Bell Tests with Anyons

Sofyan Iblisdir
University of Barcelona, Spain

March 30, 2009

Foreword

Joint work with:
G. Brennen (Macquarie University, Sydney, Australia),
J. Pachos (Leeds University, Leeds, UK),
J. Slingerland (DIAS, Maynooth University, Ireland).
N.B. Project started two "TQC symposia ago", Leeds, April 2008.

- Local hidden variables and Bell inequalities
- Some features of $(2+1)$-dimensional physics.
- Bell tests with Ising anyons
- Conclusions and open problems

Local hidden variables

Measurement type: M_{i}^{A} (left side), M_{j}^{B} (right side).
Measurement outcome: $m_{i, \alpha}^{a}$ (left side), $m_{j, \beta}^{B}$ (right side).

$$
\Pi\left(m_{i, \alpha}^{a}, m_{j, \beta}^{B} \mid M_{i}^{A}, M_{j}^{B}\right)=\int d \lambda p(\lambda) \pi\left(m_{i, \alpha}^{a}, m_{j, \beta}^{B} \mid M_{i}^{A}, M_{j}^{B}, \lambda\right) ?
$$

In words: Can we always explain correlations in terms of a local preparation?
N.B. The question is not specific to quantum mechanics.

Bell inequalities

The assumption

$$
\Pi\left(m_{i, \alpha}^{a}, m_{j, \beta}^{B} \mid M_{i}^{A}, M_{j}^{B}\right)=\int d \lambda p(\lambda) \pi\left(m_{i, \alpha}^{a}, m_{j, \beta}^{B} \mid M_{i}^{A}, M_{j}^{B}, \lambda\right)
$$

can be tested. For example, if $A_{1}, A_{2}, B_{1}, B_{2}$ are binary outcome observables, then

$$
\mathcal{B} \equiv\left\langle A_{1} B_{1}+A_{2} B_{2}+A_{2} B_{1}-A_{1} B_{2}\right\rangle \leq 2
$$

The most interesting feature of this relation is that it is inconsistent with quantum mechanics.

An experiment with two qubits (I)

$$
\mathcal{B} \equiv\left\langle A_{1} B_{1}+A_{2} B_{2}+A_{2} B_{1}-A_{1} B_{2}\right\rangle \leq 2 .(\mathrm{LHV})
$$

Consider $\left|\Psi_{A B}\right\rangle=|0,0\rangle+|0,1\rangle+|1,0\rangle-|1,1\rangle$ and

$$
\begin{aligned}
& A_{1}=\sigma^{z} ; A_{2}=\sigma^{x} \\
& B_{1}=\frac{1}{\sqrt{2}}\left(\sigma^{x}+\sigma^{z}\right) ; B_{2}=\frac{1}{\sqrt{2}}\left(\sigma^{x}-\sigma^{z}\right)
\end{aligned}
$$

Quantum mechanics predicts $\mathcal{B}=2 \sqrt{2}$.

An experiment with two qubits (II)

qubit A	qubit B	consistent with LHV	consistent with QM
photon polarisation	photon polarisation	no	yes
photon polarisation	electron spin in atom	no	yes
\vdots	\vdots	\vdots	\vdots

It is interesting to perform Bell tests with different media.
Different systems give rise to different loopholes.
We here study the possiblity to perform Bell tests with anyons.

Physics in $2+1$ dimensions

Let R: exchange operator (topological interaction).
Unlike what happens with bosons and fermions, it can be the case that $R \Psi_{12} \neq \pm \Psi_{12}$. Two classes of anyons:

$$
\begin{align*}
& R=e^{i \theta_{12}} \mathbf{1} \tag{AA}\\
& R \neq e^{i \theta_{12}} \mathbf{1} \tag{NA}
\end{align*}
$$

Local and non-local degrees of freedom

We are interested in the fusion space $M_{q_{1} \ldots q_{n}}$.

Bell tests with Ising anyons (I)

$$
\begin{equation*}
\psi \times \psi=1, \quad \psi \times \sigma=\sigma, \quad \sigma \times \sigma=1+\psi . \tag{1}
\end{equation*}
$$

Create three pairs from the vacuum. Each half goes to one side.

Using a sequence of F-moves, we find that

This is a "Bell" state:
$|0,0\rangle+|0,1\rangle+|1,0\rangle-|1,1\rangle$ (see before).

Bell tests with Ising anyons (II)

Pairs of non-commuting observables:

Alice	σ^{x}, σ^{z}
Bob	$\frac{1}{\sqrt{2}}\left(\sigma^{x} \pm \sigma^{z}\right)$

Alice	Bob	P/

Bob's measurements are achieved by getting the quasiparticles close for a fixed amount of time (unprotected operation) before performing a left or right measurement.
Maximal violation is obtained: $2 \sqrt{2}-2$.

More Bell violations

Anyon type	$S U(2)_{2}$	$S U(2)_{k}$	$D\left(S_{3}\right)$
Bell violation	$2 \sqrt{2}-2$	$\mathcal{B}(k)-2$	$2.0512-2$

$$
\mathcal{B}(k)= \pm \sec ^{2}\left(\frac{\pi}{k+2}\right) \sqrt{4 \cos \left(\frac{2 \pi}{k+2}\right)+\frac{1}{2} \cos \left(\frac{4 \pi}{k+2}\right)+\frac{5}{2}} .
$$

N.B. There is room for improvement.

Conclusions and open questions

- Bell tests could be achieved with non-Abelian anyons.
- Schemes with $S U(2)_{k}$ anyons and with quantum double models.
- Is an experiment possible? Ising anyons? What would be the difficulties? For instance, no "single shot coincidence".
- What would be the Loopholes?
- Find schemes that are fully contained in the fusion space.
- Which non-Abelian anyons require to go out of the fusion space for violation? Is there a relation with the possibility to perform universal quantum computation?
- More general question: relation gate set / Bell violation.

