Quantum Hall Hierarchy and the 2nd Landau Level

Parsa Bonderson Microsoft Station Q 7th Mini-Symposium on TQC, Paris March 30, 2009

work done in collaboration with Joost Slingerland, Adrian Feiguin, and Gunnar Möller arXiv:0711.3204 (PRB '08) and arXiv:0901.4965

Introduction

- 2nd Landau level physics is perplexing.
- Experimental determination of the nature of the observed FQH states is just now being obtained!
- Viable proposals for the observed states are desirable. (So far, there is: Laughlin, HH, MR, and RR.)
- Moore-Read (`91) is expected (from numerics and now experiments) to describe v=5/2 and is relatively well understood.

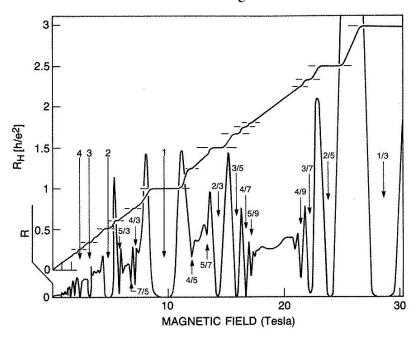
This leads us to believe that non-Abelian anyons emerge in the FQHE!

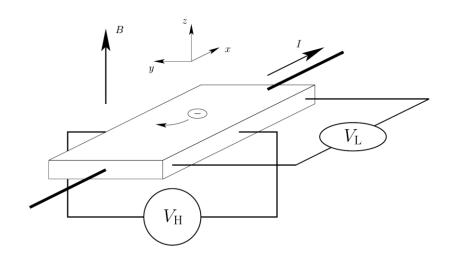
• What about the rest of the 2nd LL?

Fractional Quantum Hall Effect

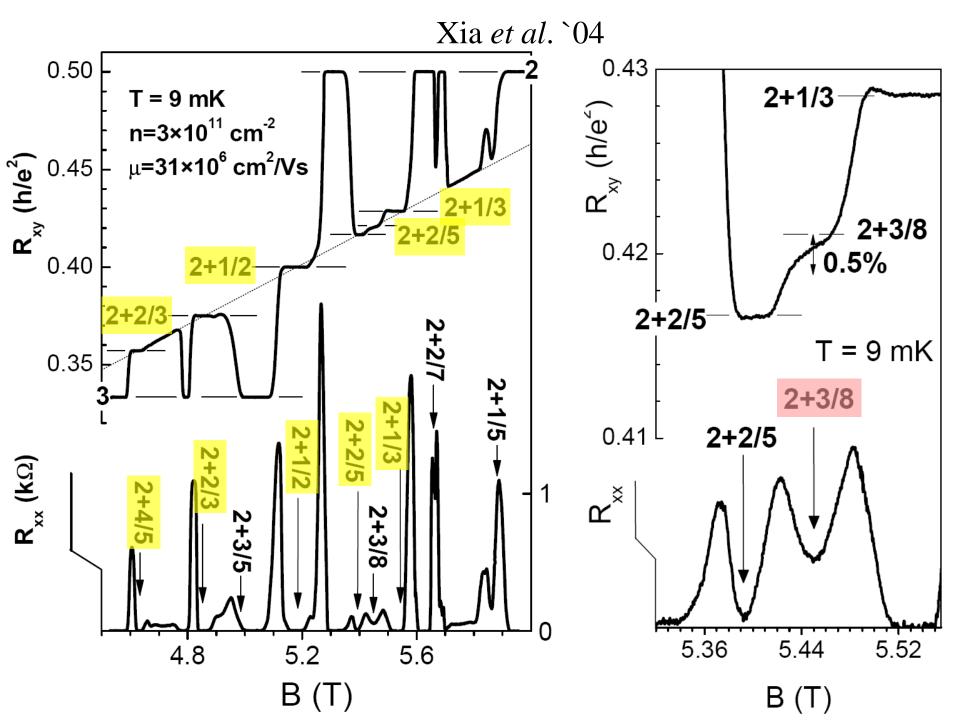
- 2DEG
- large B field (~ 10T)
- low temp (< 1K)
- gapped (incompressible)
- quantized filling fractions

$$v = \frac{n}{m}$$
, $R_{xy} = \frac{1}{v} \frac{h}{e^2}$, $R_{xx} = 0$





- fractionally charged quasiparticles
- Abelian anyons at most filling fractions $\theta = \pi \frac{p}{m}$
- non-Abelian anyons in 2nd Landau level,
 e.g. v= 5/2, 12/5, ...?



ν	$\frac{7}{3}$	$\frac{12}{5}$	$\frac{5}{2}$	$\frac{8}{3}$	$\frac{14}{5}$
Δ_{10}	100	*	110	55	
Δ_{55}	*		310	*	*
Δ_{11}	~ 600	70	*	*	*
Δ_{56}	584	*	544	562	252
Δ_{56}'	206		272	150	≤ 60
Δ_{57}	110		130	60	
Δ_{12}	590	*	450	290	*
Δ_{58}	225		262	64	149

Pan *et al.* `99,`08 Eisenstein *et al.* `02 Xia *et al.* `04 Choi *et al.* `08 Miller *et al.* `07 Dean *et al.* `08

- v=5/2 is the strongest state in the 2nd LL.
- Correlation functions for $7/3 \le v \le 8/3$ have non-Laughlin pairing/clustering character similar to v=5/2. Outside this region is Laughlin-like. (Wojs `01)
- The Haldane-Halperin hierarchy (`83,`84) seems to work quite well in the lowest Landau level.
- Can we construct a similar hierarchy built on MR?

