

Witlef Wieczorek, Christian Schmid,
Nikolai Kiesel, Reinhold Pohlner,
Roland Krischek, Patrick Michelberger, Harald Weinfurter [MPQ Garching, LMU Munich]

M/P

Jiannis Pachos [University of Leeds, UK]

Symposium
Topological quantum computing
Paris 2009

Multi-qubit entanglement
applications \& classifications
Anyonic features with multi-photon entanglement
toric code
implementation of a minimal system
Beyond: how to entangle more photons
UV enhancement cavity and Dicke state

Multi-qubit entanglement

Resource for quantum information:
teleportation, telecloning, one-way quantum computing, decoherence-free communication, anyonic features, ...

Classification of entangled states:
via SLOCC (stochastic local operations and classical communication)

Classification via SLOCC

two qubits
one class

- $\left|\psi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)$

Bennett et al. PRA 53 (1996)
three qubits two classes

- $\left|G H Z_{3}\right\rangle=\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle)$
- $\left|W_{3}\right\rangle=\frac{1}{\sqrt{3}}(|001\rangle+|010\rangle+|100\rangle)$

Dür et al. PRA 62 (2000)
four qubits richer structure, e.g. subsets of continuous SLOCC inequivalent states (e.g. $\left|G H Z_{4}\right\rangle,\left|D_{4}^{(2)}\right\rangle, \ldots$)

Verstraete et al. PRA 65 (2002)
Lamata et al. PRA 75 (2007)

Phenomenological classification

Classification according to state specific properties, e.g.
Graph states: N-vertices (corresponding to N-qubits) \& edges (lsing-type next-neighbour interaction), e.g. cluster states, GHZ states

Hein et al. PRA 69 (2004) [anyonic features]

Dicke states: eigenstates of $\binom{J^{2}}{J_{z}}$ with eigenvalues $\binom{j(j+1)}{m}$
J... total spin
$J_{z} \ldots$ spin in z-direction, Dicke Phys. Rev. 93 (1954) symmetric Dicke states [more photons]:
$\left|D_{N}^{(m)}\right\rangle=\binom{N}{m}^{-1 / 2} \sum_{i} \Pi_{i}\left(\left|1^{\otimes m} 0^{\otimes(N-m)}\right\rangle\right)$
e.g. $\left|D_{6}^{(3)}\right\rangle=1 / \sqrt{20} \sum_{i} \Pi_{i}(|000111\rangle)$
(...)

Entangled state observation

We use ...
Photons: ideally suited for communication tasks

- negligible decoherence, easy to transmit
- simple polarization encoding of qubits
but

- low interaction between photons

Entangled state observation:
[entanglement from] photon source
SPDC (spontaneous parametric down conversion)

+ linear optical network
(beam splitters, wave plates, phase shiffers)
+ conditional detection

Multi-qubit entanglement
applications \& classifications
Anyonic features with multi-photon entanglement

toric code

implementation of a minimal system
Beyond: how to entangle more photons
UV enhancement cavity and Dicke state

What are anyons?

Performing two exchanges of two particles
$=$ rotating one particle around the other
3 spatial dimensions:

Anyons

$$
|\Psi\rangle \rightarrow e \overparen{i 2 \phi}|\Psi\rangle
$$

Wilczek, Phys. Rev. Lett. 48 \& 49 (1982)

Where can anyons be found?

Toric code: topological 2d system realising anyons as local excitations
Kitaev, Ann. Phys. 303 (2003)

- square lattice made up from s/p plaquettes
- qubits at vertices
- interaction Hamiltonian

$$
\begin{aligned}
\mathcal{H}= & -\sum_{p} \sigma_{p 1}^{z} \sigma_{p 2}^{z} \sigma_{p 3}^{z} \sigma_{p 4}^{z} \\
& -\sum_{s} \sigma_{s 1}^{x} \sigma_{s 2}^{x} \sigma_{s 3}^{x} \sigma_{s 4}^{x}
\end{aligned}
$$

