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Overview

‣ Finite size effects in Kitaev honeycomb 
lattice model.

‣ Other work.
‣ Thin torus limit.
‣ Fendley quantum loop gas models.

‣ Numerical tools.
‣ Conclusions.
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Kitaev Honeycomb Lattice Model
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‣ Alexei Kitaev (2006).

‣ Exhibits two topological phases.

‣ In the A phases the model is gapped 
and there is an abelian topological 
phase      x     . 

‣ In the B phase there is a gapless 
phase.

‣ In the B phase in the presence of an 
external magnetic field there is a non 
abelian topological phase exhibiting 
Ising anyonic excitations            .
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A phases can be mapped to the Toric code model. Will explore 
mapping in Az phase here (Ax and Ay phases are unitarily 
equivalent).

‣ In the Az phase where Jz = 1, Jx = Jy = 0, the model becomes 
a system of non interacting z-dimers whose ground state 
degeneracy is 2N/2 (where N is the number of spins).

non-interacting z-dimers.

dimers as effective spins.

Toric Code Mapping

| ↑↑>→ | ↑>

| ↓↓>→ | ↓>

H0 = −Jz

∑

z−links

σz
i σz

j

‣ Ground state of H0 made up of ferromagnetic dimers can be 
treated as effective spins.

V = −Jx

∑

x−links

σx
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j − Jy
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y−links

σy
i σy

j

H = H0 + V
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Toric Code Mapping
Non constant elements of the fourth order effective Hamiltonian are given by 
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Toric Code Mapping

d=down, r=right, u=up,l=left.

These operators act on the effective spins.

where
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‣ When the lattice of effective spins can be 
bicolored a suitably chosen unitary 
transformation can be applied.

‣  When applied we get the Toric code Hamiltonian.

and

‣ On a torus if the lattice cannot be bicolored we get the Wen model where the 
ground state is known to be two fold degenerate.

‣ In the A phase on a lattice which can be bicolored a mapping can be made to the 
Toric code thus in the thermodynamic limit we know that the ground state is four 
fold degenerate on a torus. 

Kitaev A, 2006 Ann. Phys. 321 2 
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Finite Lattice Configurations
‣ Each configuration is labelled by two 

lattice vectors. n = (i + √3j)/2 we see 
that the configurations: 

(a) (2i, 2j) and (b)(2i, 2n) contain 8 spins. 
(c) (2i, 4j), (d) (4i, 2j) and (e)(4i, 2n) contain 16-
spins. 
(f ) (3i, 4j) is a 24-spin system.
(g) (3i, 3n) is an 18-spin system.
(h) (4i, 4j) and (i) (4i, 4n) contain 32-spins.
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‣When the effective lattice can be 
bicolored the fourth order perturbative 
term can be mapped to the Toric code 
Hamiltonian.
‣When it cannot it can be mapped to the 

Wen model. 
‣ This table shows for each configuration in 

each A phase which it can be mapped to. 
‣ HW signifies Wen’s model and HK signifies 

the Kitaev’s toric code model. 

Configuration Mapping
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For the 8 spin (2i, 2n) configuration there exist the 
second order non-constant terms given by

second order non constant terms for (2i, 2n) configuration.

Also for any (ai, 2j) configuration in the Az phase 
the second order effective system is governed by a 
simple Ising spin chain Hamiltonian. 

second order non constant terms for (ai, 2j) configuration.

Second Order Terms
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Finite size effects in the Kitaev honeycomb lattice model on a torus

Figure 4. Graphical representations of two of the six third-order finite size
corrections terms for the 18-spin (3i, 3n) configuration.

related to the plaquette symmetries of (A.6). This means that, by first accounting for the
third-order finite size effects, we can see the energy dependence on vorticity and ground
state degeneracy predicted by [30] in the numerical calculations.