Generalized Hierarchy Picture PB and Slingerland `08

1) start with a QH state (can be non-Abelian)

 $\Psi_{\nu}\left(z_{i}\right)$

- 2) add quasiparticles changes density, but in a localized manner $\Psi_{\nu+qps}(z_i; w_j)$
- 3) project qps onto a QH state delocalizes and produces uniform incompressible gas at different filling $\Psi_{\nu'}(z_i) = \int \prod d^2 w_{\alpha} \Psi_{\nu+qps}(z_i; w_j) \Phi^*(w_j)$

e.g. Haldane-Halperin states

 $U(1)_{3}$

1) start with Laughlin

$$\Psi_{1/3} = \prod_{i < j} \left(z_i - z_j \right)^3$$

2) add qps

$$\Psi_{1/3+\text{qes}} = \prod_{i < j} (w_i - w_j)^{1/3} \prod_{i,j} \left(w_i - 2\frac{\partial}{\partial z_j} \right) \prod_{i < j} (z_i - z_j)^3$$

3) project onto a QH state

project onto a QH state

$$U(1)_{K} \quad K = \begin{bmatrix} 3 & -1 \\ -1 & 2 \end{bmatrix}$$

$$\Psi_{2/5} = \int \prod_{\alpha} d^{2} w_{\alpha} \Psi_{1/3+\text{qes}}(z_{i}; w_{j}) \prod_{i < j} (w_{i} - w_{j})^{5/3}$$

$$MR = Ising \times U(1)_{2} |_{\mathscr{C}} \quad \text{(Moore and Read `91)}$$

$$a_{I} = I, \psi, \sigma \qquad a_{0} \in \frac{1}{2}Z \quad \text{number of fluxes}$$

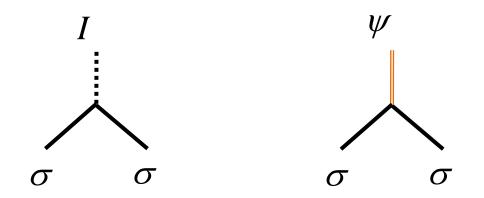
$$\mathcal{C} = \{(I, n), (\psi, n), (\sigma, n + \frac{1}{2})\} \quad \text{where } n \in Z$$

$$e^{-} = (\psi, 2)$$

$$\Psi_{1/2} = Pf \left\{ \frac{1}{z_{i} - z_{j}} \right\} \prod_{i < j} (z_{i} - z_{j})^{2}$$

Build hierarchy on MR (PB and Slingerland `08)

- Form a FQH state with qps and project qps into a new FQH state
- MR e/4 quasiholes $(\sigma, \frac{1}{2})$ are non-Abelian, and have two fusion channels:

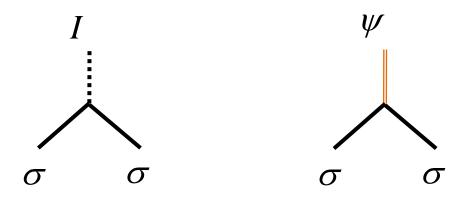


Form gas of MR e/4 qps? $(\sigma, \frac{1}{2})$

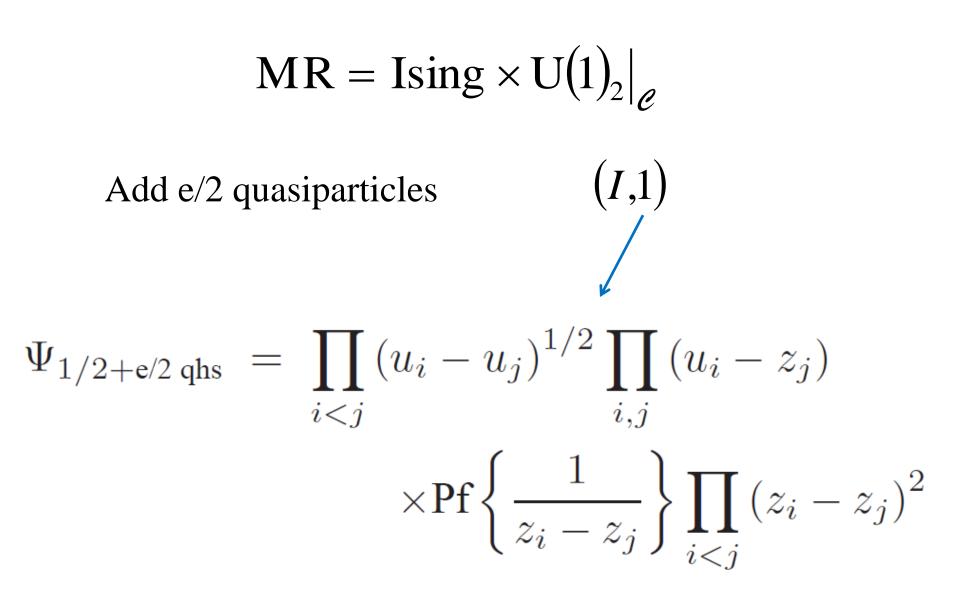
- Mathematically well-defined by forming trivial representation of the braid group.
- But physically...
- resulting filling fraction are experimentally non-existent
- next layer "particles" must be non-Abelian,
 i.e. carry conjugate of Ising σ charge
- gas of qps are strongly interacting and not well-separated, non-Abelian degeneracy cannot be preserved
- resulting states have same universality class as other previously constructed Abelian states

Build hierarchy on MR (PB and Slingerland `08)

- Form a FQH state with qps and project qps into a new FQH state
- MR quasiholes $(\sigma, \frac{1}{2})$ are non-Abelian, and have two fusion channels:



• Pair into preferred fusion channel I and form a gas of bound pairs, i.e. e/2 quasiparticles (I,1)



Now project paired-qhs onto new FQH state. (Forms hierarchy on charge sector of MR.)