- gound state

$$
|\xi\rangle=\prod_{s} \frac{1}{\sqrt{2}}\left(\mathbb{1}+\sigma_{s 1}^{x} \sigma_{s 2}^{x} \sigma_{s 3}^{x} \sigma_{s 4}^{x}\right)|00 \ldots 0\rangle
$$

Excitations in the Toric code

Toric code: three types of local excitations
e type
$\| e\rangle=\sigma^{z}|\xi\rangle$
m type

$$
|m\rangle=\sigma^{x}|\xi\rangle
$$

ε type

$$
\boxed{\epsilon}=\sigma^{z} \sigma^{x}|\xi\rangle=i \sigma^{y}|\xi\rangle
$$

local excitation, e.g. e type eigenvalue of plaquette operator $\sigma_{s 1}^{x} \sigma_{s 2}^{x} \sigma_{s 3}^{x} \sigma_{s 4}^{x}$ becomes-1

Excitations in the Toric code

Toric code: moving and annihilating excitations

$$
\sigma_{1}^{x}|\xi\rangle=|m\rangle
$$

plaquette operator
$\sigma_{p 1}^{z} \sigma_{p 2}^{z} \sigma_{p 3}^{z} \sigma_{p 4}^{z}-1$
$\sigma_{4}^{x} \sigma_{1}^{x}|\xi\rangle$
plaquette operator
$\sigma_{p 1}^{z} \sigma_{p 2}^{z} \sigma_{p 3}^{z} \sigma_{p 4}^{z}+1$
contractible loop
(i.e. empty plaquette)
$\sigma_{1}^{x} \sigma_{4}^{x} \sigma_{3}^{x} \sigma_{2}^{x}|\xi\rangle=|\xi\rangle$

Excitations in the Toric code

Toric code: non-contractible loop (i.e. populated plaquette)

$$
\begin{aligned}
& \left|\Psi_{\mathrm{ini}}\right\rangle=\sigma_{1}^{z}|\xi\rangle=|e\rangle \\
& \sigma_{1}^{x} \sigma_{4}^{x} \sigma_{3}^{x} \sigma_{2}^{x}\left|\Psi_{\mathrm{ini}}\right\rangle \\
& =-\sigma_{1}^{z}\left(\sigma_{1}^{x} \sigma_{4}^{x} \sigma_{3}^{x} \sigma_{2}^{x}|\xi\rangle\right) \\
& \left.=-\Psi_{\mathrm{ini}}\right\rangle
\end{aligned}
$$

Cycling m around e yields a phase of π

m and e behave anyonic with respect to each other (for bosons \& fermions no phase is expected)

System: lattice of a single s plaquette (bounded by 4 p plaquettes)

- ground state
$|\xi\rangle=\frac{1}{\sqrt{2}}\left(\left|0_{1} \mathrm{O}_{2} \mathrm{O}_{3} \mathrm{O}_{4}\right\rangle+\left|1_{1} 1_{2} 1_{3} 1_{4}\right\rangle\right)$
4 qubits in a GHZ state and local Pauli rotations on qubits simulating anyonic features

Multi-qubit entanglement
applications \& classifications
Anyonic features with multi-photon entanglement
toric code
implementation of a minimal system
Beyond: how to entangle more photons
UV enhancement cavity and Dicke state

2 pump photons convert: $\left|\psi_{4}\right\rangle_{a c} \propto\left(a_{H}^{\dagger} c_{V}^{\dagger}+a_{V}^{\dagger} c_{H}^{\dagger}\right)^{2} \mid$ vac \rangle

$$
=\left(a_{H}^{\dagger} c_{V}^{\dagger}{ }^{2}+a_{V}^{\dagger} c_{H}^{\dagger}{ }^{2}+2 a_{H}^{\dagger} a_{V}^{\dagger} c_{H}^{\dagger} c_{V}^{\dagger}\right)|\mathrm{vac}\rangle
$$

Ground state

Measurement in computational basis (H / V)
Fourfold coincidences in 130 minutes

Ground state $|\xi\rangle=1 / \sqrt{2}(|\mathrm{HH} H \mathrm{H}\rangle+|\mathrm{VVVV}\rangle)$

