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Abstract
Be Xt a random walk. We study its span S, i.e. the size of the domain visited up to time t . We
want to know the probability that S reaches 1 for the first time, as well as the density of the
span given t . Analytical results are presented, and checked against numerical simulations.
We then generalize this to include drift, and one or two reflecting boundaries. We also derive
the joint probability of the maximum and minimum of a process. Our results are based on
the diffusion propagator with reflecting or absorbing boundaries, for which a set of useful
formulas is derived.

Keywords Span · Random walk · Diffusion · First passage

1 Introduction

Consider a Brownian motion Xt , starting at X0 = 0, with drift μ, and variance 2,

〈Xt 〉 = μt . (1)〈(
Xt − 〈Xt 〉

)2〉 = 2t . (2)

A sample trajectory is sketched on Fig. 1 (for μ = 0). A key problem in stochastic processes
are the first-passage properties [1–3] in a finite domain, say the unit interval [0, 1]. For a
Brownian, the probability to exit at the upper boundary x = 1 without visiting the lower
boundary at x = 0, while starting at x is

P1(x) = x . (3)

Another key observable is the exit time, starting at x , which behaves as 〈Texit(x)〉0 ∼ x(1−x).
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626 K. J. Wiese

Fig. 1 The random process Xt , with its running max (in orange) and min (in blue) (Color figure online)

Here we consider a different set of observables, namely the span of a process: define the
positive and negative records (a.k.a. the running max and min) as

M+(t) := max
t ′≤t

Xt ′ , (4)

M−(t) := min
t ′≤t

Xt ′ . (5)

These observables are drawn on Fig. 1. The span S(t) is their difference, i.e. the size of the
(compact) domain visited up to time t (Fig. 2),

S(t) := M+(t) − M−(t) . (6)

We study the probability that S(t) becomes 1 for the first time. Curiously, this observable
is rarely treated in the literature, and most of the studies we found are concerned with
questions of convergence of the first moments, which is non-trivial when the process is more
complicated than a Brownian motion: Let us mention the mean first-passage time [4], with
some discrepancies stated in Ref. [5]. The full distribution as a function of times is derived
below. A related but distinct observable is the density of the span at time t , considered in the
classic references [5–8]. A beautiful recent result is the covariance of the span [9].

Onemay ask where span observables actually occur in nature? One example is theHungry
Rabbit Problem. Suppose a hungry and myopic rabbit is released. It will perform a Brownian
motion, until its stomach is full, i.e. the span of its trajectory reaches 1. This is a variant
of the myopic rabbit introduced in [10]. We will give the probability for the time that the
rabbit is no longer hungry analytically, including some drift in the rabbit’s motion, when
e.g. it prefers to move downhill. In a further twist, there can be reflecting walls restricting
the rabbits movement, corresponding to Neumann boundary conditions for the Brownian
motion. One may object that the problem is not realistic, since foraging the rabbit con-
sumes food. We currently have no solution for the latter problem, even though diffusion
with moving boundaries can, at least in principle, be treated via a set of integral equations
[11]; however we do not know of a closed-form solution. A notable exception are expand-
ing boundaries in the limit of large times, where the survival probability can be evaluated
analytically [12].

Another example arises in measuring the exit probability from the strip [0, 1], starting at
x . This problem was studied for fractional Brownian motion in Ref. [13]. The question is
how long one has to run a simulation until the process Xt + x has exited from the unit interval
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Span Observables: “When is a Foraging Rabbit No Longer Hungry?” 627
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Fig. 2 The span S(t) := M+(t) − M−(t) of Xt from Fig. 1

[0, 1], for all x ∈ [0, 1]. We claim that the simulation can be stopped at time t∗ when the
span first reaches 1. To understand this statement, define x∗ as minus the running minimum
M−(t) given in Eq. (5)

x∗ := −M−(t∗) . (7)

Then for t ≤ t∗ one has

min
0≤t≤t∗

Xt + x∗ = 0 and max
0≤t≤t∗

Xt + x∗ = 1 (8)

	⇒ min
0≤t≤t∗

Xt + x > 0 and max
0≤t≤t∗

Xt + x > 1 for x > x∗ (9)

	⇒ min
0≤t≤t∗

Xt + x < 0 and max
0≤t≤t∗

Xt + x < 1 for x < x∗ (10)

The interpretation is as follows: a process starting at x > x∗ first reaches the upper boundary
x = 1 before reaching the lower boundary at x = 0, while a process starting at x < x∗ first
reaches the lower boundary. Finally, for t < t∗ there exist x for which one cannot decide.

A related quantity is the joint density of the running maximum and minimum, given t .
This question is relevant in the analysis of stock-market data [14], where it allows one to
quantify violations of the Markov property.

The span is also relevant in the search of a protein for its binding site on a DNAmolecule.
The idea of facilitated diffusion [15] is to alternatively diffuse along the DNA molecule or
in 3d space, thus optimizing the search.