$$BS_{2/5} = Ising \times U(1)_{K}|_{\mathcal{C}} \text{ with } K = \begin{bmatrix} 2 & 1 \\ 1 & -2 \end{bmatrix}$$

$$\Psi_{2/5} = \int \prod_{\alpha} d^2 u_{\alpha} \Psi_{1/2 + e/2 \text{ qhs}} (z_i; u_j) \prod_{i < j} (u_i^* - u_j^*)^{5/2}$$

=
$$\int \prod_{\alpha} d^2 u_{\alpha} \prod_{i < j} (u_i^* - u_j^*)^2 |u_i^* - u_j^*|$$
$$\times \prod_{i,j} (u_i - z_j) \operatorname{Pf} \left\{ \frac{1}{z_i - z_j} \right\} \prod_{i < j} (z_i - z_j)^2$$

$$BS_{2/3} = Ising \times U(1)_{K}|_{\mathcal{C}} \text{ with } K = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

$$\Psi_{2/3} = \int \prod_{\alpha} d^2 u_{\alpha} \Psi_{1/2 + e/2 \operatorname{qes}} (z_i; u_j) \prod_{i < j} (u_i - u_j)^{3/2}$$
$$= \int \prod_{\alpha} d^2 u_{\alpha} \prod_{i < j} (u_i^* - u_j^*)^2$$
$$\times \prod_{i,j} \left(u_i^* - 2 \frac{\partial}{\partial z_j} \right) \operatorname{Pf} \left\{ \frac{1}{z_i - z_j} \right\} \prod_{i < j} (z_i - z_j)^2$$

$$BS_{1/3} = particle - hole \ conjugate \ of \ BS_{2/3}$$
$$BS_{1/3}^{\psi} = Ising \times U(1)_{K} \Big|_{\mathcal{C}} \text{ with } K = \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix}$$

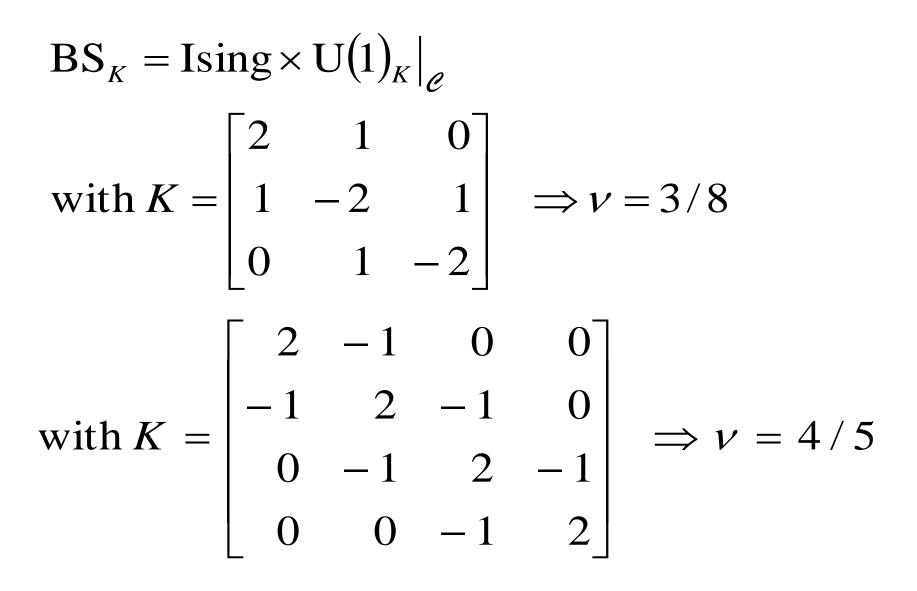
with quasiholes condensed in the ψ - channel

$$\Psi_{1/3} = \int \prod_{\alpha} d^2 u_{\alpha} \Psi_{1/2 + e/2 \ \psi \ qhs} \left(z_i; u_j \right) \prod_{i < j} \left(u_i^* - u_j^* \right)^{3/2}$$

$$= \int \prod_{\alpha} d^2 u_{\alpha} \prod_{i < j} \left(u_i^* - u_j^* \right) \left| u_i^* - u_j^* \right|$$

$$\times \prod_{i,j} \left(u_i - z_j \right) \Pr\left\{ \frac{1}{w_i - w_j} \right\} \prod_{i < j} \left(z_i - z_j \right)^2$$

Other filling fractions?



Composite Fermion Picture of BS States

$$\Psi_{\frac{n}{3n-1}}^{(BS-CF)} = \mathscr{P}_{LLL} \left\{ \Pr\left[\frac{1}{z_i - z_j}\right] \chi_1^3 \chi_{-n} \right\} \quad \nu = \frac{n}{3n-1} = \frac{1}{2}, \frac{2}{5}, \frac{3}{8}, \frac{4}{11}, \dots \right\}$$

$$\Psi_{\frac{n}{n+1}}^{(BS-CF)} = \mathscr{P}_{LLL} \left\{ \Pr\left[\frac{1}{z_i - z_j}\right] \chi_1 \chi_n \right\} \qquad \nu = \frac{n}{n+1} = \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots$$

