{1}{2}\left[\vec{\phi}(x)^{2}\right]+\frac{m^{2}}{2} \vec{\phi}(x)^{2}+\frac{g}{8}\left[\vec{\phi}(x)^{2}\right]^{2} \tag{111}
\end{equation*}
$$

In these conventions, comparable quantities are related, e.g. the coupling constants $g$ in Eqs. (107) and (111) are identical. Using the same RG scheme, also all RG functions, and the coupling at the fixed point given in Eq. (109) are identical. In this framework, we now evaluate the effective action, $\Gamma[\phi]=$ $\frac{m^{2}}{2} \phi^{2}+\mathcal{O}(g)$, equivalent to $\Gamma^{(2)}=m^{2}+\mathcal{O}(g)$. The result
up to 4-loop order reads

$$
\begin{equation*}
+\frac{g^{2}(n+2)^{2}}{4} \tag{112}
\end{equation*}
$$

By inspection one sees that $f_{\mathrm{c}}$ is related to the dominant contribution in the limit of $n \rightarrow-2$,

where the 4-loop contribution was not checked at depinning. We conjecture that to all orders in perturbation theory

$$
\begin{equation*}
f_{\mathrm{c}}=-\left.\frac{\partial}{\partial n} \Gamma^{(2)}\right|_{n=-2} \tag{115}
\end{equation*}
$$

We now use that

$$
\begin{equation*}
\Gamma^{(2)}(m)=\Gamma^{(2)}(1) m^{\frac{1}{\nu}+\eta} . \tag{116}
\end{equation*}
$$

Since we retain the coefficient in front of $\phi^{2}$, the anomalous dimension $\eta$ of the field is taken out. Eq. (115) implies that

$$
\begin{align*}
& m \partial_{m}\left[f_{\mathrm{c}} m^{-2}\right]=-\frac{\partial}{\partial n}\left[\frac{m \partial}{\partial m} \Gamma^{(2)}(1) m^{\frac{1}{\nu}+\eta-2}\right]_{n=-2} \\
& =-\frac{\partial}{\partial n}\left[\left(\frac{1}{\nu}+\eta-2\right) \Gamma^{(2)}(1) m^{\frac{1}{\nu}+\eta-2}\right]_{n=-2} \\
& =-\frac{\partial}{\partial n}\left[\frac{1}{\nu}+\eta\right]_{n=-2} \tag{117}
\end{align*}
$$

Let us see where these contributions come from in the RG. According to Ref. [80],

$$
\begin{align*}
\frac{1}{\nu}+\eta= & 2+\gamma_{1}  \tag{118}\\
\gamma_{1}= & \mu \partial_{\mu} \ln Z_{1} \quad \text { (eq. (19) of [80]) }  \tag{119}\\
\mathcal{S}= & \int_{x} Z_{1} \frac{m^{2}}{2} \vec{\phi}(x)^{2}+\frac{Z_{2}}{2}[\vec{\nabla} \phi(x)]^{2} \\
& +Z_{4} \frac{16 \pi^{2}}{4!} g \mu^{\epsilon}\left[\vec{\phi}(x)^{2}\right]^{2} \quad \text { (eq. (8) of [80]). } \tag{120}
\end{align*}
$$

Thus $f_{\mathrm{c}}$ is entirely given by the renormalization group factor $Z_{1}$, and does not invoke a renormalization of the field.

Let us finally use Eq. (117), and the 6-loop results of [81].

$$
\begin{align*}
& m \partial_{m}\left[f_{\mathrm{c}} m^{-2}\right]=\frac{\epsilon}{6}+\frac{\epsilon^{2}}{36}+\frac{1}{72}[1-8 \zeta(3)] \epsilon^{3} \\
& +\frac{-70 \zeta(3)+2800 \zeta(5)-6 \pi^{4}+25}{6480} \epsilon^{4} \\
& +\left[\frac{7 \zeta(3)^{2}}{162}-\frac{115 \zeta(3)}{3888}+\frac{29 \zeta(5)}{648}-\frac{833 \zeta(7)}{432}+\frac{5 \pi^{6}}{8748}\right. \\
& \left.\quad-\frac{7 \pi^{4}}{77760}+\frac{7}{7776}\right] \epsilon^{5} \\
& +\left[\frac{344 \zeta(3)^{3}}{729}+\frac{443 \zeta(3)^{2}}{1296}+\frac{953}{486} \zeta(5) \zeta(3)+\frac{7 \pi^{4} \zeta(3)}{9720}\right. \\
& \quad-\frac{305 \zeta(3)}{23328}+\frac{1511 \zeta(5)}{23328}-\frac{17815 \zeta(7)}{46656}+\frac{60451 \zeta(9)}{6561} \\
& + \\
& \left.+\frac{697 Z 35}{540}-\frac{168317 \pi^{8}}{244944000}+\frac{47 \pi^{6}}{489888}-\frac{23 \pi^{4}}{93312}-\frac{5}{15552}\right] \epsilon^{6}  \tag{121}\\
& +\mathcal{O}\left(\epsilon^{7}\right) .
\end{align*}
$$

We find that this agrees up to 3-loop order with the result obtained for depinning.

We finally need to resum this asymptotic series. A relevant dimension is $d=3$, for which we find (with possibly strongly underestimated error bars)

$$
\begin{equation*}
-\partial_{n}\left[\frac{1}{\nu}+\eta\right]_{n=-2, \epsilon=1}=0.1585(5) \tag{122}
\end{equation*}
$$

In dimension $d=2$, we can try to use CFT data in Eq. (117). As we show in appendix B 1 this expression diverges when taking the limit of $n \rightarrow-2$. We conjecture that for $d \leq 2$ the critical force acquires an additional singularity not captured by the $4-\epsilon$ expansion. While our extrapolations are shown on Fig. 8 down to $d=0$, we should thus not trust it for $d \leq 2$.

We saw above that the critical force for CDWs can be calculated in the $O(n)$-model, by deriving $\Gamma^{(2)}$ w.r.t. $n$. This means that the operator in question is not living inside the theory at $n=-2$, but in the larger set of theories around $n=-2$. This sometimes happens in log-CFTs. Here we give one prescriptions to obtain $f_{\mathrm{c}}$ directly inside the theory at $n=-2$,

$$
\begin{equation*}
-\frac{g}{6} \phi_{1}(x)^{3} \mathrm{e}^{-\mathcal{S}} \rightarrow f_{\mathrm{c}} \phi_{1}(x) \tag{123}
\end{equation*}
$$

This means to evaluate the insertion $-\frac{g}{6} \phi_{1}(x)^{3}$ inside the interacting field theory, and retain the perturbative corrections


FIG. 8. $\tilde{\mathcal{A}}_{\mathrm{c}} / \epsilon$ for CDW, given by Eq. (121). The error bars are probably an underestimation, as they do not catch the singularity at $d=2$.
proportional to $\phi_{1}$; their amplitude is $f_{\mathrm{c}}$. This can be achieved by calculating the 2 -point function of $\phi_{1}(x)^{3}$ with $\phi_{1}(y)$. The logic behind this and alternative constructions are discussed in appendix B 2.

## D. CDWs and log-CFT

We start this section with a reminder of logarithms in selfavoiding polymers [68]. The reader not familiar with the subject is invited to consult appendix E or the original publication [68], where the math is worked out. The general idea is that there are two operators $\mathcal{E}$ and $\tilde{\mathcal{E}}$, which at a critical value $n_{\mathrm{c}}$ of a control parameter $n$ have the same full scaling dimension $x_{\mathcal{E}}\left(n_{\mathrm{c}}\right)=x_{\tilde{\mathcal{E}}}\left(n_{\mathrm{c}}\right)$, and moreover become identical as operators. Approaching $n_{\mathrm{c}}$, there are then two differences (or derivatives) one may consider, the difference between the operators $\mathcal{E}$ and $\tilde{\mathcal{E}}$, and the difference between their scaling dimensions $x_{\mathcal{E}}(n)-x_{\tilde{\mathcal{E}}}(n)$. It is a matter of conventions whether these differences vanish or are finite. If they vanish, we should divide by $n-n_{\mathrm{c}}$, equivalent to taking a derivative. Let us write the relations in the conventions of appendix E, where the differences are finite. Define

$$
\begin{align*}
\mathcal{C} & :=\lim _{n \rightarrow n_{\mathrm{c}}}\left[x_{\mathcal{E}}(n)-x_{\tilde{\mathcal{E}}}(n)\right] \mathcal{E} \\
& \equiv \lim _{n \rightarrow n_{\mathrm{c}}}\left[x_{\mathcal{E}}(n)-x_{\tilde{\mathcal{E}}}(n)\right] \tilde{\mathcal{E}}  \tag{124}\\
\mathcal{D} & :=\lim _{n \rightarrow n_{\mathrm{c}}} \mathcal{E}-\tilde{\mathcal{E}} \tag{125}
\end{align*}
$$



FIG. 9. $u(x)-u_{0}$ for $L=64$, and $m L=8$. Between successive samples, the control parameter $w$ is increased by $\rho_{m}$, starting at $w=w_{0}$. We see that augmenting $w$ by the correlation length $\rho_{m}$ (in $u$-direction), $u(x)$ takes a different configuration at a substantial fraction of sites.

In appendix E we show that this implies

$$
\begin{align*}
\langle\mathcal{D}(0) \mathcal{D}(r)\rangle & =-\frac{-2 \alpha \ln (r)+\text { const }}{r^{2 x(0)}}  \tag{126}\\
\langle\mathcal{C}(0) \mathcal{D}(r)\rangle & =\frac{\alpha}{r^{2 x(0)}},  \tag{127}\\
\langle\mathcal{C}(0) \mathcal{C}(r)\rangle & =0  \tag{128}\\
\alpha & :=A(0)\left(x_{\mathcal{E}}^{\prime}(0)-x_{\tilde{\mathcal{E}}}^{\prime}(0)\right) \\
& \equiv \tilde{A}(0)\left(x_{\mathcal{E}}^{\prime}(0)-x_{\tilde{\mathcal{E}}}^{\prime}(0)\right) \tag{129}
\end{align*}
$$

These relations show that logarithms in CFTs are rather common, and appear when one considers derivatives of operators w.r.t. a control parameter, here $n$. This is indeed what has been done in Eq. (115).