Coherent superposition: correlation function

$$
\begin{gathered}
c_{x y}(\gamma)=\sigma_{1}(\gamma) \otimes \sigma_{2}(\gamma) \otimes \sigma_{3}(\gamma) \otimes \sigma_{4}(\gamma) \\
\sigma_{i}(\gamma)=(\cos \gamma) \sigma_{i}^{y}+(\sin \gamma) \sigma_{i}^{x} \\
|G H Z\rangle=1 / \sqrt{2}\left(|\mathrm{HHHH}\rangle+e^{i \phi}|\mathrm{~V} V \mathrm{VV}\rangle\right) \\
\left\langle c_{x y}(\gamma)\right\rangle_{\mathrm{GHZ}}=\mathcal{V} \cos (4 \gamma+\phi\rangle
\end{gathered}
$$

$$
\mathcal{V}=68.3 \pm 1.1 \%
$$

Fidelity

$$
\text { (if }>0.5 \text { then genuine four-qubit entangled) }
$$

$$
\begin{aligned}
& F=\frac{1}{2}\left(\mathcal{V}+P_{\mathrm{HHHH}}+P_{\mathrm{VVVV}}\right) \\
& F=74.5 \pm 2.2 \% \\
& \quad \text { Sackett et al., Nature } 404 \text { (2000) }
\end{aligned}
$$

Toth and Gühne, Phys. Rev. Lett. 94 (2005)

Excited state

Creating excitation e
$|e\rangle=\sigma_{1}^{z}|\xi\rangle=1 / \sqrt{2}(|H H H H\rangle \Theta|V V V V\rangle)$

$$
F=74.9 \pm 2.8 \%
$$

$$
(1.02 \pm 0.01) \cdot \pi
$$

Move m around empty plaquette

$$
\sigma_{1}^{x} \sigma_{2}^{x} \sigma_{3}^{x} \sigma_{4}^{x}|\xi\rangle=|\xi\rangle=1 / \sqrt{2}(|\mathrm{HHHH}\rangle+|\mathrm{VVVV}\rangle)
$$

i) Generate e, ii) move m around and iii) annihilate e

$$
\sigma_{2}^{z}\left(\sigma_{1}^{x} \sigma_{2}^{x} \sigma_{3}^{x} \sigma_{4}^{x}\right) \sigma_{2}^{z}|\xi\rangle=-|\xi\rangle=\Theta 1 / \sqrt{2}(|\mathrm{HHHH}\rangle+|\mathrm{VVVV}\rangle)
$$

$$
F=76.8 \pm 2.8 \%
$$

$$
(-0.01 \pm 0.01) \cdot \pi
$$

„Invisible" global phase

Interference procedure

i) Superposition of creating excitation e or not

$$
\left(\sqrt{\sigma_{4}^{z}}\right)^{-1}|\xi\rangle=\mathrm{e}^{-i \pi / 4}(|\xi\rangle+i|e\rangle) / \sqrt{2}
$$

ii) Moving m around

$$
\left.\left(\sigma_{1}^{x} \sigma_{2}^{x} \sigma_{3}^{x} \sigma_{4}^{x}\right)\left(\sqrt{\sigma_{4}^{z}}\right)^{-1}|\xi\rangle=\mathrm{e}^{-i \pi / 4}(\mid \xi) \Theta i|e\rangle\right) / \sqrt{2}
$$

iii) Inverse of i)

$$
\begin{aligned}
\sqrt{\sigma_{4}^{z}}\left(\sigma_{1}^{x} \sigma_{2}^{x} \sigma_{3}^{x} \sigma_{4}^{x}\right)\left(\sqrt{\sigma_{4}^{z}}\right)^{-1}|\xi\rangle & =-i|e\rangle \\
& =-i / \sqrt{2}(|\mathrm{HHHH} \bigcirc| \mathrm{VVVV}\rangle)
\end{aligned}
$$

$$
F=75.8 \pm 2.5 \%
$$

$$
(1.00 \pm 0.01) \cdot \pi
$$

Angle 4γ "Invisible" global phase into relative phase

Multi-qubit entanglement
applications \& classifications
Anyonic features with multi-photon entanglement
toric code
implementation of a minimal system
Beyond: how to entangle more photons
UV enhancement cavity and Dicke state