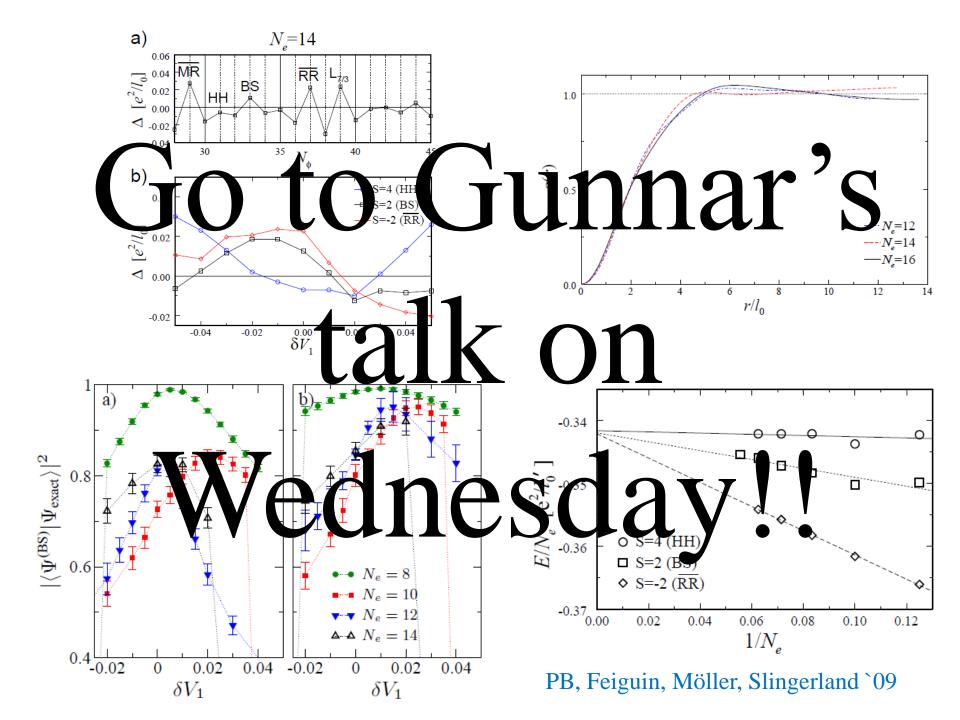
χ_n n filled Landau levels

Attachment of $SU(2)_2$ and U(1) CS flux to IQH.

How will we know?

• Numerical evidence...

Morf *et al.*, Rezayi *et al.*, Wojs *et al.*, **Feiguin** *et al.*, **Möller** *et al.*, Peterson *et al.*

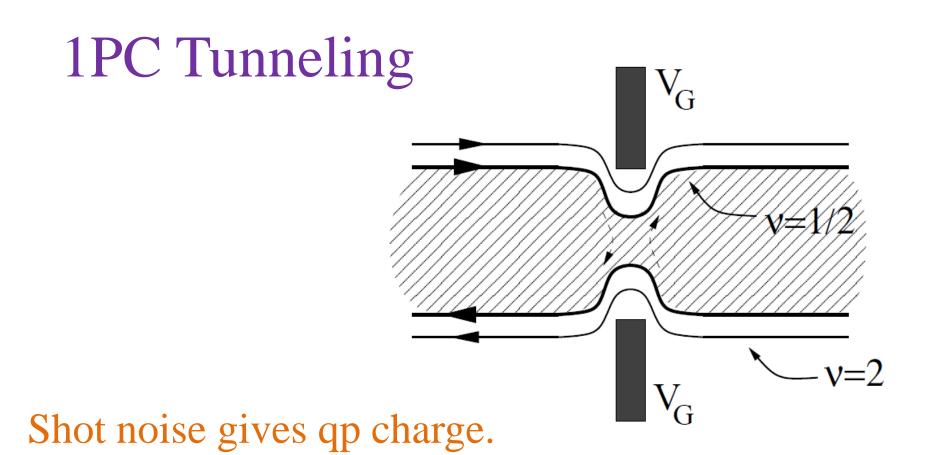


How will we know?

• Numerical evidence.

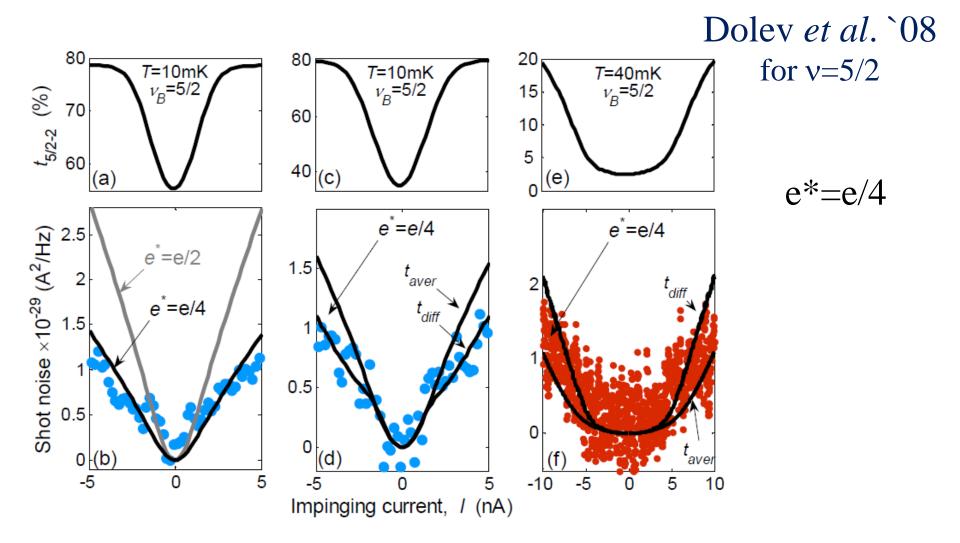
Morf *et al.*, Rezayi *et al.*, Wojs *et al.*, **Feiguin** *et al.*, **Möller** *et al.*, Peterson *et al.*

- Experiments must determine:
 - Quasiparticle electric charge tells us something (though not nearly enough).
 - Braiding statistics (determined e.g. by interferometry) tells us almost everything.
 - Scaling relations from tunneling tells us practically everything else.