## VI. NUMERICAL SIMULATIONS

Let us finally verify our analytical predictions with numerical simulations.

## A. Implementation

We simulate a discretized version of the equation of motion (1) for a string ( $d=1$ ), using code written in Julia [82]. The lattice constant is set to 1 , so that the interface position $u_{x} \in \mathbb{R}$ is a vector of size $L$, with index $x=\{1, \ldots, L\}$. The random forces $F\left(x, u_{x}\right)$ are drawn from a Gaussian distribution with mean zero and variance one, independent for each $x$, and $u_{x} \in \mathbb{Z}$. For non-integer values of $u_{x}$, the force is interpolated linearly between the closest two integer neighbors. The lattice Laplacian is defined by

$$
\begin{equation*}
\nabla^{2} u_{x}:=u_{x-1}+u_{x+1}-2 u_{x} \tag{130}
\end{equation*}
$$

with $u_{0}:=u_{L}$, and $u_{L+1}:=u_{1}$. The total force acting on site $x$ is

$$
\begin{equation*}
F_{\mathrm{tot}}\left(u_{x}\right):=m^{2}\left(w-u_{x}\right)+\nabla^{2} u_{x}+F\left(x, u_{x}\right) \tag{131}
\end{equation*}
$$



FIG. 10. $\tilde{\Delta}(0)-\tilde{\Delta}(w)$ for $m L=4$.

The position $u_{x}$ of the interface at site $x$ is increased if the force acting on it is positive. Due to Middleton's theorem [75], to find the pinning configurations, one can move a monomer until the force acting on it vanishes [83]. This is much more efficient than directly integrating the equation of motion (1).

If monomer $x$ is at position $u \equiv u_{x}$ we can estimate the total force acting on it at position $u+\delta u$ as

$$
\begin{equation*}
F_{\mathrm{tot}}(u+\delta u)=F_{\mathrm{tot}}(u)+\frac{\partial F_{\mathrm{tot}}(x, u)}{\partial u} \delta u \tag{132}
\end{equation*}
$$

This estimate is valid as long as $u_{x}+\delta u$ is smaller than the next integer, and we use the right-hand derivative at integer $u_{x}$. In our algorithm $\frac{\partial F_{\text {tot }}(x, u)}{\partial u}=\partial_{u} F(x, u)-m^{2}-2$. If Eq. (132) is positive when evaluated at the next integer, shift $u$ to this value. If this is not the case, we move by $\left.\delta u=-F_{\text {tot }}(u)\right) / \frac{\partial F_{\text {tot }}(x, u)}{\partial u}$, s.t. at the end of the move $F_{\text {tot }}$ vanishes.

## B. Measurement of $\Delta(w)$

We measure $\Delta(w)$ and its second cumulant (variance). In order to get rid of boundary effects we need to choose the system size big enough. From FRG we know that $\Delta(w)$ becomes independent of $L$ in the limit $m L \rightarrow \infty$. In that limit, the spatial correlation function $\overline{[u(x)-u(y)]^{2}}$ decays exponentially as $\mathrm{e}^{-m|x-y|}$ which we associate with a correlation length $\xi=\frac{1}{m}$. This means that

$$
\begin{align*}
\Delta\left(w, w^{\prime}\right) & :=\frac{m^{4}}{L^{d}} \int_{x} \int_{y} \overline{\left[u_{w}(x)-w\right]\left[u_{w^{\prime}}(y)-w^{\prime}\right]} \\
& =m^{4} \int_{y}{\left.\overline{\left[u_{w}\right.}(x)-w\right]\left[u_{w^{\prime}}(y)-w^{\prime}\right]}^{\mathrm{c}} \\
& \approx m^{4} \xi^{d}{\left.\overline{\left[u_{w}\right.}(x)-w\right]\left[u_{w^{\prime}}(x)-w^{\prime}\right]}_{\mathrm{c}} \tag{133}
\end{align*}
$$

where we used the spatial exponential decay with correlation length $\xi \ll L$. Since the disorder forces $F(x, u)$ are statistically invariant under translations in $u$, Eq. (133) only depends on $\left|w-w^{\prime}\right|$, and we write it as

$$
\begin{equation*}
\Delta\left(w-w^{\prime}\right):=\Delta\left(w, w^{\prime}\right) \tag{134}
\end{equation*}
$$



FIG. 11. $\tilde{\Delta}(0)-\tilde{\Delta}(w)$ for $m L=2,4$ and 6 , in a system of size $L=1024$.

We see that Eq. (133) does not depend on $L$, as long as $\xi \ll L$. As we saw in the analytic part, and will later confirm in the simulations, the function $\Delta(w)$ decays itself approximately exponentially, $\Delta(w) \approx \Delta(0) \mathrm{e}^{-\rho_{m} w}$, which allows us to define an effective disorder correlation length $\rho_{m}$ by (see Fig. 13)

$$
\begin{equation*}
\rho_{m}:=\frac{\Delta(0)}{\left|\Delta^{\prime}\left(0^{+}\right)\right|} . \tag{135}
\end{equation*}
$$

This is close to the more natural looking definition

$$
\begin{equation*}
\rho_{m}^{\prime}:=\frac{\int_{w} w \Delta(w)}{\int_{w} \Delta(w)} \tag{136}
\end{equation*}
$$

We use the definition (135) rather than (136) for two reasons: First, the latter is difficult to use analytically due to the integral; second in simulations or experiments the tail of $\Delta(w)$ has large statistical errors, which gives a large overall error for $\rho_{m}^{\prime}$.

The variance of $\Delta:=\Delta(u)$, which quantifies the statistical error, can (for each $u$ ) be estimated from

$$
\begin{equation*}
\operatorname{var}(\Delta):=\frac{\overline{\Delta^{2}}-\bar{\Delta}^{2}}{N} \tag{137}
\end{equation*}
$$

where $N$ is the number of independent samples.
In order to use Eq. (137) we need to get rid of statistically dependent samples. This is achieved by using

$$
\begin{equation*}
\operatorname{var}(\Delta):=\frac{\overline{\Delta^{2}}-\bar{\Delta}^{2}}{N_{\mathrm{eff}}}, \quad N_{\mathrm{eff}} \approx \frac{N}{3 \rho / \delta w} \tag{138}
\end{equation*}
$$

where $N$ is the number of samples, $\delta w$ the step-size in the simulation between samples taken for $\Delta$, and $\rho_{m}$ the correlation length defined in Eq. (135). This is a conservative estimate, assuming that a new independent sample is generated if $w$ is advanced by $3 \rho_{m}$. It can indeed be seen on the example of Fig. 9 that when advancing $w$ to $w+3 \rho_{m}$, the whole line has moved, which reinforces this argument.

In order to show explicitly in the simulations the independence of $\Delta(w)$ on $L$ in the limit of large $m L$, we need to


FIG. 12. Shape comparison: 1-loop FRG (black, bottom curve), exact solution in dimension $d=0$ (blue solid, top curve), Padé resummed 2-loop result from Eq. (141) in $d=0$ for $\alpha=0.35$ (cyan, dotted), the same Padé in $d=1$ (magenta, dashed), the same Padé in $d=2$ (green, dashed), our simulations in dimension $d=1$ (magenta, solid), the same Padé in $d=3$ (gray, dot-dashed).
eliminate the factors of $m$. By definition, $u_{w}(x)-w$ scales as $m^{-\zeta}$, and $\Delta(w) \sim m^{4-d} u^{2} \sim m^{4-d-2 \zeta}$, where we used $\xi=1 / m$ in Eq. (133). This allows us to define the dimensionless correlator $\tilde{\Delta}(w)$,

$$
\begin{equation*}
\tilde{\Delta}(w):=m^{d-4+2 \zeta} \Delta\left(w m^{\zeta}\right) \tag{139}
\end{equation*}
$$

Note that this definition is not unique, as one can rescale $\tilde{\Delta}(w) \rightarrow \lambda^{-2} \tilde{\Delta}(w \lambda)$.

Before considering the results of the numerical simulations, there is a last point we need to address: Eq. (133) contains a connected average, so one should measure $\overline{u_{w}(x)-w}$ first. This can be avoided, by sampling the combination
$\Delta(0)-\Delta(w)=\frac{1}{2} \frac{m^{4}}{L^{d}} \int_{x} \int_{y}{\overline{\left[u_{w}(x)-w-u_{w^{\prime}}(y)+w^{\prime}\right]^{2}}}^{\mathrm{c}}$.
It is this combination we display on Figs. 10 and 11. Fig. 10 shows that the limit of $L \rightarrow \infty$ exists, at fixed $m L$. While a system of size $L=64$ is certainly too small, $L=512$ is


FIG. 13. $\tilde{\Delta}(w)$ for $m L=4$ (blue, top curve) and $m L=6$ (red).


FIG. 14. Shape comparison of $\Delta(w)-\Delta_{\text {1-loop }}(w)$, with colors as in Fig. 12.
large enough to exhibit this limiting behavior. Fig. 11 analyzes what happens when $m L$ is taken larger, at fixed system size $L=1024$. The conclusion is that one should use $m L \geq$ 6 to have negligible finite-size effects, physically caused by system-spanning avalanches.

## C. Comparison of $\Delta(w)$ to the theory

We now compare the shape of $\Delta(w)$ obtained from simulations to results from field theory. This is delicate as a direct $\epsilon$-expansion is badly converging. At 2-loop order, we can use a Padé approximant,

$$
\begin{align*}
\Delta(w) & =\epsilon \Delta_{1}(w)+\epsilon^{2} \Delta_{2}(w)+\mathcal{O}\left(\epsilon^{3}\right) \\
& =\epsilon \frac{\Delta_{1}(w)+\alpha \epsilon \Delta_{2}(w)}{1+\epsilon(\alpha-1) \frac{\Delta_{2}(w)}{\Delta_{1}(w)}}+\mathcal{O}\left(\epsilon^{3}\right) . \tag{141}
\end{align*}
$$

Our strategy is to use $\alpha$ to improve convergence; more specifically, we choose $\alpha$, s.t. in $d=0$ we recover as precisely as possible the exact solution of [84]. As can be seen on Fig. 12, this is achieved for $\alpha=0.35$. Using this value of $\alpha$, we predict the shape of $\Delta(w)$ in $d=1$, see Fig. 12. This approach works well at two loops for which it was used in [8]. In contrast, we were not able to properly resum the $\epsilon$-expansion for $\Delta(w)$ at 3-loop order. Our failed attempts, using Padé resummation and rescaling invariance for optimization, are documented in appendix $F$.