We illustrate two of the six third-order finite size terms in figure 4. The full effectiveSee query 3

third-order Hamiltonian can be written asSee query 4

H(3) =
3

8|Jz|2

[
J3

x

2∑

n=0

σx
3n+1σ

x
3n+2σ

x
3n+3 − J3

y

2∑

n=0

σx
n+1σ

x
n+4σ

x
n+7

]
. (6)

Setting J = Jx = Jy gives a spectrum with three degenerate energy levels at

E(3) =




+ 3|J |3

2|Jz |2

0

− 3|J |3
2|Jz|2



 (7)

where the upper and lower splittings are 96 times degenerate and the 0 energy term is
320 times degenerate.

2.3. Fourth-order corrections

In this section we examine the additional finite size terms that appear in the fourth-order
perturbative expansion. As an example we consider the 16-spin (2i, 4j) configuration
in the Az phase. This particular configuration is important in that all the alternative
non-constant fourth-order terms are present in one form or another. In figure 5 we
illustrate some of the ways that different basis elements are connected for the 16-spin
(2i, 4j) configuration. The plaquette terms Qp are of type I. There are also 16 sequences
that go around the torus in the ‘vertical’ direction and 12 that go in the ‘horizontal’
direction. The overall non-constant fourth-order effective Hamiltonian is therefore a quite
complicated entity with a number of different excitation types; see figure 5.

The full fourth-order effective Hamiltonian for this configurations may be written asSee query 5

H(4) = −
J2

xJ2
y

16|Jz|3
8∑

(Qn + Rn − 5An) −
J2

xJ2
y

16|Jz|3
4∑

(Zn + 5Yn)

− 5

16|Jz|3

(

J4
x

2∑

n=1

Xn + J4
y

4∑

n=3

Xn

)

(8)

doi:10.1088/1742-5468/2008/00/P00000 7

Third order terms are found in much the same way as 
the second order terms. For (ai, 2j) configurations with 
a > 2 in the Ax and Ay phases we have third order non-
constant terms as illustrated in the figure below.

non-constant 3rd order terms for (ai, 2j) configurations in Ax phase (top) and Ay phase (bottom).

In all the A phases of the 18-spin (3i, 3n) 
configuration there are third order non-
constant terms. 
This 18-spin system is 3 × 3 plaquettes and it 
cannot be mapped to the Toric code in any of 
its A phases. 

graphical representations of two of the six third-order finite size corrections
 terms for the 18-spin (3i, 3n) configuration.

Third Order Terms
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Figure 5. Some different four terms sequences that non-trivially connect up the
dimer basis vectors on the 16-spin (2i, 4j) configuration lattice. Type (a) is a
plaquette term Qn and is valid for all non-horizontal configurations. Types (b)
and (c) are horizontal string terms Rn and Zn respectively. Type (d) and (e) are
vertical strings Yn and An respectively. Types (f) and (g) are vertical Xn strings.

where the Rns are (horizontal) strings of the form σzσxσzσx, with the σxs operating on
dimers that are acted on at both ends by a σx or σy in the full system. The horizontal Z
terms contain four effective σz terms and the vertical X and Y strings contain four effective
σxs and σys respectively. The eight (vertical) A terms are mixtures of two effective σy

and σx terms; see figure 5.

2.3.1. Case study: 24-spin (3i, 4j) configuration. As the system size is increased certain
terms drop out of the fourth-order calculation. For example we can extend the 16-spin
(2i, 4j) configuration to a 24-spin configuration in two different ways. Extending the
system vertically to a (2i, 6j) configuration means taking the X, Y and A terms from the
fourth-order calculation and adding in additional Z and R terms. If we extend the system
horizontally, so that we have a (3i, 4j) plaquette configuration, all the Z, R and X terms
drop out while additional Y and A ‘vertical’ terms must be added in.

In this case, if we set J = Jx = Jy, the full effective Hamiltonian can be written as

Heff = cI + Jeff(HK + H(4)
FS ) + O(J6) (9)

where Jeff = J4/(16|Jz|3) and

H(4)
FS = −5

(
6∑

Yn −
12∑

An

)
. (10)

One way to demonstrate the accuracy of the above calculation is to subtract out the
low order finite size contributions from the numerically calculated spectrum. This leaves
the toric code contribution plus higher order corrections. First we define σ(M) as the

doi:10.1088/1742-5468/2008/00/P00000 8

We will now look at additional 
non-constant fourth order 
terms which appear in finite 
sized systems. As an example 
we consider the 16-spin (2i, 
4j) configuration in the Az 
phase. 