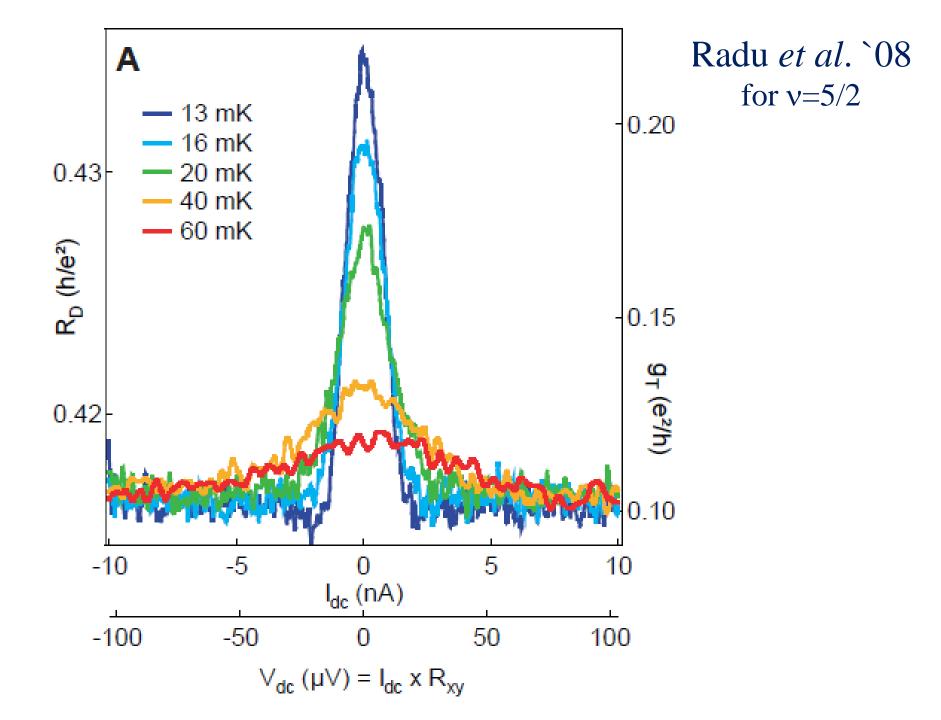


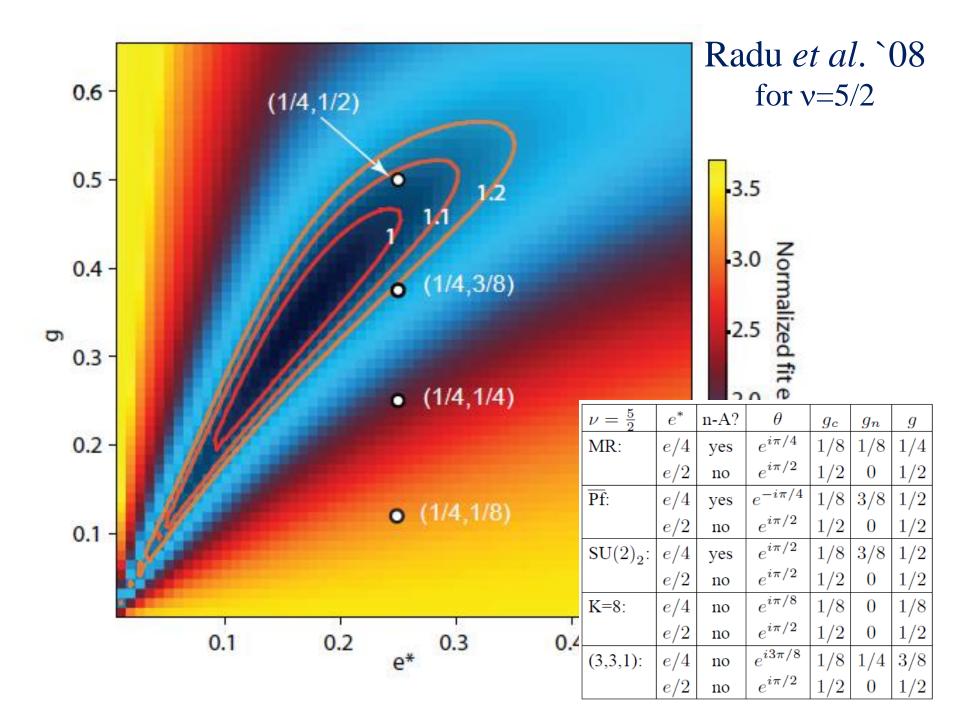
Scaling relations:

 $I_b^{(qp)} \propto \begin{cases} T^{2g-2}V & \text{for small } eV \ll k_BT \\ V^{2g-1} & \text{for small } eV \gg k_BT \end{cases}$



also, for v=8/3 they find $e^*=e/3$





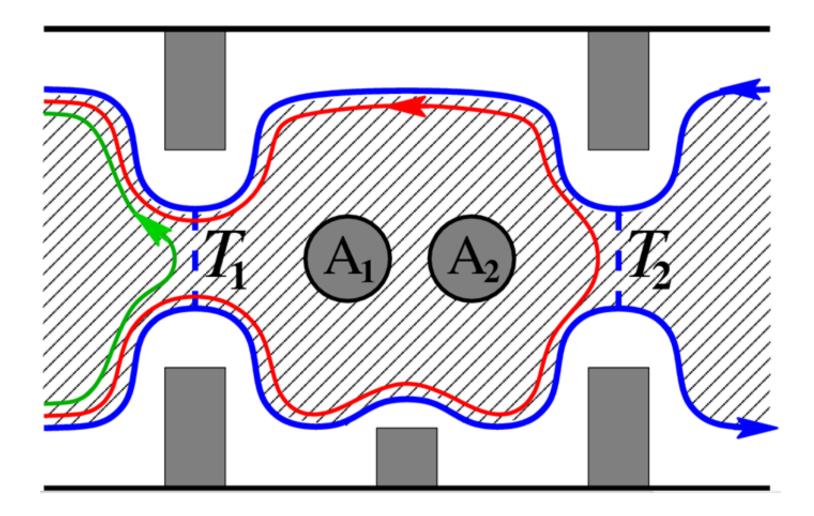
$\nu = \frac{7}{3}$	e^*	n-A?	θ	g_c	g_n	g
L _{1/3} :	e/3	no	$e^{i\pi/3}$	1/3	0	1/3
$\overline{\text{BS}}_{2/3}$:	e/3	yes	$e^{-i7\pi/24}$	1/3	5/8	23/24
	e/3	no	$e^{i\pi/3}$	1/3	0	1/3
$\mathrm{BS}_{1/3}^\psi$:	e/3	yes	$e^{i5\pi/24}$	1/3	3/8	17/24
	e/3	no	$e^{i\pi/3}$	1/3	0	1/3
$\overline{\mathrm{RR}}_{k=4}$:	e/6	yes	$e^{-i\pi/6}$	1/12	1/4	1/3
	e/3	no	$e^{i\pi/3}$	1/3	0	1/3
	e/2	yes	$e^{i\pi/2}$	3/4	1/4	1