We finally compare our simulation result (for $m L=6$, $L=1024$ ) in dimension $d=1$ to the simulation results from Ref. [85] in $d=1(L=8192)$. As can be seen on Fig. 12 both simulations agree well. We also show simulation results in $d=2$. From experiments [8] and continuity of the curves, we expect $\Delta(w)$ in $d=2$ to lie between its counterparts in dimensions $d=1$ and $d=4$. As figure 12 shows, this does not seem to be the case. We expect the system size used in Ref. [85] to be too small for $\Delta(w)$ to be in the asymptotic regime.


FIG. 15. $\hat{\rho}$ as a function of $m^{-\zeta}$, for different $m L$, and different system sizes. The larger systems are to the right.

## D. Critical force

We finally compare predictions to simulations for the critical force, defined as

$$
\begin{equation*}
f_{\mathrm{c}}=m^{2} \overline{\left(w-u_{w}\right)} \tag{142}
\end{equation*}
$$

For large enough $m L$, it does not depend on $L$ for the same reasons as $\Delta(w)$. Eq. (104) predicts that

$$
\begin{equation*}
f_{\mathrm{c}}=f_{\mathrm{c}}^{0}-\mathcal{B} m^{2} \rho_{m}+\mathcal{O}\left(m^{2}\right) \tag{143}
\end{equation*}
$$

where $\rho_{m}$ is

$$
\begin{equation*}
\rho_{m}=\frac{\Delta(0)}{\left|\Delta^{\prime}\left(0^{+}\right)\right|}=: \hat{\rho} m^{-\zeta} \tag{144}
\end{equation*}
$$

In order to find $\hat{\rho}$ (a numerical value of the simulation) we plot $\hat{\rho}=\rho_{m} m^{\zeta}$, which we evaluate for small $m$. On Fig. 15 we find that

$$
\begin{equation*}
\hat{\rho}=0.531 \pm 0.021 \tag{145}
\end{equation*}
$$

On Fig. 16 we then plot $f_{\mathrm{c}} m^{\zeta-2}$ against $m^{\zeta-2}$, which yields

$$
\begin{equation*}
b \equiv \mathcal{B} \hat{\rho}=0.970 \pm 0.015 \tag{146}
\end{equation*}
$$

As we see on Fig. 16, for small $m$ the critical force $f_{\mathrm{c}}(m)$ depends linearly on $m^{2-\zeta}$. From that we deduce that the $\mathcal{O}\left(m^{2}\right)$ in Eq. (103) is seemingly very small or absent. Together with the results for $\hat{\rho}$ shown on Fig. 16, this gives our final result for $\mathcal{B}$ as

$$
\begin{equation*}
\mathcal{B}=1.8 \pm 0.1 \tag{147}
\end{equation*}
$$

This is in reasonable agreement with the values reported in section IV D.

## VII. CONCLUSIONS

In this work we calculated the roughness exponent $\zeta$ to 3loop order. Using analytic information in dimension $d=0$


FIG. 16. $f_{\mathrm{c}}$ as a function of $m^{2-\zeta}$ for $m L=4$. The fit used to extrapolate to $m=0$ is via an exponential function, $f_{\mathrm{c}}=f_{\mathrm{c}}^{0} \mathrm{e}^{-b m^{2-\zeta}}$, with the two fit parameters $f_{\mathrm{c}}^{0}$ and $b$. The slope indicated with a dashed line is minus $b \equiv \mathcal{B} \hat{\rho}$ as given in Eq. (146).
and Borel resummation allows us to give excellent values for the roughness $\zeta$ in all dimensions, including $d=1$. The predictive power for the shape of the renormalized disorder correlator is weaker: we estimate it to be good in dimensions $d=3$, satisfactory in $d=2$, but insufficient in dimension $d=1$. It is not clear how to implement a Borel resummation for a whole function.

We further considered the critical force at depinning, and showed that it has a universal amplitude predicted by the field theory. Our numerical simulations in dimension $d=1$ confirm this prediction. This may prove useful in analyzing finitesize corrections in experiments.

We finally considered charge-density waves, which are related to loop-erased random walks and the $O(n)$-model at $n=-2$. We find that the amplitude of the critical force at depinning has a logarithmic dependence on the regularization scale, and that this can be understood in the framework of logCFT.

It would be interesting to also obtain the corrections to the dynamical exponent $z$, and we made some progress in this direction. The diagrams which need to be evaluated are much more involved, as sums of squared independent loop momenta appear in the denominator (see Eq. (26)), and the number of independent diagrams may well be a hundred. For this reason we decided to postpone their analysis to the future.

With the 3-loop result at hand, another open question can be tackled, namely the large-order behavior of functional field theories, i.e. theories where the coupling constant is not a number, but a function. We hope to report progress in this direction soon.

## Appendix A: Loop-Integrals

Here we give all loop integrals necessary for the main text. Some of them are calculated directly, while the remaining ones can be found in [66].

## 1. The integral $I_{1}$

The integral $I_{1}$ is defined as

$$
\begin{equation*}
I_{1}=\bullet \bullet:=\int_{k} \frac{1}{\left(k^{2}+m^{2}\right)^{2}} \tag{A1}
\end{equation*}
$$

It is calculated as follows:

$$
\begin{align*}
I_{1} & =\int_{k} \int_{0}^{\infty} \mathrm{d} \alpha \alpha \mathrm{e}^{-\alpha\left(k^{2}+m^{2}\right)} \\
& =\left(\int_{k} \mathrm{e}^{-k^{2}}\right) \int_{0}^{\infty} \mathrm{d} \alpha \alpha^{1-\frac{d}{2}} \mathrm{e}^{-\alpha m^{2}} \\
& =\left(\int_{k} \mathrm{e}^{-k^{2}}\right) m^{-\epsilon} \Gamma\left(\frac{\epsilon}{2}\right) . \tag{A2}
\end{align*}
$$

This gives us the normalization-constant for higer-loop calculations

$$
\begin{equation*}
\left(\epsilon I_{1}\right)=m^{-\epsilon}\left(\int_{k} \mathrm{e}^{-k^{2}}\right) \epsilon \Gamma\left(\frac{\epsilon}{2}\right) . \tag{A3}
\end{equation*}
$$

## 2. The tadpole diagram $I_{\mathrm{t}_{\mathrm{p}}}$

Using that

$$
\begin{equation*}
-\frac{\partial}{\partial\left(m^{2}\right)} \bigcirc=\bullet \tag{A4}
\end{equation*}
$$

we get by integration that

$$
\begin{equation*}
\bigcirc=\frac{2 m^{2}}{(d-4)(d-2)}\left(\epsilon I_{1}\right) . \tag{A5}
\end{equation*}
$$

## 3. The integral $I_{A}$

$$
\begin{align*}
& I_{A}= \\
& =\left[\frac{1}{2 \epsilon^{2}}+\frac{1}{4 \epsilon}+\frac{27+3 \psi^{\prime}\left(\frac{5}{6}\right)-3 \psi^{\prime}\left(\frac{1}{3}\right)-4 \pi^{2}}{216}+\mathcal{O}(\epsilon)\right]\left(\epsilon I_{1}\right)^{2} \\
& =\left[\frac{1}{2 \epsilon^{2}}+\frac{1}{4 \epsilon}+\frac{1-4 C_{3}}{8}+\mathcal{O}(\epsilon)\right]\left(\epsilon I_{1}\right)^{2} \tag{A6}
\end{align*}
$$

In the first line we gave the raw result obtained via computer algebra [66]. The reflection properties of the $\Gamma$-function combined with the duplication and triplication-formulas [86], give non-trivial relations, which following [66, 67], are used to combine all non-trivial terms into a single number, $C_{3}$ :

$$
\begin{align*}
\psi^{\prime}\left(\frac{5}{6}\right)-\psi^{\prime}\left(\frac{1}{3}\right) & =4 \pi^{2}-5 \psi^{\prime}\left(\frac{1}{3}\right)+\psi^{\prime}\left(\frac{2}{3}\right),  \tag{A7}\\
\psi^{\prime}\left(\frac{1}{3}\right)+\psi^{\prime}\left(\frac{2}{3}\right) & =\frac{4 \pi^{2}}{3},  \tag{A8}\\
\psi^{\prime}\left(\frac{1}{6}\right)+\psi^{\prime}\left(\frac{5}{6}\right) & =4 \pi^{2}  \tag{A9}\\
C_{3}=\frac{\psi^{\prime}\left(\frac{1}{3}\right)}{6}-\frac{\pi^{2}}{9} & \approx 0.585977 . \tag{A10}
\end{align*}
$$

## 4. The sunset diagram

$$
\begin{equation*}
I_{\mathrm{ss}}=\longleftrightarrow \tag{A11}
\end{equation*}
$$

This diagram can be reduced to $I_{A}$ given in Eq. (A6).


