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Introduction

•Non-Abelian anyons have non-trivial fusion spaces.

•Fusion information is stored non-locally.

•This makes non-Abelian anyons a natural choice to encode quantum 
information fault-tolerantly.

•We realize equivalent properties in Abelian models                                           
                        (non-locality, non-Abelian fusion rules).

•Non-topological operations are introduced to allow universal quantum 
computation.



  

The anyonic model

•Many Abelian models can be used. We consider             .

•Square lattice with a six level spin on each edge.

•The basis states of the spins,      , are labelled by  elements            .

•Generalized Pauli operators,
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The anyonic model

•Anyons are defined by plaquette and vertex 
projectors,

 
[A. Kitaev, Annals Phys. 303 (2003), 2-30]
 
•Five non-trivial charge anyons can exist on vertices,

•Five non-trivial flux anyons can exist on plaquettes, 

•The Hamiltonian assigns equal energy to all 
anyons,
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The anyonic model

•The application of           on a spin i creates an               pair on neighbouring 
vertices.

•The application of           creates a                  pair on neighbouring 
plaquettes.
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The quasiparticles

•Use these anyons to construct new quasiparticles     ,      and      .   

•These are defined by the projectors, 

•The fusion rules are,
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The quasiparticles

•A     pair can be created on vertices either side of a spin, i, by

•A             pair can be created with,

•The non-local nature of the fusion is provided by,
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Qubit encoding

•We can use the      quasiparticles to store, protect and manipulate quantum 
information.
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Qubit encoding

•Similar particles,     and      can be defined on plaquettes,
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Logical Pauli rotations

•The logical Z operators correspond to vertex operators,

•The logical X operators correspond to
spin operators,

•Corresponding logical Paulis exist for
qubits stored on plaquettes.
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Controlled-phase gate

•Braiding a     around a     gives a phase of -1.

•This may be used to realized a controlled-phase between logical qubits.
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Spin measurements

•Since,

when      and       are neighbours, single spin measurements on the lattice can 
realize logical X measurements.

•Single spin measurements may be used to apply the projector,

•This allows us to create the state,
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Universal quantum computation

•Universal quantum computation:

 

•Another gate set can be used without braids that employs entangling 
operations on the lattice spins. 



  

Fault-tolerance

•Our encoding depends upon degeneracies within the fusion space.

•These degeneracies may be lifted by perturbations in the Hamiltonian, which 
causes errors.

•Most perturbations are suppressed by the gap. The dangerous perturbations 
are those that form strings around or touching the quasiparticles.



  

Fault-tolerance

•The smallest dangerous perturbation is any           acting on a spin 
neighbouring a quasiparticle.

•This can cause the quasiparticles to split, and so disturb the encoding space. 
This does not cost energy, and so is not protected by the gap.

•We can invert the coupling of the plaquettes and vertices on which the 
quasiparticles reside. This assigns energy to an absence of anyons.

•This creates an additional gap to suppress such perturbations.

 

•Perturbations that stretch between the quasiparticles may lift the degeneracy. 
These are suppressed by separation.
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Fault-tolerance

•Perturbations may lift the degeneracy of the stored information if they stretch 
between the pairs.

•An example would be a perturbation

•To protect against these, note that the creation operator for a              pair 
contains a projection,

•An additional single spin term,               ,
will therefore not affect the encoding space.

•This term suppresses the perturbations by             .
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Conclusions

•Abelian models are simpler to implement experimentally.

•We can achieve the same encoding as in non-Abelian models.

•Quantum information is manipulated by braiding and single spin 
measurements.

•Fault-tolerance is enhanced by external magnetic fields.

•The method we use is general, and may be applied to many abelian models.
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