We also consider reflecting boundary conditions for the Brownian motion. These have
different physical interpretations: For the myopic rabbit introduced above, they are hard
walls it cannot penetrate. For diffusion on a 1-dimensional object, as an DNA molecule,
these are the ends of the molecule. In financial markets, these may be bounds at which an
investor takes out, or has to reintroduce cash.

Finally, the span is not a Markov process, but a process with memory, as it remembers its
positive and negative records. This places our study in the larger context of processes with
memory, of which fractional Brownian motion may be the most relevant one [16–19].

The remainder of this article is organized as follows: we first derive key results for Brow-
nian motion in the unit interval [0, 1], with absorbing boundary conditions at both ends, see
Sect. 2. This is then generalized to one absorbing and one reflecting boundary in Sect. 3, and
to two reflecting ones in Sect. 4. Most of these results are known. We give analytical results
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628 K. J. Wiese

for span observables in Sect. 5, and the joint distribution of running maximum and minimum
in Sect. 6. A generalization to a Brownian motion with one reflecting boundary is presented
in Sect. 7, while two reflecting boundaries are treated in Sect. 8. We conclude in Sect. 9 with
open problems.

2 Basic Formulas for BrownianMotion with Two Absorbing Boundaries

2.1 Solving the Fokker–Planck Equation

Consider a Brownian motion X(t) given by its Langevin equation

∂t Xt = μ + ηt , 〈ηtηt ′ 〉 = 2δ(t − t ′) . (11)

There are absorbing (Dirichlet) boundary conditions both at x = 0, and x = 1. If the
trajectory starts at X0 = x , and ends at Xt = y, then the forward Fokker–Planck equation
reads [1–3]

∂t P
μ
DD(x, y, t) = ∂2

∂ y2
Pμ
DD(x, y, t) − μ

∂

∂ y
Pμ
DD(x, y, t) . (12)

The index “DD” refers to the two absorbing (Dirichlet) boundary conditions at x = 0, and
x = 1. The probability to survive at time t is given by

∫ 1
0 dy PDD(x, y, t). The general

solution of the Fokker–Planck equation (12) can be written as

Pμ
DD(x, y, t) = e

μ(y−x)
2 − μ2 t

4 [P(x − y, t) − P(x + y, t)] . (13)

The key object in this construction is

P(z, t) := 1√
4π t

∞∑
n=−∞

e−(z+2n)2/4t = 1

2
ϑ3

(π

2
z, e−π2t

)
. (14)

ϑ is the elliptic ϑ-function. Using the Poisson summation formula, an alternative form for
P(z, t) is

P(z, t) = 1

2
+

∞∑
m=1

e−m2π2t cos(mπ z) . (15)

To prove the above statements it is enough to remark that Eq. (13) satisfies the Fokker–Planck
equation (12), vanishes at y = 0 and y = 1, and reduces for t → 0 to a δ-function

lim
t→0

Pμ
+ (x, y, t) = δ(x − y) . (16)

The function P(z, t) has the following properties

P(z, t) = P(z + 2, t) = P(−z, t) . (17)

As a consequence,

∂zP(z, t)|z=integer = 0 (18)

It is useful to consider its Laplace-transformed version. We define the Laplace transform of
a function F(t), with t ≥ 0, and marked with a tilde as

F̃(s) := Lt→s [F(t)] =
∫ ∞

0
dt e−st F(t) . (19)
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Span Observables: “When is a Foraging Rabbit No Longer Hungry?” 629

(Note that we use s for the Laplace variable, and S for the span.) This yields for−2 < z < 2

P̃(z, s) = e−√
s|z|

2
√
s

+
[
coth(

√
s) − 1

]
cosh(

√
sz)

2
√
s

= 1

2s
+ 1

12
(2 − 6 |z| + 3z2) + s

720

(−60z2 |z| + 15
(
z2 + 4

)
z2 − 8

) + ...

(20)

And

Lt→s

[
e− μ2 t

4 P(z, t)

]
= P̃

(
z, s + μ2

4

)
. (21)

Note that the combination in square brackets in Eq. (13) can be written as

P(x − y, t) − P(x + y, t) = e−√
s|x−y| − e−√

s(x+y)

2
√
s

−
[
coth(

√
s) − 1

]
sinh(

√
sx) sinh(

√
sy)√

s
. (22)

The form (22) facilitates its integration over x and y, which is useful when concatenating
several propagators [13].