Using Eq. (A6) this implies

$$
\begin{equation*}
I_{\mathrm{SS}}=m^{2}\left[-\frac{3}{2 \epsilon^{2}}-\frac{9}{4 \epsilon}-\frac{3\left(7-4 C_{3}\right)}{8}+\ldots\right]\left(\epsilon I_{1}\right)^{2} . \tag{A13}
\end{equation*}
$$

## 5. The integral $I_{m} \equiv I_{o}$

$$
\begin{align*}
I_{m} & =0 . \\
& =\left[\frac{1}{3 \epsilon^{3}}+\frac{1}{3 \epsilon^{2}}+\frac{1-6 C_{3}}{6 \epsilon}+\mathcal{O}(\epsilon)\right]\left(\epsilon I_{1}\right)^{3} . \tag{A14}
\end{align*}
$$

## 6. The star integral $I_{i}$

$$
\begin{align*}
I_{i}= & \frac{\zeta(3)}{2 \epsilon}\left(\epsilon I_{1}\right)^{3}+\mathcal{O}\left(\epsilon^{0}\right) \\
& =\frac{0.601028}{\epsilon}\left(\epsilon I_{1}\right)^{3}+\mathcal{O}\left(\epsilon^{0}\right) \tag{A15}
\end{align*}
$$

## 7. The integral $I_{j}$

$$
\begin{equation*}
I_{j}=\overbrace{0}=\left[\frac{1}{3 \epsilon^{3}}+\frac{1}{6 \epsilon^{2}}+\frac{1}{12 \epsilon}+\ldots\right]\left(\epsilon I_{1}\right)^{3} \text {. } \tag{A16}
\end{equation*}
$$

## 8. The integral $I_{l}$

$$
\begin{align*}
I_{l} & = \\
& =\left[\frac{1}{6 \epsilon^{3}}+\frac{1}{4 \epsilon^{2}}+\frac{7-12 C_{3}}{24 \epsilon}+\mathcal{O}(\epsilon)\right]\left(\epsilon I_{1}\right)^{3} . \tag{A17}
\end{align*}
$$

## 9. The integral $I_{r}$



This integral can be reduced to known integrals via a derivative w.r.t. $m^{2}$ :


$$
\begin{equation*}
=\left[\frac{1}{\epsilon^{3}}+\frac{4}{3 \epsilon^{2}}+\frac{\frac{4}{3}-3 C_{3}}{\epsilon}+\mathcal{O}\left(\epsilon^{0}\right)\right]\left(\epsilon I_{1}\right)^{3} . \tag{A19}
\end{equation*}
$$

Integrating yields
$I_{r}=0$

$$
\begin{equation*}
=m^{2}\left(\epsilon I_{1}\right)^{3}\left[-\frac{1}{\epsilon^{3}}-\frac{17}{6 \epsilon^{2}}+\frac{36 C_{3}-67}{12 \epsilon}+\mathcal{O}\left(\epsilon^{0}\right)\right] . \tag{A20}
\end{equation*}
$$

## 10. The integral $I_{1}$ for a finite system

Define

$$
\begin{align*}
I_{1}^{\text {discrete }}(m, L, d) & :=\frac{1}{L^{d}} \sum_{\vec{n}} \frac{1}{\left[\left(\frac{2 \pi \vec{n}}{L}\right)^{2}+m^{2}\right]^{2}} \\
& =\frac{1}{m^{4} L^{d}} \sum_{\vec{n}} \frac{1}{\left[\left(\frac{2 \pi \vec{n}}{m L}\right)^{2}+1\right]^{2}} \tag{A21}
\end{align*}
$$

If $m L \gg 1$, this can be approximated by an integral $\sum_{\vec{n}} \rightarrow$ $\int \mathrm{d}^{d} \vec{n}$

$$
\begin{align*}
I_{1}^{\text {discrete }}(m, L, d) & =\frac{(m L)^{d}}{m^{4} L^{d}} \int \frac{\mathrm{~d}^{d} \vec{n}}{(2 \pi)^{d}} \frac{1}{\left(\vec{n}^{2}+1\right)^{2}} \\
& =m^{-\epsilon} \int \frac{\mathrm{d}^{d} \vec{n}}{(2 \pi)^{d}} \frac{1}{\left(\vec{n}^{2}+1\right)^{2}} \tag{A22}
\end{align*}
$$

This integral is given in Eq. (A2). On the other hand,

$$
\begin{align*}
& I_{1}^{\text {discrete }}(m, L, d)=L^{4-d} \sum_{\vec{n}} \frac{1}{\left[(2 \pi \vec{n})^{2}+(m L)^{2}\right]^{2}} \\
& =L^{4-d} \int_{s>0} s\left[\sum_{n=-\infty}^{\infty} \mathrm{e}^{-s(2 \pi n)^{2}}\right] \mathrm{e}^{-s(m L)^{2}} \\
& =L^{4-d} \int_{s>0} s \vartheta_{3}\left(0, e^{-4 \pi^{2} s}\right)^{d} \mathrm{e}^{-s(m L)^{2}} \tag{A23}
\end{align*}
$$

Therefore

$$
\begin{align*}
\mathcal{I}_{1}(m L, d):= & m^{4} L^{d} I_{1}^{\mathrm{discrete}}(m, L, d) \\
& =(m L)^{4} \int_{s>0} s \vartheta_{3}\left(0, e^{-4 \pi^{2} s}\right)^{d} \mathrm{e}^{-s(m L)^{2}} \\
& =\int_{s>0} s \vartheta_{3}\left(0, e^{-4 \pi^{2} s /(m L)^{2}}\right)^{d} \mathrm{e}^{-s} . \tag{A24}
\end{align*}
$$

For small $m L$ one has

$$
\begin{equation*}
\lim _{x \rightarrow 0} \mathcal{I}_{1}(x, d)=1 \tag{A25}
\end{equation*}
$$

In the limit of large $m L$ this gives

$$
\begin{align*}
& \mathcal{I}_{1}(m L, d) \simeq \frac{1}{(4 \pi)^{d / 2}} \Gamma\left(\frac{4-d}{2}\right)(m L)^{d}  \tag{A26}\\
& \frac{\Gamma\left(\frac{4-d}{2}\right)}{(4 \pi)^{d / 2}}=\left\{\begin{array}{l}
\frac{1}{4} \text { in } d=1 \\
\frac{1}{4 \pi} \text { in } d=2 \\
\frac{1}{8 \pi} \text { in } d=3
\end{array}\right. \tag{A27}
\end{align*}
$$

## Appendix B: Details for CDWs

1. $f_{\mathrm{c}}$ for CDWs in the limit of $d \rightarrow 2$

In $d=2$ we have

$$
\begin{align*}
\nu & =\frac{1}{2-2 h_{1,3}}=\frac{1}{4}\left(1+\frac{\pi}{\arccos \left(\frac{n}{2}\right)}\right)  \tag{B1}\\
\eta & =4 h_{\frac{1}{2}, 0} \\
& =\frac{5}{4}-\frac{3 \arccos \left(\frac{n}{2}\right)}{4 \pi}-\frac{\pi}{\arccos \left(\frac{n}{2}\right)+\pi} \tag{B2}
\end{align*}
$$

Sadly,

$$
\begin{equation*}
-\partial_{n}\left[\frac{1}{\nu}+\eta\right]_{d=2} \sim \frac{1}{\sqrt{n+2}} \tag{B3}
\end{equation*}
$$

This may be related to the naturally appearing explicit factor of $1 /(2-\epsilon)$. The latter comes when relating diagrams for $f_{\mathrm{c}}$ to derivatives of known diagrams correcting the disorder. Undoing this integration then leads to a factor of $1 /(2-\epsilon)=$ $1 /(d-2)$, see e.g. Eq. (A5).

## 2. The critical force as an observables inside the theory at

$$
n=-2
$$

We find that Eq. (115) can be calculated as follows in the theory at $n=-2$ :

$$
\begin{equation*}
-\left.\frac{g}{2}\left\langle\phi_{2}(x) \phi_{1}(x)^{2} \mathrm{e}^{-\frac{g}{8} \int\left(\vec{\phi}^{2}\right)^{2}}\right\rangle_{0}\right|_{n=-2}=f_{\mathrm{c}} \phi_{2} \tag{B4}
\end{equation*}
$$

In principle one should retain only 1PI diagrams, but this seems not to be necessary. The reason is probably that disconnected and 1PR diagrams have additional factors of $(n+2)$. The idea behind this contraction is to apply $\partial_{n} \phi^{2}$ to the interaction, which leads to something like $\phi_{1}^{2}\left(\vec{\phi}^{2}\right)$. The "additional component" is represented by $\phi_{1}^{2}$; the problem is that it should not be equal to the other fields in the interaction. So the idea is to start constructing $\Gamma^{(2)}$ by selecting one external leg with component number 2 , and then restricting the multiplying factor of $\vec{\phi}^{2}$ to a distinct component. The reason for
pulling out only one external (uncontracted) field is that otherwise we could either derive twice the same vertex or two vertices each once, which would complicate the writing.

An alternative formula is

$$
\begin{align*}
& -\left.\frac{g}{8}\left\langle\left[\phi_{1}(x)-\phi_{2}(x)\right]\left[\phi_{1}(x)^{2}+\phi_{2}(x)^{2}\right] \mathrm{e}^{-\frac{g}{8} \int\left(\vec{\phi}^{2}\right)^{2}}\right\rangle_{0}\right|_{n=-2} \\
& =f_{\mathrm{c}}\left(\phi_{1}-\phi_{2}\right) \tag{B5}
\end{align*}
$$

I.e. we drop the space dependence as usual. Another alternative is

$$
\begin{equation*}
-\frac{g}{6} \sum_{i} \phi_{i}(x)^{3} \mathrm{e}^{-\mathcal{S}} \rightarrow f_{\mathrm{c}} \sum_{i} \phi_{i} \tag{B6}
\end{equation*}
$$

Still another alternative is

$$
\begin{equation*}
-\frac{g}{6} \phi_{1}(x)^{3} \mathrm{e}^{-\mathcal{S}} \rightarrow f_{\mathrm{c}} \phi_{1} \tag{B7}
\end{equation*}
$$

This is given in the main text.