Some different four terms sequences that non-trivially connect up the dimer basis vectors on the 16-spin (2i, 4j)
configuration lattice. Type (a) is a plaquette term Qn and is valid for all non-horizontal configurations. Types (b) and 
(c) are horizontal string terms Rn and Zn respectively. Type (d) and (e) are vertical strings Yn and An respectively. 
Types (f ) and (g) are vertical Xn strings. 

Fourth Order Terms
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Figure 6. (σ(H) − E0)/Jeff − σ(H(4)
FS ) versus J2. Lifting of the (3i, 6j) toroidal

honeycomb model ground state degeneracy via sixth-order finite size effects.

appropriately ordered spectrum of any operator M and then note that

σ(H) − E0

Jeff
− σ(H(4)

FS ) = σ(HK) + O(J2). (11)

In figure 6 we plot the lowest four values of the lhs of this equation as a function of J2.
The splitting of the fourfold-degenerate ground state due to the sixth-order finite size
effects is clearly demonstrated.

2.4. Minimum valid toric code lattice

It is useful to ask in what configurations the perturbative expansion to the fourth-order
term is equivalent to the toric code Hamiltonian. Using the arguments like those above we
see that we can rule out all finite size terms at the fourth and lower orders in the Az phase
of the 30-spin (3i5n) configuration. However, the effective fourth-order Hamiltonian is
not unitarily equivalent to the toric code and is of the type HW in all A phases. However,
the Az phase of the 36-spin (3i, 6j) (or equivalently (3i, 6n)) configuration has finite size
effects on the terms of sixth order and above, and the fourth-order term can be unitarily
mapped to the toric code.

It is interesting that this number of spins, 36, may also obtained by requiring that
plaquette terms Qp share only one effective spin. To satisfy this requirement we need
a minimum of 18 effective spins. In figure 7 we plot this 36-spin configuration and its
associated 18-spin toric code lattice.

3. Conclusion

In this paper we first reviewed the toroidal configurations of the honeycomb lattices. We
then listed of some of the smaller configurations and the properties of their non-finite size

doi:10.1088/1742-5468/2008/00/P00000 9
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Figure 7. The 36-spin (3i, 6j) configuration with and its associated toric code
lattice.

fourth-order effective Hamiltonian in each A phase. Typical examples of second-, third-
and fourth-order finite size effects were given for a number of different configurations.
We noted that a minimum of 36 spins in the full system are needed for the fourth-order
effective Hamiltonian to be equivalent to the Kitaev’s toric code. We confirmed, by exact
diagonalization of a 24-spin Hamiltonian, the accuracy of the methodology.
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Appendix. Mapping to the toric code

The spectrum of the system can be given a simple description when two of the parameters
Jx, Jy or Jz are zero (the corners of the phase diagram). In this case we can think of the
system as N/2 non-interacting dimers and the spectrum of the system consists of N/2+1
levels. The lowest level has an energy of JrN/2 where Jr is either Jx, Jy or Jz and the
gap between successive levels is 2Jr. The degeneracy of the nth-lowest level is given by

d(n) = 2N/2

(
N/2
n − 1

)
. (A.1)

Following Kitaev we take Jz " Jx, Jy and write the Hamiltonian as H = H0 + U , where
H0 = −Jz

∑
ij Kz

ij is the unperturbed Hamiltonian and U = −
∑

α∈{x,y} Jα

∑
ij Kα

ij is the
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Avoiding Finite Size Effects 
‣ The smallest finite configuration where 

the fourth-order perturbative 
expansion is equivalent to the toric 
code Hamiltonian with no lower order 
terms is the 36-spin (3i,6j) 
configuration. 