2.2 Boundary Currents and Conservation of Probability

Conservation of probability reads (the variable x is the initial condition, here a dummy
variable)

∂t P
μ
DD(x, y, t) + ∂y J

μ
DD(x, y, t) = 0 . (23)

Jμ
DD is the current, which from Eqs. (12), (13) and (23) can be identified as

Jμ
DD(x, y, t) = (μ − ∂y)P

μ
DD(x, y, t)

= e
μ(y−x)

2 − μ2 t
4

(μ

2
− ∂y

)
[P(x − y, t) − P(x + y, t)] . (24)

Due to the Dirichlet conditions at y = 0 and y = 1, we have
∫ 1

0
dy ∂t P

μ
DD(x, y, t) = Jμ

DD(x, 0, t) − Jμ
DD(x, 1, t) . (25)

Thus, the probability to exit at time t , when starting in x at time 0 reads

PDD
exit (x, t) = Jμ

DD(x, 1, t) − Jμ
DD(x, 0, t)

= 2 e− μ2 t
4

[
e

μ(1−x)
2 ∂xP(1 − x, t) − e− μx

2 ∂xP(x, t)
]
. (26)

The outgoing currents at the upper and lower boundary are

Jμ
DD(x, 1, t) = 2 e− μ2 t

4 e
μ(1−x)

2 ∂xP(1 − x, t) , (27)

−Jμ
DD(x, 0, t) = −2 e− μ2 t

4 e− μx
2 ∂xP(x, t) . (28)

123



630 K. J. Wiese

The Laplace transforms of these outgoing currents are

− J̃μ
DD(x, 0, s) = e− μx

2
sinh

(√
s′(1 − x)

)

sinh(
√
s′)

∣∣∣∣
s′=s+μ2/4

, (29)

J̃μ
DD(x, 1, s) = e

μ(1−x)
2

sinh(
√
s′ x)

sinh(
√
s′)

∣∣∣∣
s′=s+μ2/4

. (30)

2.3 Absorption Probabilities at x = 0 and x = 1

The absorption probabilities at x = 0 and x = 1 are

Pμ
DD,0(x) :=

∫ ∞

0
dt

[−Jμ
DD(x, 0, t)

] = lim
s→0

[
− J̃μ

DD(x, 0, s)
]

= e− μx
2
sinh

(
μ
2 (1 − x)

)

sinh
(

μ
2

) , (31)

Pμ
DD,1(x) :=

∫ ∞

0
dt Jμ

DD(x, 1, t) = lim
s→0

J̃μ
DD(x, 1, s)

= e− 1
2μ(x−1) sinh

(
μx
2

)

sinh
(

μ
2

) . (32)

2.4 Moments of the Absorption Time, Starting at x

Moments of the absorption time are extracted from the Laplace-transformed currents as

〈
Tμ
exit(x)

〉
0 = −∂s

[
J̃μ
DD(x, 1, s) − J̃μ

DD(x, 0, s)
] ∣∣∣

s=0
= eμ(1 − x) − eμ(1−x) + x

(eμ − 1) μ
, (33)

∫ 1

0
dx

〈
Tμ
exit(x)

〉
0 = μ coth

(μ
2
) − 2

2μ2 , (34)
〈
Tμ
exit(x)

2
〉
0

= ∂2s

[
J̃μ
DD(x, 1, s) − J̃μ

DD(x, 0, s)
] ∣∣∣

s=0
,

∫ 1

0
dx

〈
Tμ
exit(x)

2
〉
0

= μ2 + 3μ2csch2( μ
2 ) − 12

3μ4 . (35)

3 Propagator with One Absorbing and One Reflecting Boundary

The propagator with an absorbing (Dirichlet) boundary at y = 0 and a reflecting (Neumann)
one at y = 1 reads

PDN(x, y, t) =
∞∑

n=−∞

(−1)n√
4π t

[
e− (2n+x−y)2

4t − e− (2n+x+y)2

4t

]
. (36)

The generalization to include drift is as in Eq. (13). The Laplace transform of Eq. (36) is
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P̃DN(x, y, s) =
∞∑

n=−∞

(−1)n
(
e−√

s|2n+x−y| − e−√
s|2n+x+y|

)

2
√
s

= sech(
√
s)

2
√
s

[
sinh

(√
s(x + y − 1)

) − sinh
(√

s(|x − y| − 1)
) ]

. (37)

It can also be written as

P̃DN(x, y, s) = 1 − tanh(
√
s)√

s
sinh(

√
sx) sinh(

√
sy) + e−√

s|x−y| − e−√
s|x+y|

2
√
s

. (38)

Expanding in s, we find

P̃DN(x, y, s) = min(x, y) − s

[
xy

(x + y)3 − |x − y|3
12

]
+ ... (39)

The outgoing current at the lower boundary is

J̃DN(x, s) = cosh
(√

s(1 − x)
)

cosh(
√
s)

. (40)

Taylor expanding in s yields

J̃DN(x, s) = 1 − s

(
x − x2

2

)
+ s2

24
(x4 − 4x3 + 8x) + ... (41)

The first term indicates that all trajectories exist, while the time it takes and its secondmoment
are

〈
TDN
exit (x)

〉 = x − x2

2
, (42)

〈
TDN
exit (x)

2〉 = x4 − 4x3 + 8x

12
. (43)

The propagator with a Dirichlet boundary condition at the upper, and a Neumann boundary
condition at the lower end is obtained by replacing x → 1 − x and y → 1 − y.