## 3. The critical force with complex fields

This can also be done with $N$ complex fields in the limit of $N \rightarrow-1$. We use the action

$$
\begin{equation*}
\mathcal{S}=\int_{x} \nabla \vec{\phi}^{*}(x) \nabla \vec{\phi}(x)+m^{2} \vec{\phi}^{*}(x) \vec{\phi}(x)+\frac{g}{2}\left[\vec{\phi}^{*}(x) \vec{\phi}(x]^{2}\right. \tag{B8}
\end{equation*}
$$

We find up to 4-loop order

$$
\begin{equation*}
-\left.\frac{g}{2} \phi_{1}^{*}(x) \phi_{2}^{*}(x) \phi_{2}(x) \mathrm{e}^{-\mathcal{S}}\right|_{N=-1} \rightarrow f_{\mathrm{c}} \phi_{1}^{*} \tag{B9}
\end{equation*}
$$

Another option is (gain checked up to 4-loop order)

$$
\begin{equation*}
-\left.\frac{g}{4} \phi_{1}^{*}(x) \phi_{1}^{*}(x) \phi_{1}(x) \mathrm{e}^{-\mathcal{S}}\right|_{N=-1}=f_{\mathrm{c}} \phi_{1}^{*} \tag{B10}
\end{equation*}
$$

The rational connecting these two observables is that

$$
\begin{align*}
- & \frac{g}{2} \phi_{1}^{*}(x) \sum_{i} \phi_{i}^{*}(x) \phi_{i}(x) \mathrm{e}^{-\mathcal{S}} \\
= & -\frac{g}{2} \phi_{1}^{*}(x) \phi_{1}^{*}(x) \phi_{1}(x) \mathrm{e}^{-\mathcal{S}} \\
& \left.-\frac{g}{2}(N-1) \phi_{1}^{*}(x) \phi_{2}^{*}(x) \phi_{2}(x)\right) \mathrm{e}^{-\mathcal{S}} \\
\rightarrow & f_{\mathrm{c}} \phi_{1}^{*}[2+(N-1)] \rightarrow 0 \text { at } N=-1 \tag{B11}
\end{align*}
$$

## Appendix C: UV-cutoff dependent contributions to the critical force

In the preceding sections, all diagrams were calculated within dimensional regularization, i.e. without an explicit UV cutoff. However, this is incorrect, as all diagrams have a strong UV-divergence. Here we wish to show that these additional UV-cutoff dependent terms are either independent of $m$, or at least this dependence vanishes when we take $\Lambda$ large.

There are two relatively simple ways to put an UV cutoff,

$$
\begin{align*}
I_{\mathrm{tp}}^{\mathrm{hard}} & :=\bigcirc=\int_{k} \frac{1}{k^{2}+m^{2}} \Theta(|k| \leq \Lambda)  \tag{C1}\\
I_{\mathrm{tp}}^{\mathrm{soft}} & :=\bigcirc=\int_{k} \frac{1}{k^{2}+m^{2}} \mathrm{e}^{-a k^{2}}  \tag{C2}\\
a & =\frac{1}{\Lambda^{2}} \tag{C3}
\end{align*}
$$

where $\Lambda$ is a large-momentum scale, of the same ingenering dimension as $m$. The soft cutoff gives

$$
\begin{align*}
\frac{I_{\mathrm{tp}}^{\text {soft }}}{\left.\epsilon I_{1}\right|_{m=1}} & =-\frac{\left(2-\frac{d}{2}\right) \Lambda^{d-2} e^{a m^{2}} E_{\frac{d}{2}}\left(m^{2} / \Lambda^{2}\right)}{(d-4) \Gamma\left(3-\frac{d}{2}\right)} \\
& =\frac{\Lambda^{d-2}}{(d-2) \Gamma\left(3-\frac{d}{2}\right)}+\frac{2 m^{d-2}}{(d-4)(d-2)}+\mathcal{O}\left(\Lambda^{-1}\right) \tag{C4}
\end{align*}
$$

where $E$ is the "ExpIntegralE" function.
The hard cutoff gives

$$
\begin{align*}
\frac{I_{\mathrm{tp}}^{\mathrm{hard}}}{\left.\epsilon I_{1}\right|_{m=1}} & =-\frac{4 \Lambda^{d} \sin \left(\frac{\pi d}{2}\right)_{2} F_{1}\left(1, \frac{d}{2} ; \frac{d+2}{2} ;-\frac{\Lambda^{2}}{m^{2}}\right)}{\pi(4-d)(d-2) d m^{2}} \\
& =\frac{4 \Lambda^{d-2} \sin \left(\frac{\pi d}{2}\right)}{\pi(d-4)(d-2)^{2}}+\frac{2 m^{d-2}}{(d-4)(d-2)}+\ldots \tag{C5}
\end{align*}
$$

The strong UV divergence can be extracted by applying a $\Lambda$ derivative,

$$
\begin{align*}
\Lambda \partial_{\Lambda} \frac{I_{\mathrm{tp}}^{\mathrm{hard}}}{\left.\epsilon I_{1}\right|_{m=1}} & =\frac{4 \sin \left(\frac{\pi d}{2}\right)}{\pi(d-4)(d-2)} \times \frac{\Lambda^{d}}{m^{2}+\Lambda^{2}} \\
& \sim \Lambda^{d-2}+\mathcal{O}\left(m^{2}\right) \Lambda^{d-4} \tag{C6}
\end{align*}
$$

The first term is $m$-independent, the second disappears in dimension $d<4$ for $\Lambda \rightarrow \infty$.

Let us now apply this to the 2-loop sunset integral,

$$
\begin{equation*}
\Lambda \partial_{\Lambda} I_{\mathrm{ss}} \sim \frac{3 \Lambda^{d}}{m^{2}+\Lambda^{2}} \times \int_{k} \frac{\Theta(|k| \leq \Lambda) \Theta(|k+\Lambda| \leq \Lambda)}{\left(k^{2}+m^{2}\right)\left[(k+\Lambda)^{2}+m^{2}\right]} \tag{C7}
\end{equation*}
$$

The last factor has no IR singularity at $k \rightarrow 0$ or $k \rightarrow-\Lambda$. It can globally be bounded by $\Lambda^{d-4}$; for $k \rightarrow 0$ it goes as $m^{d-2} \Lambda^{-2}$. All these terms are IR finite in the limit of $\Lambda \rightarrow$ $\infty, m \rightarrow 0$.

For the 3-loop integral, in a hard-cutoff scheme,

where the open circle indicates the momentum vector put to $\Lambda$. For the first, the momentum $\Lambda$ traverses both loops, s.t.


Only the last diagram can give a contribution

$$
\begin{equation*}
\simeq \simeq \Lambda^{-\epsilon} \times \frac{m^{-\epsilon}}{\epsilon} \times m^{d-2} . \tag{C10}
\end{equation*}
$$

We expect the factor of $\frac{m^{-\epsilon}}{\epsilon}$ coming from the subdivergence in the lower loop to be canceled by a counter term of the disorder.

## Appendix D: Critical force in $d=0$

In $d=0$, according to [87]

$$
\begin{align*}
f_{\mathrm{c}} & \simeq \sqrt{2 \ln \left(m^{-2}\right)}+\frac{\gamma_{\mathrm{E}}}{\sqrt{2 \ln \left(m^{-2}\right)}}+\ldots  \tag{70}\\
\rho_{m} & \simeq \frac{1}{m^{2} \sqrt{2 \ln \left(m^{-2}\right)}} \quad(58) \text { of [87] }  \tag{D1}\\
\Delta(w) & =m^{4} \rho_{m}^{2} \tilde{\Delta}\left(w / \rho_{m}\right) \quad(60) \text { of [87] }
\end{align*}
$$

This gives in $d=0$ the two combinations of the main text,

$$
\begin{align*}
\tilde{\mathcal{A}} m^{2} \rho_{m} & =\frac{\tilde{\mathcal{A}}}{\sqrt{2 \ln \left(m^{-2}\right)}}  \tag{D2}\\
\left|f_{\mathrm{c}}\right| & =\sqrt{2 \ln \left(m^{-2}\right)}+\frac{\gamma_{\mathrm{E}}}{\sqrt{2 \ln \left(m^{-2}\right)}}+\ldots \tag{D3}
\end{align*}
$$

To our disappointment, the singularities of these two terms are different, so that we cannot obtain the amplitude $\tilde{\mathcal{A}}$ in $d=0$.

## Appendix E: A worked-out example: logarithmic operators for self-avoiding polymers

Following Cardy [69], (see [68] for an extended review), we consider the logarithms appearing for self-avoiding polymers. To this aim, introduce the polymer density in the $\phi^{4}$ field theory for polymers [88], which transforms as a singlet under $O(n)^{4}$,

$$
\begin{equation*}
\mathcal{E}_{i}:=\phi_{i}^{2}, \quad \mathcal{E}:=\frac{1}{n} \sum_{i=1}^{n} \phi_{i}^{2} \tag{E1}
\end{equation*}
$$

Next consider the traceless vector

$$
\begin{equation*}
\tilde{\mathcal{E}}_{i}:=\phi_{i}^{2}-\frac{1}{n} \sum_{j=1}^{n} \phi_{j}^{2} \equiv \mathcal{E}_{i}-\mathcal{E} \tag{E2}
\end{equation*}
$$

Alternatively one can use the traceless tensor operator, which sits in the same multiplet

$$
\begin{equation*}
\tilde{\mathcal{E}}_{i j}:=\phi_{i} \phi_{j}-\frac{1}{n} \delta_{i j} \sum_{k=1}^{n} \phi_{k}^{2} \tag{E3}
\end{equation*}
$$

${ }^{4}$ Contrary to the conventions Cardy uses in [69] we divided $\mathcal{E}$ by $n$ to simplify notations. These are the conventions he later uses in [68].
In these notations,

$$
\begin{align*}
& x_{\mathcal{E}}(n)=\operatorname{dim}_{\mu}(\mathcal{E})=d-y_{\mathcal{E}}=d-2-\gamma_{\phi^{2}}+\eta  \tag{E4}\\
& x_{\tilde{\mathcal{E}}}(n)=\operatorname{dim}_{\mu}(\tilde{\mathcal{E}})=d-y_{\tilde{\mathcal{E}}}=d-2-\gamma_{\phi \phi}+\eta \tag{E5}
\end{align*}
$$

Then

$$
\begin{align*}
\langle\mathcal{E}(r) \mathcal{E}(0)\rangle & =\frac{1}{n}\left[\left\langle\mathcal{E}_{1}(r) \mathcal{E}_{1}(0)\right\rangle+(n-1)\left\langle\mathcal{E}_{1}(r) \mathcal{E}_{2}(0)\right\rangle\right] \\
& \simeq \frac{A(n)}{n} r^{-2 x_{\mathcal{E}}(n)},  \tag{E6}\\
\left\langle\tilde{\mathcal{E}}_{i}(r) \tilde{\mathcal{E}}_{i}(0)\right\rangle & =\frac{n-1}{n}\left[\left\langle\mathcal{E}_{1}(r) \mathcal{E}_{1}(0)\right\rangle-\left\langle\mathcal{E}_{1}(r) \mathcal{E}_{2}(0)\right\rangle\right] \\
& \simeq \frac{n-1}{n} \tilde{A}(n) r^{-2 x_{\tilde{\mathcal{E}}}(n)} . \tag{E7}
\end{align*}
$$