$\nu = \frac{8}{3}$	e^*	n-A?	θ	g_c	g_n	g
$\overline{L}_{1/3}$:	e/3	no	$e^{-i\pi/3}$	1/3	1/3	2/3
	2e/3	no	$e^{i2\pi/3}$	2/3	0	2/3
BS _{2/3} :	e/3	yes	$e^{i7\pi/24}$	1/6	1/8	7/24
	e/3	no	$e^{i2\pi/3}$	1/3	1/3	2/3
	2e/3	no	$e^{i2\pi/3}$	2/3	0	2/3
$\overline{\mathrm{BS}}_{1/3}^{\psi}$:	e/3	yes	$e^{-i5\pi/24}$	1/6	3/8	13/24
	e/3	no	$e^{i2\pi/3}$	1/6	1/2	2/3
	2e/3	no	$e^{i2\pi/3}$	2/3	0	2/3
$RR_{k=4}$:	e/6	yes	$e^{i\pi/6}$	1/24	1/8	1/6
	e/3	yes	$e^{i\pi/3}$	1/6	1/6	1/3
	e/2	yes	$e^{i\pi/2}$	3/8	1/8	1/2
	2e/3	no	$e^{i2\pi/3}$	2/3	0	2/3

Other filling fractions

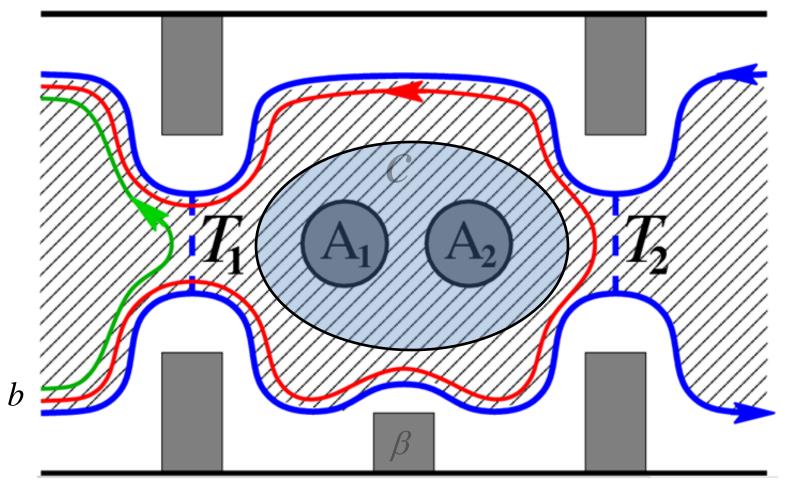
$\nu = \frac{12}{5}$	e^*	n-A?	θ	g_c	g_n	g
HH _{2/5} :	e/5	no	$e^{i3\pi/5}$	1/5	2/5	3/5
	2e/5	no	$e^{i2\pi/5}$	2/5	0	2/5
BS _{2/5} :	e/5	yes	$e^{i9\pi/40}$	1/10	1/8	9/40
	e/5	no	$e^{-i2\pi/5}$	1/10	1/2	3/5
	2e/5	no	$e^{i2\pi/5}$	2/5	0	2/5
$\overline{\mathrm{BS}}_{3/5}^{\psi}$:	e/5	yes	$e^{-i11\pi/40}$	1/10	3/8	19/40
	e/5	no	$e^{-i2\pi/5}$	1/10	1/2	3/5
	2e/5	no	$e^{i2\pi/5}$	2/5	0	2/5
$\overline{\mathrm{RR}}_{k=3}$:	e/5	yes	$e^{-i\pi/5}$	1/10	3/10	2/5
	2e/5	no	$e^{i2\pi/5}$	2/5	0	2/5

2PC Interferometer



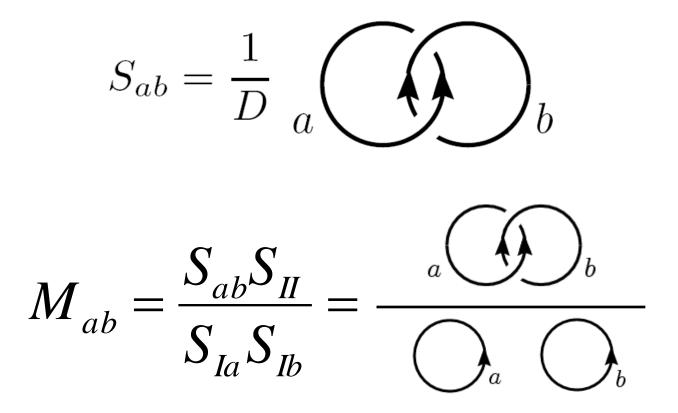
$$\sigma_{xx} \propto |t_1|^2 + |t_2|^2 + 2|t_1t_2| M_{bc} |\cos(\beta + \theta_{bc})$$

 $\beta = \alpha + \arg(t_2 / t_1)$ is a parameter that can be experimentally varied and includes the A-B phase: $\alpha = q\Phi$



But what is M_{bc} and what are its properties?