4 Propagator with Two Reflecting Boundaries

With two reflecting (Neumann) boundary conditions the propagator is

PNN(x, y, t) =
∞∑

n=−∞

1√
4π t

[
e− (2n+x−y)2

4t + e− (2n+x+y)2

4t

]

= 1

2
ϑ3

(π

2
(x − y), e−π2t

)
+ 1

2
ϑ3

(π

2
(x + y), e−π2t

)
. (44)

Laplace transforming yields

P̃NN(x, y, s) = csch(
√
s)

2
√
s

[
cosh

(√
s(|x − y| − 1)

) + cosh
(√

s(x + y − 1)
) ]

. (45)
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5 Probabilities for the Span

5.1 The Probability that the Span Reaches 1 for the First Time

The span was defined in Sect. 1, see formulas (4)-(6). We want to know the probability that
S(t) becomes 1 for the first time. We note this time by T1, and its probability distribution
by PT1(t). There are two contributions, depending on whether the process stops while at its
minimum or maximum. The probability to stop when the process is at its minimum can be
obtained as follows: Consider the outgoing current for the process starting at X0 = x , with
the lower boundary positioned at m1, and the upper boundary at m2, i.e.

Jμ
DD(x,m1,m2, t) = 1

(m2 − m1)2
Jμ(m2−m1)
DD

(
x − m1

m2 − m1
, 0,

t

(m2 − m1)2

)
. (46)

(The scale factor can be understood from the observation that the current is a density in the
starting point times a spatial derivative of a probability.) The probability that the walk reached
m2 before being absorbed at m1 is ∂m2J(x,m1,m2, t). Finally, the probability to have span
1 at time t is this expression, integrated over x between the two boundaries. There is another
term, where the process stops while at its maximum. It is obtained from this first contribution
when exchanging the two boundaries, and replacing μ by −μ. Setting w.l.o.g. m1 = 0 and
m2 = m, the sum of the two terms is

Pμ
T1

(t) = −∂m
1

m2

m∫

0

dx
[
Jμm
DD

(
x

m
, 0,

t

m2

)
+ J−μm

DD

(
x

m
, 0,

t

m2

) ]∣∣∣∣
m=1

= −∂m
1

m

1∫

0

dx
[
Jμm
DD

(
x, 0,

t

m2

)
+ J−μm

DD

(
x, 0,

t

m2

) ]∣∣∣∣
m=1

= (1 + 2t∂t − μ∂μ)

∫ 1

0
dx

[
Jμ
DD(x, 0, t) + J−μ

DD (x, 0, t)
]

. (47)

For μ = 0, this simplifies to [13]

PT1(t) = 2(1 + 2t∂t )
∫ 1

0
dx JDD(x, 0, t) . (48)

Using Eqs. (24) and (13) allows us to rewrite the integral (for μ = 0) as

1∫

0

dx JDD(x, 0, t) =
1∫

0

dx ∂y [P(x − y, t) − P(x + y, t)]

∣∣∣∣
y=0

= −2

1∫

0

dx ∂xP(x, t) = 2 [P(1, t) − P(0, t)] . (49)

Thus

PT1(t) = 4(1 + 2t∂t ) [P(1, t) − P(0, t)] . (50)
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Inserting the definition (14) of P, we get [13]

PT1(t) = 4
(
1 + 2t∂t

) ∞∑
n=−∞

e− (2n+1)2
4t − e− n2

t√
4π t

= 1√
π t3/2

∞∑
n=−∞

(2n + 1)2e− (2n+1)2
4t − 4n2e− n2

t

= 4

√
t

π
∂t

[
ϑ2

(
0, e−1/t) − ϑ3

(
0, e−1/t)] . (51)

With the help of the Poisson-formula transformed Eq. (15) this can be written as [13]

PT1(t) = 8
∞∑
n=0

e−π2(2n+1)2t [2π2(2n + 1)2t − 1
]

. (52)

Integrating w.r.t. t , we obtain the probability that the span has not reached 1 at time t ,

P>
T1(t) = 8

∞∑
n=0

e−π2(2n+1)2t
[

1

π2(2n + 1)2
+ 2t

]
. (53)

This allows us to consider the span of a d-dimensional randomwalk, defined as themaximum
of the span of its d components. The probability that the d-dimensional span has not reached

1 yet is
[
P>
T1

(t)
]d
, thus the probability that the d-dimensional span reaches 1 for the first

time is

Pd
T1(t) = dPT1(t)

[
P>
T1(t)

]d−1
. (54)

The result (52) is compared to a numerical simulation on Fig. 3. Our expansions allow us
to give simple formulas for the small and large-t asymptotics,

PT1(t) � 2e− 1
4t√

π t3/2
+ O(e− 1

t ) , (55)

PT1(t) � e−π2t
[
16π2t − 8 + O(e−8π2t )

]
. (56)

These expansions work in a rather large, and overlapping domain. Its Laplace transform is
[13]

P̃T1(s) = 2(1 + 2s∂s)
∞∑

n=−∞

∫ ∞

0
dt

e− n2
t − e

(2n+1)2
4t√

π t
e−st

= 1

cosh(
√
s/2)2

. (57)