‣ An interesting observation is that this 
is also the smallest configuration 
satisfying the requirement that 
plaquette terms share only one 
effective spin. 
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Thin Torus Limit

x link

y link

z link

Jz=1.0

Jy=1.0Jx=1.0

‣Model compressed in z-link direction 
until only two plaquettes wide. 
‣ Resulting model is Quasi 1D.
‣ Initial exact diagonalisation 

calculations were interesting.
‣ Can be treated more effectively 

numerically (DMRG) and analytically 
(CFT). 
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‣ There is a quantum phase transition at Jxx = 0.5, 
Jyy = Jzz = 0.25.

Thin Torus Limit

‣ At this critical point using DMRG (from ALPS) it 
was found that the energy gap goes to zero 
linearly with one over the system size.

‣ This relation indicates that the critical point can 
be described by a conformal field theory. 

‣ It was discovered that the central charge is 0.5 
indicating that the critical point is described by 
an Ising conformal field theory.

Figure 4: Convergence of ground state.

figures 4, 5 and 6 which shows the convergence behavior of the ALPS DMRG
code which various numbers of states and sweeps. Using 30 sweeps and 700
max states I have run a number of DMRG calculations. I have plotted the gap
from these calculations against 1

L along with the exact diagonalisation data. See
figure 7 for the points of interest.

It appears that at Jx = 0.5, Jy = 0.25, Jz = 0.25 that the gap scales to zero
linearly with 1

L once the system goes past a certain size of around 28 spins.
DMRG calculations were performed for systems of up to 100 spins and the
results can be seen in figure 8 plotted with 1

L and in ?? against L. From this
data its clear that at this point the system is indeed conformally critical.

We will now set out to find the central charge at this critical point. We
do this by using the relation between central charge, entropy and chain size
as discussed in [3]. At a critical point for a system with periodic boundary
conditions the following relation holds.

S(L) ∝ c

3
log(L)

Using DMRG the entropy for systems of up to 50 sites was calculated. Using
the above relation a fit was made. The data points as well as the fit are show
in figure 10. From this fit we can estimate the central charge c to be c =
3x0.172917 = 0.518751. This leads us to believe that the central charge of this
critical point is 0.5.

If the central charge is 0.5 it is expected that at this critical point if the 1st
excitation gap is re-scaled to 0.5 then the rest of the energy spectrum should
be at 1.0, 1.5, 2.0, 2.5 and so on. Using exact diagonalisation to get the energy
spectrum for a 24 spin system at Jx = 0.5 and rescaling the first excitation gap
to 0.5 did not result in the expected spectrum. Looking at the initial gap scaling
plots though it seems that the linear scaling to 0 only really starts with chains

4

c = 0.5± 0.01

Xiao-Yong Feng et al , 2007 PRL 98 087204 

Jx = -0.32 Jx = -0.52
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Thin Torus Limit
‣ Early investigations indicate that when an external magnetic field is switched 

on a gap opens in the centre of the phase diagram. 
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Fendley Quantum Loop Gas Models
‣ Freedman loop gas models have a              

barrier.

‣ Prevents realization of topological phases with 
k > 2 (e.g. Fibonacci anyons).

‣ Barrier can be overcome by using choosing a 
different inner product.

‣ Perturbed toric code. 

d =
√

2

Can add Jones-Wenzl projectors provides SO(3)k theory at arbitrary level of theory k.

- Δn/Δn+1=

n 1 1 n 1 1 n 1 1
d = 2 cos(π/(k+2)) 
Δ-1   = 0
Δ0    = 1
Δn+1= d Δn - Δn-1

(
< 1|1 > < 1|1̂ >
< 1̂|1 > < 1̂|1̂ >

)
=

(
1 λ
λ 1

)
λ = ±1

d
,

H = Htoric + uHu

Htoric =
∑

V

WV +
∑

F

WF

WV =
1
2
(1− σz

V 1σ
z
V 2σ

z
V 3σ

z
V 4)

WF =
1
2
(1− σx

F1σ
x
F2σ

x
F3σ

x
F4)

Hu =
∑

V

WV

4∑

a=1

σz
Va

+
∑

F

WF

4∑

a=1

σx
Fa

Annals of Physics 323 (2008) 3113
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Fendley Quantum Loop Gas Models

N = 8

N = 12

N = 18

N = 24

H = Htoric + uHu
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Numerics
‣ Table summarising numerical tools.
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Numerics
Exact diagonalisation code has been 
developed. 