Since the expressions in the square brackets become identical in the limit of $n \rightarrow 0$,

$$
\begin{equation*}
A(0)=\tilde{A}(0), \quad x_{\mathcal{E}}(0)=x_{\tilde{\mathcal{E}}}(0) \tag{E8}
\end{equation*}
$$

Consider

$$
\begin{align*}
& \langle\mathcal{E}(r) \mathcal{E}(0)\rangle+\left\langle\tilde{\mathcal{E}}_{i}(r) \tilde{\mathcal{E}}_{i}(0)\right\rangle=\left\langle\mathcal{E}_{1}(r) \mathcal{E}_{1}(0)\right\rangle  \tag{E9}\\
& \langle\mathcal{E}(r) \mathcal{E}(0)\rangle-\frac{1}{n-1}\left\langle\tilde{\mathcal{E}}_{i}(r) \tilde{\mathcal{E}}_{i}(0)\right\rangle=\left\langle\mathcal{E}_{1}(r) \mathcal{E}_{2}(0)\right\rangle \tag{E10}
\end{align*}
$$

This implies that

$$
\begin{align*}
\left\langle\mathcal{E}_{1}(r) \mathcal{E}_{2}(0)\right\rangle & =\frac{1}{n}\left[A(n) r^{-2 x_{\mathcal{E}}(n)}-\tilde{A}(n) r^{-2 x_{\tilde{\mathcal{E}}}(n)}\right] \\
& =A(n) r^{-2 x_{\mathcal{E}}(n)} \frac{1}{n}\left[1-\frac{\tilde{A}(n)}{A(n)} r^{2\left[x_{\mathcal{E}}(n)-\tilde{x}_{\mathcal{E}}(n)\right]}\right] \\
& =A(0) r^{-2 x_{\mathcal{E}}(n)}\left[\frac{A^{\prime}(0)-\tilde{A}^{\prime}(0)}{A(0)}+2 \ln (r)\left(x_{\tilde{\mathcal{E}}}^{\prime}(0)-x_{\mathcal{E}}^{\prime}(0)\right)\right]+\mathcal{O}(n), \tag{E11}
\end{align*}
$$

$$
\begin{align*}
& \left\langle\mathcal{E}_{1}(r) \mathcal{E}_{1}(0)\right\rangle-\left\langle\mathcal{E}_{1}(r) \mathcal{E}_{2}(0)\right\rangle=\frac{n}{n-1}\left\langle\tilde{\mathcal{E}}_{i}(r) \tilde{\mathcal{E}}_{i}(0)\right\rangle=r^{-2 x_{\tilde{\mathcal{E}}}(n)} \tilde{A}(n),  \tag{E12}\\
& \left\langle\mathcal{E}_{1}(r) \mathcal{E}_{1}(0)\right\rangle=A(0) r^{-2 x \mathcal{E}(n)}\left[1+\frac{A^{\prime}(0)-\tilde{A}^{\prime}(0)}{A(0)}+2 \ln (r)\left(x_{\tilde{\mathcal{E}}}^{\prime}(0)-x_{\mathcal{E}}^{\prime}(0)\right)\right]+\mathcal{O}(n) \tag{E13}
\end{align*}
$$

As a consequence, the ratio reads

$$
\begin{align*}
& \frac{\left\langle\mathcal{E}_{1}(r) \mathcal{E}_{2}(0)\right\rangle}{\left\langle\mathcal{E}_{1}(r) \mathcal{E}_{1}(0)\right\rangle-\left\langle\mathcal{E}_{1}(r) \mathcal{E}_{2}(0)\right\rangle} \\
& =\frac{A^{\prime}(0)-\tilde{A}^{\prime}(0)}{A(0)}+2 \ln (r)\left(x_{\tilde{\mathcal{E}}}^{\prime}(0)-x_{\mathcal{E}}^{\prime}(0)\right)+\mathcal{O}(n) \tag{E14}
\end{align*}
$$

Denoting by a colored circle a self-avoiding polymer, the l.h.s. can be written as

(E15)
The numerator is the probability that two ring-polymers attached at $x$ and $y$ do not intersect. The denominator is the probability that the ends of two polymers attached at $x$ and $y$ are at a distance $x-y$. According to Eq. (E13) this ratio contains a logarithmic contribution, with a universal amplitude given by the derivatives of the critical exponents. Explicit numerical values are given in Ref. [80].

Let us finally introduce the logarithmic pair. Following Cardy [68], define in the limit of $n \rightarrow 0$,

$$
\begin{align*}
\mathcal{C} & :=\lim _{n \rightarrow 0}\left[x_{\mathcal{E}}(n)-x_{\tilde{\mathcal{E}}}(n)\right] \mathcal{E} \\
& \equiv \lim _{n \rightarrow 0}\left[x_{\mathcal{E}}(n)-x_{\tilde{\mathcal{E}}}(n)\right] \tilde{\mathcal{E}}  \tag{E16}\\
\mathcal{D} & :=\lim _{n \rightarrow 0} \mathcal{E}-\tilde{\mathcal{E}} \tag{E17}
\end{align*}
$$

This implies

$$
\begin{align*}
\langle\mathcal{D}(0) \mathcal{D}(r)\rangle & =\lim _{n \rightarrow 0} \frac{1}{n}\left[A(n) r^{-2 x_{\mathcal{E}}(n)}-\tilde{A}(n) r^{-2 x_{\tilde{\mathcal{E}}}(n)}\right] \\
& =-\frac{-2 \alpha \ln (r)+\mathrm{const}}{r^{2 x(0)}},  \tag{E18}\\
\langle\mathcal{C}(0) \mathcal{D}(r)\rangle & =\lim _{n \rightarrow 0}\left[x_{\mathcal{E}}(n)-x_{\tilde{\mathcal{E}}}(n)\right]\langle\mathcal{E}(0)[\mathcal{E}(r)-\tilde{\mathcal{E}}(r)]\rangle \\
& =\frac{\alpha}{r^{2 x(0)}},  \tag{E19}\\
\langle\mathcal{C}(0) \mathcal{C}(r)\rangle & =\lim _{n \rightarrow 0}\left[x_{\mathcal{E}}(n)-x_{\tilde{\mathcal{E}}}(n)\right]^{2}\langle\mathcal{E}(0) \mathcal{E}(r)\rangle=0 .(\mathrm{E} 20  \tag{E20}\\
\alpha & =A(0)\left(x_{\mathcal{E}}^{\prime}(0)-x_{\tilde{\mathcal{E}}}^{\prime}(0)\right) \\
& \equiv \tilde{A}(0)\left(x_{\mathcal{E}}^{\prime}(0)-x_{\tilde{\mathcal{E}}}^{\prime}(0)\right) . \tag{E21}
\end{align*}
$$

$(\mathcal{C}, \mathcal{D})$ forms a logarithmic pair. Denoting the dilation operator by $\mathbb{D}$, away from the point of degeneracy $n=0$,

$$
\begin{align*}
& \mathbb{D} \circ \mathcal{E}=x_{\mathcal{E}}(n) \mathcal{E}  \tag{E22}\\
& \mathbb{D} \circ \tilde{\mathcal{E}}=x_{\tilde{\mathcal{E}}}(n) \tilde{\mathcal{E}} \tag{E23}
\end{align*}
$$



FIG. 17. Shape comparison of 1-loop FRG result (black, thick, solid), improved 2-loop FRG result as given by Eq. 141 (magenta dashed), simulation in dimension $d=1$ (magenta), exact solution in dimension $d=0$ (blue), and 3-loop improved FRG results as given by Eq. F1 for values of dimension $d=0,1, \ldots, 3$. The last four curves (orange, dot-dashed) are indistinguishable.

This implies with $x:=x_{\mathcal{E}}(0) \equiv x_{\tilde{\mathcal{E}}}(0)$

$$
\begin{align*}
\mathbb{D} \circ \mathcal{C} & =x \mathcal{C},  \tag{E24}\\
\mathbb{D} \circ \mathcal{D} & =\lim _{n \rightarrow 0} x_{\mathcal{E}}(n) \mathcal{E}-x_{\tilde{\mathcal{E}}}(n) \tilde{\mathcal{E}} \\
& =\lim _{n \rightarrow 0}\left[x_{\mathcal{E}}(n)-x_{\tilde{\mathcal{E}}}(n)\right] \mathcal{E}+x_{\tilde{\mathcal{E}}}(n)[\mathcal{E}-\tilde{\mathcal{E}}] \\
& =\mathcal{C}+x \mathcal{D} . \tag{E25}
\end{align*}
$$

Written in matrix form, the dilatation operator has a (nondiagonalizable) block-Jordan form,

$$
\mathbb{D} \circ\binom{\mathcal{C}}{\mathcal{D}}=\left(\begin{array}{ll}
x & 0  \tag{E26}\\
1 & x
\end{array}\right)\binom{\mathcal{C}}{\mathcal{D}}
$$

## Appendix F: Improvment of 3-loop result

There are two improvements we tried in our comparison between theory and simulations: The first is a Padéresummation, as in Eq. (141), continued to 3-loop order. This strategy failed.