Extracting the moments from the Laplace transform yields

〈T1〉 = 1

4
,

〈
T 2
1

〉 = 1

12
,

〈
T 3
1

〉 = 17

480
, ... (58)

Let us now return to the case with drift in Eq. (47). Since formulas become rather cum-
bersome, we only give one well-converging series expansion, based on the representation
(15),
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634 K. J. Wiese

Fig. 3 The function Pμ
T1

(t). Lines are as given in Eq. (59). The shaded areas are histograms extracted from

numerical simulations of a random walk with time step δt = 10−5, and 106 samples. Black, solid: μ = 0
(numerical test are shown on Fig. 4 of [13]). Green dashed line with yellow histogram: μ = 2. Blue dotted
line with blue histogram: μ = 5. Red, dash-dotted and red histogram: μ = 10 (Color figure online)

Pμ
T1

(t) =
∞∑
n=1

aμ
n + a−μ

n (59)

aμ
n = 4π2n2e−π2n2t− 1

4μ(μt+2)

(
μ2 + 4π2n2

)2
[
2eμ/2

(
8π4n4t + 2π2n2(μ2t − 2) − 3μ2

)

+(−1)n
(
μ2(μ + 6) − 16π4n4t + 4π2n2(μ − μ2t + 2)

)]
. (60)

For μ > 0, the expectation of 〈T1〉 decreases, as does the second moment
〈
T 2
1

〉
. Due to the

symmetry μ → −μ of Eq. (59), this correction is of order μ2. Numerical values are

〈T1〉 = 1

4
− 0.0347μ2 + O(μ4) ,

〈
T 2
1

〉 = 1

12
− 0.00231μ2 + O(μ4) . (61)

Examples for various values of μ are given on Fig. 3.

5.2 Density of the Span

Let us connect to the classical work on the span [5–8]. We will show how to reproduce
formulas (3.7)-(3.8) in [7]. The latter give the density ρt (S) for the span S at time t . In our
formalism, it can be obtained as

ρ
μ
t (m2 − m1) = −∂m1∂m2

m2∫

m1

dx

m2∫

m1

dy Pμ
DD(x, y,m1,m2, t), (62)

where Pμ
DD(x, y,m1,m2, t) is the probability to go from x to y in time t , without being

absorbed by the lower boundary positioned at m1, or the upper boundary positioned at m2.
In terms of the propagator Pμ

DD(x, y, t), this can be written as
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Span Observables: “When is a Foraging Rabbit No Longer Hungry?” 635

Fig. 4 The density ρ
μ
t=1(s), for μ = 0 (black solid line, for a numerical check see Fig. 5 of [13]), μ = 1

(green dashed line, with histogram in yellow), μ = 2 (blue dotted line, histogram in light blue), and μ = 4
(red dot-dashed line, histogram in light red). Numerical validation as for Fig. 3 (Color figure online)

ρ
μ
t (S) = ∂2S

⎡
⎣S

1∫

0

dx

1∫

0

dy PμS
DD(x, y, t/S2)

⎤
⎦ . (63)

We start with μ = 0: Using Eq. (13), and the series expansions (14) and (15) yields after
integration and simplifications two different representations,

ρt (S) = 4√
π t

∞∑
n=1

(−1)n+1n2e− n2S2
4t

= 16t

S3

∞∑
n=0

e− π2(2n+1)2 t
S2

[2π2(2n + 1)2t

S2
− 1

]
. (64)

This is equivalent to Eqs. (3.7–3.8) in [7], if one there replaces t → 2t . (Our variance (2) is
2t instead of t as in [7].) The small and large-S asymptotics are

ρt (S) � 4√
π t

[
e− S2

4t − 4e− S2
t + O

(
e− 9S2

4t

)]
, (65)

ρt (S) � 16t

S5
e− π2 t

S2
[
2π2t − S2

]
+ O

(
s2e− 9π2 t

S2
)

. (66)

Note that inEq. (65)wehave also retained the subleading term for small S,which considerably
improves the numerical accuracy.

Let us now turn to the general case with μ �= 0. There we have using the generating
function (15)

ρ
μ
t (S) = ∂2S

∞∑
n=1

32π2(−1)n+1n2S
[
(−1)ne

μS
2 − 1

]2
e− π2n2 t

S2
− 1

4μ(2S+μt)

(
4π2n2 + μ2S2

)2 . (67)

This formula is checked on Fig. 4. The small-S asymptotics can be obtained by retaining
only the leading term in n. Let us finally note that for large μ, this density tends to

ρ
μ
t (S) → 1√

4π t

[
e− (S−μt)2

4t + e− (S+μt)2

4t

]
, |μ| � 0 . (68)
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Fig. 5 Left: The density ρt=1(S, x) as given in Eq. (72). Right: The density ρ(x) as given in Eq. (77). The
numerical validation (left: orange dots; right: cyan shaded region) was performed with δt = 10−5, and 106

samples (Color figure online)

For μ > 0, the first term is the probability density for the max of the endpoint, supposing
that the minimum is at 0. For μ < 0, the second term arises, with max and min interchanged.
Examples and numerical tests are presented on Fig. 4.