‣ The code is written in C.

‣ It makes use of the PETSc and 
SLEPc libraries. 

‣ It is capable of running efficiently 
on massively parallel distributed 
memory machines.

‣ Can be used for large range of spin 
1/2 systems without modification. 
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Conclusions
‣Showed non-constant finite size corrections 
appearing up to the order of the toric code mapping 
in Kitaev honeycomb model.
‣Numerical case study demonstrates accuracy of 
numerics and demonstrates how corrections can be 
applied. 
‣Can be used to aid in understanding of fermionization 
approaches. (arXiv:0903.5211)
‣Interesting critical point in thin torus limit described 
by Ising conformal field theory.
‣Evidence of gap opening with magnetic field.
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G. Kells, N. Moran and J. Vala, 
Finite size effects in the Kitaev honeycomb lattice model on a torus, 
J. Stat. Mech. (2009) P03006

G. Kells, A. T. Bolukbasi, V. Lahtinen, J. K. Slingerland, J. K. Pachos, J. 
Vala,
Topological degeneracy and vortex manipulation in Kitaev's honeycomb 
model. 
Phys. Rev. Lett. 101, 240404 (2008).

3

FIG. 2: The Z and V chains with their projections on to the
dimerized subspace. The projections may be factorised into
products P [Z] → zbzw and P [V ] → ybyw. Each of the individ-
ual factors zb, zw, yb, yw also commute with the homologically
trivial components of the effective Hamiltonian but obey the
relation z−1

j y−1
k zjyk = eiπ(1−δjk)I . In the text, dimers are re-

ferred to as black (white) if they are shared by a black (white)
plaquette.

square lattice of the toric code (cf. [2]) and thus obey the
commutation relations z−1

j y−1
k zjyk = eiπ(1−δjk)I. Since

these operators commute with the effective plaquette op-
erators Qp they also commute with all homologically triv-
ial components of Heff. However, they do not commute
with all of the homologically non-trivial components. If
we define C′ as the homologically non-trivial loop with
the least number of x- and y-links, then the topological
degeneracy is first broken at the order M , where M is
the number of x- and y-links in C′.

At any size, the plaquette and homologically non-
trivial operators together generate all conserved quan-
tities and in particular, determine the energy. For the
typical system sizes that can be handled by numerical
diagonalization and other numerical methods, the homo-
logically non-trivial terms in the effective Hamiltonian
are appreciable and must be taken into account to pro-
duce a good fit to exact numerical results. In larger tori
these homologically non-trivial terms become less rele-
vant to the energy and the topological degeneracy of the
system can be robust beyond the 4th order toric code
approximation. Indeed, in the thermodynamic limit, the
4-fold topological degeneracy exists to all orders of the
perturbation theory and the eigenstates of the effective
Hamiltonian are exactly those of the toric code. One
should note however that even in this limit, and unlike
the toric code, the energy of a particular eigenstate is
also determined by the relative positions of the vortex
excitations [12].

We now concentrate on the full Hamiltonian and con-
sider the physical properties associated with open ended
strings of overlapping Kα operators. We first note that
{σα

i , Wp} = 0 when the site i belongs to an α-link at pla-
quette p. Hence, the operator σα

j changes the vorticity of
the two plaquettes sharing this α-link by either creating
or annihilating a pair of vortices, or moving a vortex from
one plaquette to the other. It follows that the K opera-

tors satisfy [Kα
ij , Wp] = 0 (∀i, j), [Kα,β

ij , Wp] = 0 (i, j /∈ p)

and {Kα,β
ij , Wp} = 0 (i ∨ j ∈ p).