Our second attempt at improvement consisted in replacing

$$
\begin{equation*}
\Delta(w) \rightarrow \lambda^{-2} \Delta(w \lambda), \quad \lambda=1+\alpha \epsilon+\beta \epsilon^{2}+\mathcal{O}\left(\epsilon^{3}\right) \tag{F1}
\end{equation*}
$$

This transformation is an exact property of the RG equation. We then Taylor-expand Eq. (F1) to order $\epsilon^{3}$, and drop the higher-order terms. Let us stress that there is no natural choice
for $\lambda$ : or choice of setting $\Delta(0) \stackrel{!}{=} \epsilon / 3$, forces higher-order corrections to vanish at $w=0$. It is one particular choice, maybe not the best. This procedure helps us enforce some physical properties of $\Delta(w)$, the most important one being that it has its maximum at $w=0$, and then decays linearly for small $w$. We succeeded to achieve this, but we were unable to
tune the $\alpha$ and $\beta$ in order to get close to the analytical solution of [84] in dimension $d=0$, or our simulation results in dimension $d=1$. Moreover, whenever we achieved a monotonic decay around $w=0$, the result for $\Delta(w)$ achieved by this transformation does not seem to depend on the dimension $d$, and the resulting curves lie way beyond the 1-loop curve as can be seen on Fig. 17.
[1] B. Alessandro, C. Beatrice, G. Bertotti and A. Montorsi, Domain-wall dynamics and Barkhausen effect in metallic ferromagnetic materials. I. Theory, J. Appl. Phys. 68 (1990) 2901.
[2] G. Durin and S. Zapperi, Scaling exponents for Barkhausen avalanches in polycrystalline and amorphous ferromagnets, Phys. Rev. Lett. 84 (2000) 4705-4708.
[3] M. Huth, P. Haibach and H. Adrian, Scaling properties of magnetic domain walls in Pt/Co/Pt trilayers on MgO (111), J. Magn. Magn. Mater. 240 (2002) 311-313.
[4] B. Cerruti, G. Durin and S. Zapperi, Hysteresis and noise in ferromagnetic materials with parallel domain walls, Phys. Rev. B 79 (2009) 134429.
[5] V. Jeudy, A. Mougin, S. Bustingorry, W. Savero Torres, J. Gorchon, A. B. Kolton, A. Lemaître and J.-P. Jamet, Universal pinning energy barrier for driven domain walls in thin ferromagnetic films, Phys. Rev. Lett. 117 (2016) 057201.
[6] G. Durin, F. Bohn, M.A. Correa, R.L. Sommer, P. Le Doussal and K.J. Wiese, Quantitative scaling of magnetic avalanches, Phys. Rev. Lett. 117 (2016) 087201, arXiv:1601.01331.
[7] V. Jeudy, R. Díaz Pardo, W. Savero Torres, S. Bustingorry and A. B. Kolton, Pinning of domain walls in thin ferromagnetic films, Phys. Rev. B 98 (2018) 054406.
[8] C. ter Burg, F. Bohn, F. Durin, R.L. Sommer and K.J. Wiese, Force correlations in disordered magnets, Phys. Rev. Lett. 129 (2022) 107205, arXiv:2109.01197.
[9] B. Gutenberg and C.F. Richter, Frequency of earthquakes in California, Bulletin of the Seismological Society of America 34 (1944) 185.
[10] B. Gutenberg and C.F. Richter, Earthquake magnitude, intensity, energy, and acceleration, Bulletin of the Seismological Society of America 46 (1956) 105-145.
[11] Y. Ben-Zion and J.R. Rice, Earthquake failure sequences along a cellular fault zone in a three-dimensional elastic solid containing asperity and nonasperity regions, J. Geophys. Res. 98 (1993) 14109-14131.
[12] J.M. Carlson, J.S. Langer and B.E. Shaw, Dynamics of earthquake faults, Rev. Mod. Phys. 66 (1994) 657-670.
[13] D. Fisher, K. Dahmen, S. Ramanathan and Y. Ben-Zion, Statistics of Earthquakes in Simple Models of Heterogeneous Faults, Phys. Rev. Lett. 78 (1997) 4885-4888.
[14] D.S. Fisher, Collective transport in random media: From superconductors to earthquakes, Phys. Rep. 301 (1998) 113-150.
[15] Y.Y. Kagan, Seismic moment distribution revisited: I. Statistical results, Geophys. J. Int. 148 (2002) 520-541.
[16] E.A. Jagla and A.B. Kolton, The mechanisms of spatial and temporal earthquake clustering, J. Geophys. Res. 115 (2009) B05312, arXiv:0901.1907.
[17] F. Brochard and P.G. De Gennes, Collective modes of a contact line, Langmuir 7 (1991) 3216-3218.
[18] L.A.N. Amaral, A.-L. Barabasi and H.E. Stanley, Critical dynamics of contact line depinning, Phys. Rev. Lett. 73 (1994) 62.
[19] E. Rolley, C. Guthmann, R. Gombrowicz and V. Repain, Roughness of the Contact Line on a Disordered Substrate, Phys. Rev. Lett. 80 (1998) 2865-2868.
[20] A. Prevost, E. Rolley and C. Guthmann, Dynamics of a helium4 meniscus on a strongly disordered cesium substrate, Phys. Rev. B 65 (2002) 064517/1-8.
[21] S. Moulinet, A. Rosso, W. Krauth and E. Rolley, Width distribution of contact lines on a disordered substrate, Phys. Rev. E 69 (2004) 035103, cond-mat/0310173.
[22] E. Rolley and C. Guthmann, Dynamics and hysteresis of the contact line between liquid hydrogen and cesium substrates, Phys. Rev. Lett. 98 (2007) 166105.
[23] A. Rosso and W. Krauth, Roughness at the depinning threshold for a long-range elastic string, Phys. Rev. E 65 (2002) 025101.
[24] C. Bachas, P. Le Doussal and K.J. Wiese, Wetting and minimal surfaces, Phys. Rev. E 75 (2007) 031601, hep-th/0606247.
[25] S. Scheidl and V.M. Vinokur, Driven dynamics of periodic elastic media in disorder, Phys. Rev. E 57 (1998) 2574-2593, condmat/9708222.
[26] K.E. Bassler and M. Paczuski, Simple model of superconducting vortex avalanches, Phys. Rev. Lett. 81 (1998) 3761-3764, cond-mat/9804249.
[27] P. Le Doussal, Z. Ristivojevic and K.J. Wiese, Exact form of the exponential correlation function in the glassy super-rough phase, Phys. Rev. B 87 (2013) 214201, arXiv:1304.4612.
[28] T. Emig and T. Nattermann, Effect of planar defects on the stability of the Bragg glass phase of type-II superconductors, Phys. Rev. Lett. 97 (2006) 177002.
[29] T. Giamarchi and P. Le Doussal, Elastic theory of flux lattices in the presence of weak disorder, Phys. Rev. B 52 (1995) 124270, cond-mat/9501087.
[30] K.J. Wiese and A.A. Fedorenko, Depinning transition of charge-density waves: Mapping onto $O(n)$ symmetric $\phi^{4}$ theory with $n \rightarrow-2$ and loop-erased random walks, Phys. Rev. Lett. 123 (2019) 197601, arXiv:1908.11721.
[31] T. Emig and T. Nattermann, A new disorder-driven roughening transition of charge-density waves and flux-line lattices, Phys. Rev. Lett. 79 (1997) 5090-5093, cond-mat/9708116.
[32] L.W. Chen, L. Balents, M.P.A. Fisher and M.C. Marchetti, Dynamical transition in sliding charge-density waves with quenched disorder, Phys. Rev. B 54 (1996) 12798-12806, cond-mat/9605007.
[33] K.J. Wiese, Theory and experiments for disordered elastic manifolds, depinning, avalanches, and sandpiles, Rep. Prog. Phys. 85 (2022) 086502 (133pp), arXiv:2102.01215.
[34] K. Wilson and J. Kogut, The renormalization group and the ع-expansion, Phys. Rep. 12 (1974) 75-200.
[35] F.J. Wegner and A. Houghton, Renormalization group equation for critical phenomena, Phys. Rev. A 8 (1973) 401-12.
[36] D.S. Fisher, Random fields, random anisotropies, nonlinear sigma models and dimensional reduction, Phys. Rev. B 31 (1985) 7233-51.
[37] D.S. Fisher, Sliding charge-density waves as a dynamical critical phenomena, Phys. Rev. B 31 (1985) 1396-1427.
[38] D.S. Fisher, Interface fluctuations in disordered systems: $5-\epsilon$ expansion, Phys. Rev. Lett. 56 (1986) 1964-97.
[39] A.A. Middleton and D.S. Fisher, Critical behavior of pinned charge-density waves below the threshold for sliding, Phys. Rev. Lett. 66 (1991) 92-5.
[40] O. Narayan and D.S. Fisher, Critical behavior of sliding charge-density waves in 4-epsilon dimensions, Phys. Rev. B 46 (1992) 11520-49.
[41] O. Narayan and D.S. Fisher, Dynamics of sliding chargedensity waves in 4-epsilon dimensions, Phys. Rev. Lett. 68 (1992) 3615-18.
[42] O. Narayan and D.S. Fisher, Threshold critical dynamics of driven interfaces in random media, Phys. Rev. B 48 (1993) 7030-42.
[43] L. Balents and D.S. Fisher, Large- $N$ expansion of $4-\varepsilon$ dimensional oriented manifolds in random media, Phys. Rev. B 48 (1993) 5949-5963.
[44] T. Nattermann, S. Stepanow, L.-H. Tang and H. Leschhorn, Dynamics of interface depinning in a disordered medium, J. Phys. II (France) 2 (1992) 1483-8.
[45] H. Leschhorn, T. Nattermann, S. Stepanow and L.-H. Tang, Driven interface depinning in a disordered medium, Annalen der Physik 509 (1997) 1-34, arXiv:cond-mat/9603114.
[46] P. Chauve, P. Le Doussal and K.J. Wiese, Renormalization of pinned elastic systems: How does it work beyond one loop?, Phys. Rev. Lett. 86 (2001) 1785-1788, cond-mat/0006056.
[47] P. Le Doussal, K.J. Wiese and P. Chauve, 2-loop functional renormalization group analysis of the depinning transition, Phys. Rev. B 66 (2002) 174201, cond-mat/0205108.
[48] P. Le Doussal, K.J. Wiese and P. Chauve, Functional renormalization group and the field theory of disordered elastic systems, Phys. Rev. E 69 (2004) 026112, cond-mat/0304614.
[49] P. Le Doussal and K.J. Wiese, Size distributions of shocks and static avalanches from the functional renormalization group, Phys. Rev. E 79 (2009) 051106, arXiv:0812.1893.
[50] P. Le Doussal, A.A. Middleton and K.J. Wiese, Statistics of static avalanches in a random pinning landscape, Phys. Rev. E 79 (2009) 050101 (R), arXiv:0803.1142.
[51] A. Rosso, P. Le Doussal and K.J. Wiese, Avalanche-size distribution at the depinning transition: A numerical test of the theory, Phys. Rev. B 80 (2009) 144204, arXiv:0904.1123.
[52] P. Le Doussal and K.J. Wiese, First-principle derivation of static avalanche-size distribution, Phys. Rev. E 85 (2011) 061102, arXiv:1111.3172.
[53] P. Le Doussal and K.J. Wiese, Dynamics of avalanches, to be published (2011).
[54] A. Dobrinevski, P. Le Doussal and K.J. Wiese, Non-stationary dynamics of the Alessandro-Beatrice-Bertotti-Montorsi model, Phys. Rev. E 85 (2012) 031105, arXiv:1112.6307.
[55] P. Le Doussal and K.J. Wiese, Distribution of velocities in an avalanche, EPL 97 (2012) 46004, arXiv:1104.2629.
[56] P. Le Doussal, A. Petković and K.J. Wiese, Distribution of velocities and acceleration for a particle in Brownian correlated disorder: Inertial case, Phys. Rev. E 85 (2012) 061116, arXiv:1203.5620.
[57] A. Dobrinevski, P. Le Doussal and K.J. Wiese, Statistics of avalanches with relaxation and Barkhausen noise: A solvable model, Phys. Rev. E 88 (2013) 032106, arXiv:1304.7219.
[58] P. Le Doussal and K.J. Wiese, Avalanche dynamics of elastic interfaces, Phys. Rev. E 88 (2013) 022106, arXiv:1302.4316.
[59] A. Dobrinevski, P. Le Doussal and K.J. Wiese, Avalanche shape and exponents beyond mean-field theory, EPL 108 (2014)