6 Joint Density of Maximum andMinimum

We can also derive the joint density of the maximum M+ ≡ m2 > 0 and minimum M− ≡
m1 < 0, starting at x = 0. In analogy of Eq. (62), this can be written as

ρ
μ
t (m2,m1) = −∂m1∂m2

m2∫

m1

dy Pμ
DD(0, y,m1,m2, t) . (69)

The equivalent of Eq. (63) then becomes

ρ
μ
t (m2,m1) = −∂m1∂m2

1∫

0

dy Pμ(m2−m1)
DD

( −m1
m2−m1

, y, t
(m2−m1)2

)
.

Inserting Eq. (13) and one of the two representations (14) or (15) yields two converging
series expansions. Since in general these expressions are little enlightening, we continue
with μ = 0. To simplify our analysis, we rewrite the density (69) in terms of S := m2 −m1

and x := m1/(m1 − m2):

ρt (x, S) := Sρ0
t

( − xS, (1 − x)S
)
. (70)

Its marginal density coincides with Eq. (64) ,
∫ 1

0
ρt (x, S) dx = ρt (S) . (71)

The two series expansions in question are

ρt (S, x) = 4

S

∞∑
n=0

e− π2(2n+1)2 t
S2

[
cos

(
(2n + 1)xπ

)
(2x − 1)

(
1 − 2π2(2n + 1)2t

S2

)
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+π(2n + 1) sin
(
(2n + 1)xπ

)(
4π2(2n + 1)2t2

S4
+ x(1 − x) − 6

t

S2

)]

= 1√
π t

∂x

∞∑
n=−∞

(−1)nn(n + 1)e− S2(n+x)2
4t . (72)

Interestingly, the latter equation allows us to obtain the marginal distribution of x in closed
form. Since this function is independent of t , we drop the time index:

ρ(x) :=
∫ ∞

0
dS ρ(x, S) = ∂x

∞∑
n=−∞

(−1)n
n(n + 1)

|n + x |

= 1 + ∂x

{
x(1 − x)

2

[
ψ

(
2 − x

2

)
− ψ

(
3 − x

2

)

−ψ

(
x + 1

2

)
+ ψ

(
x + 2

2

)]}
. (73)

This is the density for the relative location of the starting point w.r.t. the domain given by
the maximum and minimum. It is also the distribution of the final position w.r.t. the same
domain. This density is larger at the boundaries, as is easily understood: After a new record,
the particle diffuses away from the record, but the probability density remains higher close
to the last record.

We finally note that a similar question has been asked in reference [20] (see also [3]).

7 The Span with One Reflecting Boundary

Now consider diffusion with a reflecting wall at x = 0. We want to know the probability
density for the span to reach 1 for the first time. For simplicity, we restrict to the drift-free case
μ = 0. We also assume x < 1, since for x > 1 the reflecting boundary can never be reached,
and we recover the result of Sect. 5.1. Suppose the process starts at x , with 0 ≤ x < 1. There
are two possibilities: Either the process first reaches 0, or 1. The probabilities for these two
events are x and 1 − x , respectively. If it first reaches 1, then it almost surely also reaches
1 + δ with δ small before its span becomes 1; as a consequence its minimum is bounded by
δ. Thus it never reaches the lower boundary at x = 0.

Consider the two contributions in turn: The first contribution, when the process never
reaches x = 0, is similar to the one obtained in Eq. (47). It can itself be decomposed into two
sub-contributions, depending on whether, when the span reaches 1, Xt equals its maximum
(case 1a) or minimum (case 1b). We start with case 1a. Denoting JDD(y,m2, t |m1,m2) the
outgoing current at the upper boundary m2, for a particle starting at y, with lower boundary
m1, we have

p1a(x, t) = −
x∫

0

dy ∂m1JDD(y,m2, t |m1,m2)

∣∣∣∣
m2=m1+1

= −
x∫

0

dy ∂m1

[
1

(m2−m1)2
JDD

(
y−m1

m2−m1
, 1,

t

(m2−m1)2

)]m2=1

m1=0
. (74)

123



638 K. J. Wiese

Let us first evaluate its normalization, using that the time-integrated current is the exit prob-
ability,

∫ ∞

0
dt p1a(x, t) = −

∫ x

0
dy ∂m1

y − m1

m2 − m1

∣∣∣∣
m2=1

m1=0
=

∫ x

0
dy (1 − y) = x − x2

2
. (75)

Note that this is smaller than the probability x to exit at the upper boundary. This can be
understood from the fact that the trajectory has to go beyond 1, or more precisely to 1+min,
where min > 0 is the minimum of the trajectory. Continuing with Eq. (74), we obtain

p1a(x, t) = 2
∫ x

0
dy

[
− 2∂yP(1 − y, t) − 2∂y∂tP(1 − y, t) + (1 − y)∂2yP(1 − y, t)

]
.