Now define a path s on the lattice as some ordered set
of |s| neighboring sites connecting the endpoints i and
j. A string operator, denoted as Ss

ij , of overlapping Kα

operators along this path s can be represented as a site
ordered product of σα and Kα,β operators. We use the
Kα,β notation in what follows when we wish to explicitly
indicate the simultaneous operation of the constituent σα

operators. If we assume that a Kα,β always acts first we
see that the total operator can be interpreted as creation
of two vortex-pairs and subsequent movement of one of
the pairs along the path s. Importantly, we see that
σα correspond to a rotation of one vortex-pair, whereas
Kα,β moves the pair without a rotation (see FIG. 3). If
i and j are neighboring sites and s is a homologically
trivial loop then by definition C(k,l) = Ss

ij =
∏

p Wp, see
(3) and where the product is over all plaquettes enclosed
by s. If we treat a vortex-pair as a composite particle
then the simplest loop operator C(k,l) = Wp (constructed
from single σα operators) rotates the composite particle
by 2π. The resulting overall phase of eiπ suggests that
the vortex-pairs are fermions for all values of Jα.

Suppose now that the first and last links along the path
s are α- and µ-links, respectively, and that the ends of
the string Ss

ij are given by the operators σβ or Kβ,α and
σν or Kν,µ. Then

Ss
ijHSs

ij = H + 2JγKγ
ia + 2JτKτ

jb (7)

where a and b are the sites connected to i and j by the
respective γ- and τ -links, γ $= α $= β and τ $= µ $= ν.
Taking the expectation value of both sides with respect
to any translationally invariant state |ψ〉, which includes
the vortex-free ground state [1, 26], we see that the ex-
pectation energy of the state Ss

ij |ψ〉 depends only on the
ends of the string and this energy contribution is the
same for links of the same type. This implies, even when
Jx $= Jy $= Jz , that vortex-pairs created from the ground
state can be propagated freely provided the relative ori-
entation of each pair remains constant. The expectation
energy of the states created in this way can be calculated
explicitly with respect to the ground state [1, 9].

These fermionic vortex-pairs are distinct from the
fermions introduced as redundant degrees of freedom
in [1], those obtained by Jordan-Wigner transformation
[7, 8, 11] and the vorticity preserving free-fermionic ex-
citations of [12]. In the gapped phase however, the low-
energy vortex-pair configurations are related to certain
fermionic e-m composites of the toric code [1, 2]. This
last point is potentially relevant to the connection be-
tween the abelian and the non-abelian phases [16].

The movement of vortex-pairs is in contrast to the situ-
ation encountered when one wants to separate individual
vortices. Crucially, this cannot be done using overlap-
ping Kα terms and indeed can only be achieved if we use

 

Finite Size EffectsFinite Size Effects
Taking as an example a system of 24 spins on a 
torus.  

The table shows numerical results for the low end 
of the spectrum of the Hamiltonian divided by J

eff
 

for various values of J.  

We expect to see a 4 fold degenerate ground state 
and a gap of 4 to the first excitation level (Toric 
code spectrum).  

However we get a 2 fold degenerate ground state 
and a larger than expected gap. 

Using perturbation theory we were able to quantify 
the finite size effects and found that on this lattice 

there are other 4th order non constant terms. 
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Figure V.1: Results of exact diagonalization of first energy gap as a function of the length and Λ for length up to L = 14. All the plots show a
clear linear dependence of the gap with the inverse of the length of the ladder.
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number of rungs traced to compute the von Neumann entropy. In fact, even or odd plots follow two different scaling fits. (See

Fig. V.3). The fits use only two parameters and assume a conformal invariance of the critical point. Following Calabrese and

Cardy [28], the behaviour of the von Neumann entropy is

S(l) =
c

6
log2

(

L

π
sin(

πl

L
)

)

+ A (V.1)
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Exact diagonalisation on Blue Gene/P 
was used to verify approximate 
DMRG calculations.

Gap Scaling using EDGap Scaling using DMRG
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