66002, arXiv:1407.7353.
[60] Z. Zhu and K.J. Wiese, The spatial shape of avalanches, Phys. Rev. E 96 (2017) 062116, arXiv:1708.01078.
[61] A.A. Middleton, P. Le Doussal and K.J. Wiese, Measuring functional renormalization group fixed-point functions for pinned manifolds, Phys. Rev. Lett. 98 (2007) 155701, condmat/0606160.
[62] A. Rosso, P. Le Doussal and K.J. Wiese, Numerical calculation of the functional renormalization group fixed-point functions at the depinning transition, Phys. Rev. B 75 (2007) 220201, condmat/0610821.
[63] P. Le Doussal, K.J. Wiese, S. Moulinet and E. Rolley, Height fluctuations of a contact line: A direct measurement of the renormalized disorder correlator, EPL 87 (2009) 56001, arXiv:0904.4156.
[64] K.J. Wiese, M. Bercy, L. Melkonyan and T. Bizebard, Universal force correlations in an RNA-DNA unzipping experiment, Phys. Rev. Research 2 (2020) 043385, arXiv:1909.01319.
[65] C. ter Burg, P. Rissone, M. Rico-Pasto, F. Ritort and K.J. Wiese, Experimental test of Sinai's model in DNA unzipping, Phys. Rev. Lett. 130 (2023) 208401, arXiv:2210.00777.
[66] K.J. Wiese, C. Husemann and P. Le Doussal, Field theory of disordered elastic interfaces at 3-loop order: The $\beta$-function, Nucl. Phys. B 932 (2018) 540-588, arXiv:1801.08483.
[67] C. Husemann and K.J. Wiese, Field theory of disordered elastic interfaces to 3-loop order: Results, Nucl. Phys. B 932 (2018) 589-618, arXiv:1707.09802.
[68] J. Cardy, Logarithmic conformal field theories as limits of ordinary CFTs and some physical applications, J. Phys. A 46 (2013) 494001, arXiv:1302.4279.
[69] J. Cardy, Logarithmic correlations in quenched random magnets and polymers, (1999), cond-mat/9911024.
[70] P.C. Martin, E.D. Siggia and H.A. Rose, Statistical dynamics of classical systems, Phys. Rev. A 8 (1973) 423-437.
[71] H.-K. Janssen, On a Lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties, Z. Phys. B 23 (1976) 377-380.
[72] C. De Dominicis, Techniques de renormalisation de la théorie des champs et dynamique des phénomènes critiques, J. Phys. Colloques 37 (1976) C1-247-253.
[73] H.K. Janssen, Feldtheoretische Methoden in der Statistischen Mechanik, Vorlesungsmanuskript Uni Düsseldorf (1985).
[74] U. Täuber, Critical dynamics: A field theory approach to equilibrium and non-equilibrium scaling behavior, Cambridge University Press, 2012.
[75] A.A. Middleton, Asymptotic uniqueness of the sliding state for charge-density waves, Phys. Rev. Lett. 68 (1992) 670-673.
[76] A. Shapira and K.J. Wiese, Anchored advected interfaces, Oslo model, and roughness at depinning, J. Stat. Mech. 2023 (2023) 063202.
[77] K.J. Wiese and A.A. Fedorenko, Field theories for looperased random walks, Nucl. Phys. B 946 (2019) 114696, arXiv:1802.08830.
[78] T. Helmuth and A. Shapira, Loop-erased random walk as a spin system observable, J. Stat. Phys. 181 (2020) 1306-1322, arXiv:2003.10928.
[79] A. Shapira and K.J. Wiese, An exact mapping between looperased random walks and an interacting field theory with two fermions and one boson, SciPost Phys. 9 (2020) 063, arXiv:2006.07899.
[80] M. Kompaniets and K.J. Wiese, Fractal dimension of critical curves in the $O(n)$-symmetric $\phi^{4}$-model and crossover exponent at 6-loop order: Loop-erased random walks, self-avoiding walks, Ising, XY and Heisenberg models, Phys. Rev. E 101
(2019) 012104, arXiv:1908.07502.
[81] M.V. Kompaniets and E. Panzer, Minimally subtracted six-loop renormalization of $O(n)$-symmetric $\phi^{4}$ theory and critical exponents, Phys. Rev. D 96 (2017) 036016, arXiv:1705.06483.
[82] J. Bezanson, A. Edelman, S. Karpinski and V.B. Shah, Julia: A fresh approach to numerical computing, SIAM Review 59 (2017) 65-98, https://doi.org/10.1137/141000671.
[83] A. Rosso and W. Krauth, Origin of the roughness exponent in elastic strings at the depinning threshold, Phys. Rev. Lett. 87 (2001) 187002, cond-mat/0104198.
[84] P. Le Doussal and K.J. Wiese, Driven particle in a random landscape: disorder correlator, avalanche distribution and extreme value statistics of records, Phys. Rev. E 79 (2009) 051105, arXiv:0808.3217.
[85] G. Mukerjee and K.J. Wiese, Depinning in the quenched Kardar-Parisi-Zhang class II: Field theory, Phys. Rev. E 107 (2022) 054137, arXiv:2207.09037.
[86] M. Abramowitz and A. Stegun, Pocketbook of Mathematical Functions, Harri-Deutsch-Verlag, 1984.
[87] C. ter Burg and K.J. Wiese, Mean-field theories for depinning and their experimental signatures, Phys. Rev. E 103 (2021) 052114, arXiv:2010.16372.
[88] P.-G. De Gennes, Exponents for the excluded volume problem as derived by the Wilson method, Phys. Lett. A 38 (1972) 339340.

## CONTENTS

## I. Introduction

II. Renormalization group analysis 2
A. Field theory of the depinning transition, response function
B. Complications due to the non-analyticity of the
disorder
C. Diagrams correcting the disorder 4
III. The $\beta$-function and its fixed point 4
A. The $\beta$-function 4
B. Fixed point 4
C. 1-loop order 6
D. 2-loop order 6
E. 3-loop order 7
F. Numerical values and resummation 7
G. The $\beta$-function in minimal subtraction 8
IV. The critical force
A. 1 loop ..... 8
B. 2 loop ..... 9
C. 3 loop ..... 9
D. Critical force to 3-loop order and flow-equation ..... 9
V. Critical force for CDWs ..... 11
A. Summary of known results ..... 11
B. Critical force for CDWs ..... 11
C. $\Gamma^{(2)}$ as a function of $n$ ..... 11
D. CDWs and log-CFT ..... 13
VI. Numerical simulations ..... 13
A. Implementation ..... 13
B. Measurement of $\Delta(w)$ ..... 14
C. Comparison of $\Delta(w)$ to the theory ..... 15
D. Critical force ..... 16
VII. Conclusions ..... 16
A. Loop-Integrals ..... 16

1. The integral $I_{1}$ ..... 17
2. The tadpole diagram $I_{\mathrm{tp}}$ ..... 17
3. The integral $I_{A}$ ..... 17
4. The sunset diagram ..... 17
5. The integral $I_{m} \equiv I_{o}$ ..... 17
6. The star integral $I_{i}$ ..... 17
7. The integral $I_{j}$ ..... 17
8. The integral $I_{l}$ ..... 17
9. The integral $I_{r}$ ..... 18
10. The integral $I_{1}$ for a finite system ..... 18
B. Details for CDWs ..... 18
11. $f_{\mathrm{c}}$ for CDWs in the limit of $d \rightarrow 2$ ..... 18
12. The critical force as an observables inside the theory at $n=-2$ ..... 18
13. The critical force with complex fields ..... 19
C. UV-cutoff dependent contributions to the critical force ..... 19
D. Critical force in $d=0$ ..... 20
E. A worked-out example: logarithmic operators for self-avoiding polymers ..... 20
F. Improvment of 3-loop result ..... 21
References ..... 22

[^0]:    ${ }^{1}$ This happens e.g. in DNA peeling or unzipping experiments, where fluctuations of the beed diameter used in the optical trap induce fluctuations in $m^{2}$.

[^1]:    ${ }^{2}$ Note that these relation are rather sensitive to muddling with coefficients: multiplying any of the coefficients with a factor of $b$ shows that the solution depends on $b$ with a factor of at least $0.1 b$ and $\max 1.3 b$. So an error made in $a_{1}, a_{2}$ and $a_{3}$ has a strong impact on the final result.

[^2]:    ${ }^{3}$ The reader can verify that when expanded in $\epsilon$, this equation gives back the original series.