(76)

Integrating this yields

p1a(x, t) =2
[
P(1, t) − P(1 − x, t)

]
+ 4t∂t

[
P(1, t) − P(1 − x, t)

]

+ 2∂yP(y, t)|y=1 + 2(1 − x)∂xP(1 − x, t) . (77)

(The first term on the last line vanishes). To simplify this expression, introduce the function
R(x, t) defined as

R(x, t) := −2
[
1 + 2t∂t − (1 − x)∂x

]
P(1 − x, t) . (78)

For later reference we also give its Laplace transform

R̃(x, s) = 2
[
1 + 2s∂s + (1 − x)∂x

]
P̃(1 − x, s)

= −cosh
(√

s(1 − x)
)

sinh(
√
s)2

. (79)

Eq. (77) becomes

p1a(x, t) = R(x, t) − R(0, t) . (80)

This is written s.t. R can be thought of as the principal function of the integrand in Eq. (76).
The second contribution where the process never reaches 0 is obtained when the process has
its maximum at 1+ δ with δ > 0, before going down to δ < x , where the process stops (case
1b). By symmetry, this is the same expression as Eq. (74), where all positions x are sent to
1 − x , i.e.

p1b(x, t) = −
1∫

1−x

dy ∂m1JDD(y,m2, t |m1,m2)

∣∣∣∣
m2=m1+1

= −
1∫

1−x

dy ∂m1

[
1

(m2−m1)2
JDD

(
y−m1

m2−m1
, 1,

t

(m2−m1)2

)]m2=1

m1=0
. (81)

The probability for this process is as in Eq. (75) given by the time-integrated current

∫ ∞

0
dt p1b(x, t) = −

∫ 1

1−x
dy ∂m1

y − m1

m2 − m1

∣∣∣∣
m2=1

m1=0
=

∫ 1

1−x
dy (1 − y) = x2

2
. (82)
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Thus, as expected
∫ ∞

0
dt p1(x, t) =

∫ ∞

0
dt p1a(x, t) + p1b(x, t) = x . (83)

Let us continue with the evaluation of p1b(x, t),

p1b(x, t) = 2
∫ 1

1−x
dy

[
− 2∂yP(1 − y, t) − 2∂y∂t P(1 − y, t) + (1 − y)∂2y P(1 − y, t)

]
.

(84)

Integration yields

p1b(x, t) = 2
[
P(x, t) − P(0, t)

]
+ 4t∂t

[
P(x, t) − P(0, t)

]
+ 2x∂xP(x, t) . (85)

In analogy of Eq. (80) this can be written as

p1b(x, t) = R(1, t) − R(1 − x, t) . (86)

The sum of the two contributions p1a and p1b is

p1(x, t) = p1a(x, t) + p1b(x, t)

= 2(1 + 2t∂t ) [P(1, t) − P(0, t) + P(x, t) − P(1−x, t)]

+2x∂xP(x, t) + 2(1−x)∂xP(1−x, t)

= R(x, t) − R(0, t) − R(1 − x, t) + R(1, t) . (87)

Note that for x = 1
2 , one gets p1(x, t) = 1

2 PT1(t).
The second contribution is achieved when the process first reaches the lower boundary. It

can be obtained by folding the probability to first reach the lower boundary, i.e. the outgoing
current at x = 0, with an absorbing boundary both at x = 0 and x = 1, with the outgoing
current at x = 1 with a reflecting boundary at x = 0 and an absorbing one at 1, i.e.

p2(x, t) = −
∫ t

0
dτ JDD(x, 0, τ )JND(0, 1, t − τ) . (88)

Passing to Laplace variables, this reads

p̃2(x, s) = − J̃DD(x, 0, s) J̃ND(0, 1, s) . (89)

We had calculated the currents before,

− J̃DD(x, 0, s) = sinh
(√

s(1 − x)
)

sinh(
√
s)

, (90)

J̃ND(0, 1, s) = 1

cosh(
√
s)

. (91)

This allows us to simplify p̃2(x, s) as

p̃2(x, s) = 2 sinh
(√

s(1 − x)
)

sinh(2
√
s)

. (92)

The inverse Laplace transform of Eq. (89) can be written as

p2(x, t) =
∞∑

n=−∞

e− (1−4n+x)2
4t (1 − 4n + x)√

π t3/2
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Fig. 6 The probability PT1 (t)with a reflecting boundary at 0, and an absorbing one at 1, for x = 0.25, x = 0.5,
and x = 0.75. The green contribution is p1(x, t), while the red one is p2(x, t). Their sum is given in blue.
The dark dashed lines are the analytic curves, while the numerical data are given as shaded regions with their
envelope in the same color. 107 samples where simulated, with a time-step of δt = 10−5 (Color figure online)

= −∂x ϑ3

(
− π

4
(x + 1), e− π2 t

4

)
= −2 ∂x P

(
1 + x

2
,
t

4

)
. (93)

This is checked by evaluating the Laplace transform of each term in the above sum, and then
performing the sum over n.