Topological S-matrix



 $M_{ab} = e^{i2\theta}$ corresponds to Abelian braiding and $|M_{ab}| < 1$ iff the braiding is non - Abelian. Smoking gun! Ising any ons or $SU(2)_2$

Particle types:
$$I, \sigma, \psi$$

Monodromy: $M = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 1 \end{bmatrix}$

$$\frac{SU(2)_{3} \text{ or Fib} \times Z_{2}}{\text{Particle types: } 0, \frac{1}{2}, 1, \frac{3}{2}}$$

Monodromy: $M = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & \phi^{2} & -\phi^{2} & -1 \\ 1 & -\phi^{2} & -\phi^{2} & 1 \\ 1 & -1 & 1 & -1 \end{bmatrix}$
 $\phi^{-2} \approx .38$

 $\underline{SU(2)_4}$

Particle types: $0, \frac{1}{2}, 1, \frac{3}{2}, 2$

Monodromy:
$$M = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & \frac{1}{\sqrt{3}} & 0 & \frac{-1}{\sqrt{3}} & -1 \\ 1 & 0 & \frac{1}{2} & 0 & 1 \\ 1 & \frac{-1}{\sqrt{3}} & 0 & \frac{1}{\sqrt{3}} & -1 \\ 1 & -1 & 1 & -1 & 1 \end{bmatrix}$$

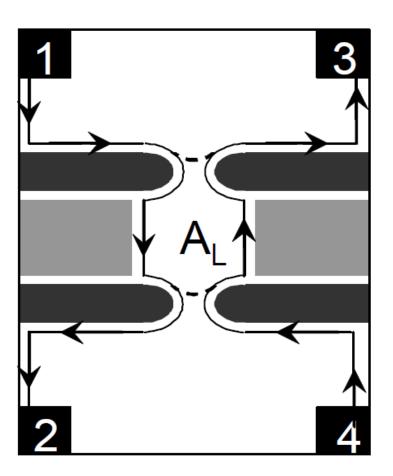
U(1) is a familiar Abelian factor due to charge/flu x quasiholes carry anyonic charge : $(e/4, \sigma)$ electrons carry anyonic charge : $(-e, \psi)$

n quasiholes carry anyonic charge : $(ne/4, \sigma)$ for *n* odd Das Sarma, Freedman, Nayak `05 Stern, Halperin `06 PB, Kitaev, Shtengel `06 $(ne/4, I \text{ or } \psi)$ for *n* even

n odd:
$$\sigma_{xx} \propto |t_1|^2 + |t_2|^2$$

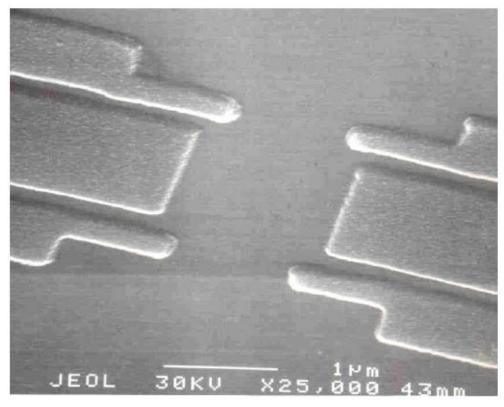
n even: $\sigma_{xx} \propto |t_1|^2 + |t_2|^2 + 2|t_1t_2|\cos(\frac{e\Phi}{4} \mp n\frac{\pi}{4} + N_{\psi}\pi)$
where $N_{\psi} = 0$ for *I* and $N_{\psi} = 1$ for ψ

FQH interferometer

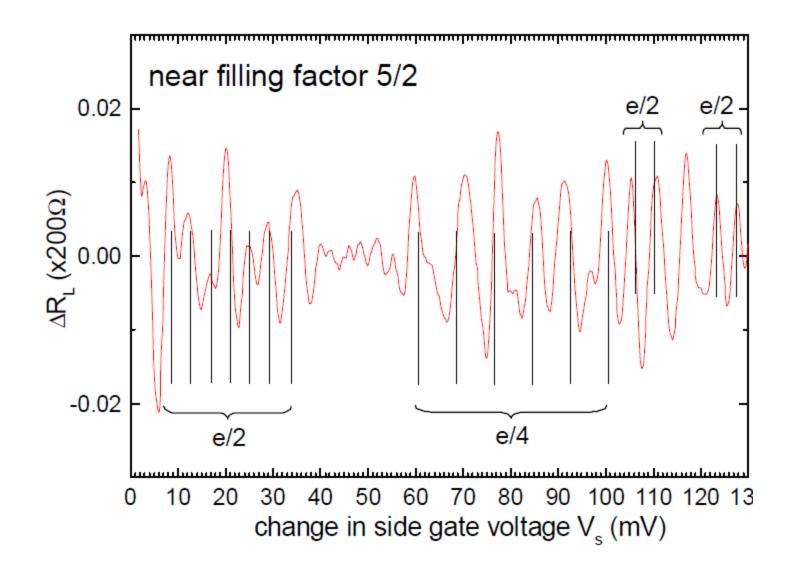


Willett *et al.* 08 for v=5/2

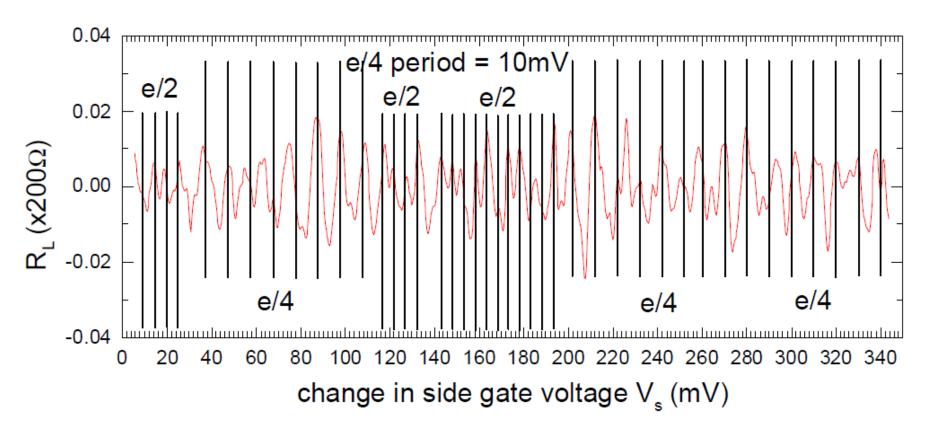
(also progress by: Marcus, Eisenstein, Kang, Heiblum, Goldman, etc.)