4-photon count rates: per minute
6-photon count rates: per day
-> too long measurement times

UV enhancement cavity: up to 7.5W UV power

6 photon count rates: per minute !!!
$\left|\psi_{6}\right\rangle_{a} \propto\left(a_{H}^{\dagger} a_{V}^{\dagger}\right)^{3}|\mathrm{vac}\rangle \quad$ UV enhancement cavity: 5.5 W

$\left|D_{6}^{(3)}\right\rangle=1 / \sqrt{20} \sum_{i} \Pi_{i}(|H H H V V V\rangle)$
Wieczorek et al., quant-ph 0903.2213 (2009)

Results $\left|D_{6}^{(3)}\right\rangle=1 / \sqrt{20} \sum_{i} \Pi_{i}(|H H H V V V\rangle)$
counts z basis (513 min)

Fidelity:

$$
\begin{aligned}
F & =\left\langle D_{6}^{(3)}\right| \rho\left|D_{6}^{(3)}\right\rangle \\
& =0.65 \pm 0.02
\end{aligned}
$$

b)

Dicke states 6 -> 5 -> 4
Dicke state as resource for other entangled states:

$$
\begin{aligned}
& \left|D_{6}^{(3)}\right\rangle=1 / \sqrt{20} \sum_{i} \Pi_{i}(|H H H V V V\rangle) \\
& \begin{array}{c}
P(\theta, \phi):=|\theta, \phi\rangle\langle\theta, \phi| \\
|\theta, \phi\rangle=\cos \theta|H\rangle+e^{i \phi} \sin \theta|V\rangle
\end{array} \\
& \left|\Delta_{5}\right\rangle=\cos \theta\left|D_{5}^{(3)}\right\rangle+e^{-i \phi} \sin \theta\left|D_{5}^{(2)}\right\rangle
\end{aligned}
$$

2 SLOCC classes:
(i) $\theta=\{0, \pi / 2\} \rightarrow\left\{\left|D_{5}^{(3)}\right\rangle,\left|D_{5}^{(2)}\right\rangle\right\}$
(ii) $\theta \in(0, \pi / 2) \rightarrow \cos \theta\left|D_{5}^{(3)}\right\rangle+e^{-i \phi} \sin \theta\left|D_{5}^{(2)}\right\rangle$

Dicke states 6 -> 5 -> 4

$$
\begin{aligned}
& \left|\Delta_{5}\right\rangle=\cos \theta\left|D_{5}^{(3)}\right\rangle+e^{-i \phi} \sin \theta\left|D_{5}^{(2)}\right\rangle \\
& \left|D_{5}^{(2)}\right\rangle \\
& 1 / \sqrt{2}\left(\left|D_{5}^{(3)}\right\rangle+i\left|D_{5}^{(2)}\right\rangle\right) \\
& \text { projection onto } \\
& \text { projection onto } \\
& 1 / \sqrt{2}(\langle H|-i\langle V|) \\
& 1 / \sqrt{2}\left(\left|D_{4}^{(1)}\right\rangle+\left|D_{4}^{(3)}\right\rangle\right)=\mathcal{H}^{\otimes 4}\left|G H Z_{4}^{-}\right\rangle \\
& \left|G H Z_{4}^{-}\right\rangle=1 / \sqrt{2}(|H H H H\rangle-|V V V V\rangle)
\end{aligned}
$$

Four-photon entanglement

Anyonic features based on toric code

Pachos et al., quant-ph 0710.0895 (2007)

Six-photon entanglement
UV enhancement cavity 6 qubit Dicke state as resource

Wieczorek et al., Phys. Rev. A 79 (2009)
Wieczorek et al., quant-ph 0903.2213 (2009)