The probability to first reach the lower boundary is
∫ ∞

0
dt p2(x, t) = 1 − x . (94)

The probability to reach span 1, starting at x , and with a reflecting boundary at x = 0 is
finally obtained as

PND
T1 (x, t) = p1(x, t) + p2(x, t) . (95)

The mean time to reach span 1 is

〈
TND
1 (x)

〉 = 1

2
− x2

4
. (96)

Thus when starting close to the reflecting wall, it takes on average twice as long to reach
span 1, as when starting from far away.

A numerical check for x = 0.25, x = 0.5, and x = 0.75 is presented on Fig. 6.

8 The Span with Two Reflecting Boundaries

Finally, consider two reflecting (Neumann) boundaries at x = 0 and x = a ≥ 1, and suppose
that 0 < x < 1, and 0 < a − x < 1, so that both boundaries can be reached before the span
attains one and the process terminates. These conditions can be summarized in

a − 1 < x < 1 . (97)

In generalization of Eq. (93), one can write

PNN
T1 (x, t) = p2(x, t) + p2(a − x, t) + p3(x, t |a) + p3(a − x, t |a) . (98)
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Fig. 7 The probability PNN
T1

(x, t), for x = 0.3, a = 1.2 (black). The contributions are p2(x, t) (blue),
p2(a − x, t) (yellow), p3(x, t |a) (green), and p3(a − x, t |a) (red). Numerical simulations (Color figure
online)

The function p3(x, t |a) is a modification of p1a(x, t), defined by

p3(x, t |a) = 2
∫ x

max(0,1+x−a)

dy
[

− 2∂yP(1 − y, t) − 2∂y∂tP(1 − y, t) + (1 − y)∂2yP(1 − y, t)
]

= R(x, t) − R
(
max(0, 1 + x − a), t

)
. (99)

This integral is analogous to (76), with the difference that the lower boundary may be larger
than 0; this domain of integration is restricted s.t. the process never touches the lower bound-
ary. For a ≥ 1 + x , this reproduces the probability p1a(x, t),

p1a(x, t) = p3(x, t |a)

∣∣∣
a≥1+x

. (100)

Using our assumptions, p3(x, t |a) can be simplified to

p3(x, t |a) = R(x, t) − R(1 + x − a, t
)
. (101)

To get to the last line we used our assumption (97).
Similarly, the last term in Eq. (98) reproduces the function p1b(x, t) used above, when

choosing

p1b(x, t) = p3(a − x, t |a)

∣∣∣
a=1+x

. (102)

Note that Eq. (98) has manifestly the symmetry x → a − x , both for p2 and p3. Choosing
a = 1 + x , the sum of the latter terms becomes p1a(x, t) + p1b(x, t), making manifest the
hidden symmetry between these terms.

One also checks that for x satisfying condition (97),
∫ ∞
0 dt PNN

T1
(x, t) = 1, thus the

probability (98) is properly normalized. A numerical test is presented on Fig. 7.
Finally, the Laplace transform of PNN

T1
(x, t) can be evaluated using Eqs. (79) and (92)

above. After simplification, and assuming condition (97), we obtain

P̃NN
T1 (x, s) =

cosh
(
a
√
s

2

)
cosh

(
(a−2x)

√
s

2

)

cosh2
(√

s
2

)
cosh(

√
s)

. (103)
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Taylor expanding, we find for the first two connected moments

〈
TNN
1 (x)

〉 = 1

4

(
3 − a2

2

)
− 1

2

(
x − a

2

)2
, (104)

〈[
TNN
1 (x)

]2〉c = 3

16
− a4

96
− 1

6

(
x − a

2

)4
. (105)

9 Open Problems

For motivations for the questions asked here, and applications of the results, we refer the
reader to the introduction. What are the open problems? Let us come back to the image of
a myopic foraging rabbit, and ask when it is no longer hungry. Suppose there is a uniform
food distribution. The rabbit starts with an empty stomach, does a Brownian motion and eats
everything it can get, until its stomach is full (S = 1). The probability for this time is the
probability that the span reaches one for the first time, as given in Eq. (50), and after. But a
real rabbit is burning food, so add a (negative) drift, i.e. stop when S(t)−μt = 1. Curiously,
this problem is much more difficult to solve, and we (currently) have no analytical solution.
One may be able to calculate the probability that the rabbit dies before having a full stomach,
following the approach outlined in Ref. [12].

Another open problem is the generalization of the observables obtained here for correlated
processes, as fractional Brownian motion. While the first moments of the span distribution
have been obtained in an expansion [13] around H = 1/2 (Brownian motion), the full
distribution remains to be evaluated.

Note added in Proof After completion of this work we learned that for the drift-free case the time that the
span first reaches one was already calculated in Phys. Rev. E 94, 062131 (2016).
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