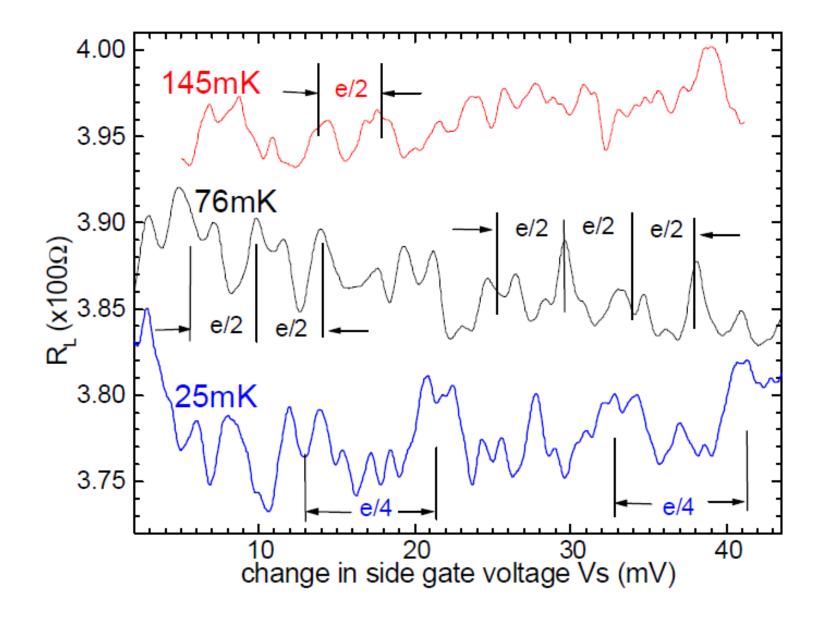
Even/Odd Alternation



Even/Odd Alternation



Temperature Dependence



Why are there e/2 oscillations?

• Tunneling of e/2 quasiparticles

- Abelian: can be treated as inert background for TQC

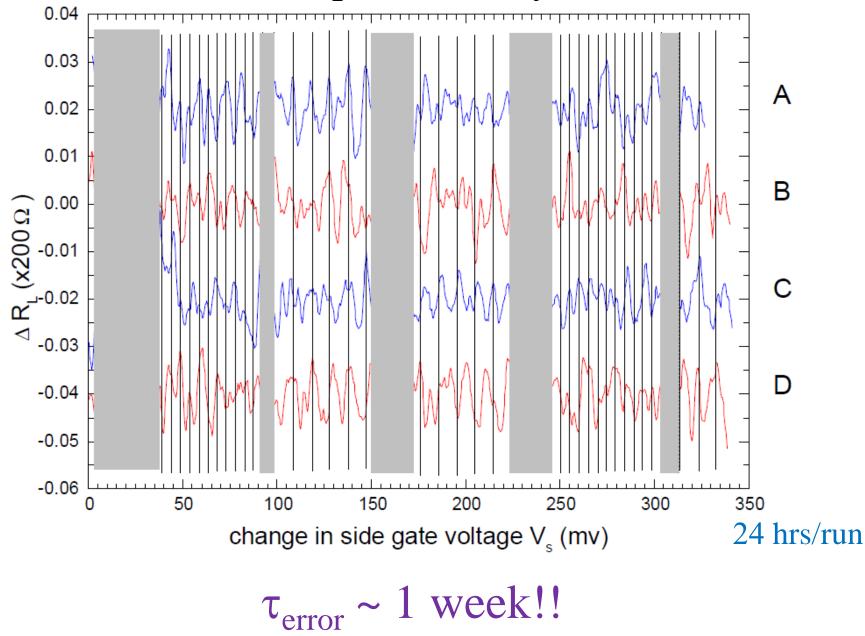
- Also <u>very</u> small contribution from double passes of e/4 quasiparticles
 - have order t² relative amplitude suppression from additional tunneling
 - have coherence length and temperature exponential suppression
 - temperature dependence also indicates e/2 qps is the source

PB, Shtengel, Slingerland `07Bishara, Nayak `08Bishara, PB, Nayak, Shtengel, Slingerland `09

$$\exp\left[-2\pi TL\left(\frac{g_c}{v_c}+\frac{g_n}{v_n}\right)\right]$$

e/4	MR	$\overline{\mathrm{Pf}}/\mathrm{SU}(2)_2$	K=8	(3,3,1)	e/2
L^* in μm	1.4	0.5	19	0.7	4.8
T^* in mK	36	13	484	19	121

Reproducibility



Conclusion

- Hierarchy of states that takes the v=5/2 pairing as its fundamental physics.
- Produces states at **all the observed 2nd Landau level** filling fractions, with v=7/3, 12/5, 8/3 occurring at the first level of hierarchy.
- HH and RR have competition from BS at v=12/5.
- Appears that **TQC will be achievable**!!! ③
- No RR at v=12/5 would be unfortunate for TQC. \otimes
- First attempts to experimentally determine the nature of 2nd LL FQH states are currently under way, so we should know more soon!