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Motivation and main results

Write QH wave function as CFT correlators
Natural description for electrons and quasiholes, but not for quasielectrons

Construction of a quasielectron operator (nearly equivalent to quasihole)
e general definition
® correct charge
® quasilocal
e statistics hidden in the Berry phase

Condensates of non-Abelian quasielectrons (in the sense of Haldane/Halperin hierarchy)
e filling factors - v =4m/(4m-1) bosonic
- v=4m/(8m-1) fermionic

¢ fundamental quasholes have charge e/q for filling fraction v =p/q
are non-Abelian, but not of Ising type

Example: v =1 — v =4/3: su(2), — su(3)2 (Fibonacci x Abelian )

Generalization to a hierarchy of non-Abelian quasielectron states




QH wave functions as CFT correlators

Laughlin’s wave functions ‘“look like” correlation
functions in a Conformal Field Theory.

(Fubini, Moore&Read, Wen)

QH wave functions are the conformal blocks of a RCFT

Electrons and quasiholes are represented as local, chiral operators
Statistics coded in the braiding properties of the corresponding operators
Generalization to other FQH states (Jain, Moore-Read, efc. )

consider a massless scalar field:  (p(2)p(w)) = —In(z — w)

particles are described by vertex operators:  Va (z2) = plaw(z)

(Va(2)Va(w)) ~ (2 —w)* —— fermionic statistics for a2 odd integer




Laughlin’s fractions: v = 1/m
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—> Quasihole operator H(n) = e v " local
charge e/m

statistics encoded in operators

Different hole operators give the same electronic wave function




Monodromy vs. Berry’s phase scwea

Laughlin fractions

e statistical phase = monodromy + Berry phase
e wave functions not normalized
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e explicit monodromy
¢ zero Berry phase
e “natural” from CFT

¢ original proposal of Laughlin
® no monodromy
e statistical phase totally in Berry

phase construction
free interpolation between different monodromies H(n) = e vidd)
by introducing a second uncharged bosonic field < H(p) = e = () +iag’ (1)

bosonic representation

o o=y — fermionic representation




What about quasielectrons?

several proposals!

. o e) 2 _ m _— 2
Laughlin’s Quasielectron: 9% (7;21,...,2n) = e"am [[(20; — ) [ [ (i — 2j)™e™ =i 32

e localized charge
¢ but problems with anyonic statistics




What about quasielectrons?

several proposals!
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e localized charge
¢ numerical calculations show anyonic exchange phase

more complicated than quasiholes

® [t is not obvious that it corresponds to a localized -e/m charge
e The statistical phase cannot be computed analytically

Is there a CFT operator for the quasielectron with these properties manifest?




Goal: quasielectron operator  (P(n) || Ve(z:)Os)

1=1

CFT operator for quasi-electron analogous to the quasi-hole operator

wanted features local operator

charge -e/m
statistics manifest in the operators
create multi-ge states by repeated insertion of ge operators

naive guess: P(n) = H_l(n) e Jocal
e correct charge
e cxpected statistics

But: does not yield valid wave functions (P(n) H V(Zi)obg> ~ H(U — Zi)_l




The QH quasielectron
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The QH quasielectron
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The quasielectron operator

'P(n) — /dzw e_%(|w|2—2wﬁ+|n|2) (H—15J>n (’U))

Results:

¢ quasi-local on magnetic length scale

¢ same charge and conformal dimension as H'l(q)

¢ multiple insertion gives multi-quasielectron states

e straightforward generalization to other states (Moore-Read,
Jain, Read-Rezayi)

¢ construction completely in the lowest LL (no need for projection)

Comments:

® insert fermionic or bosonic inverse quasihole to avoid branch cuts
¢ no monodromy, statistics completely in the Berry phase
e (..)yis a (generalized) normal ordering (H~'V) =0:H 'V : (z)




Moore-Read v=1/2 S

Moore&Read, Nayak&Wilczek oxo = 14+
Ising representation 331 representation
V(z) = ¢(2)62\/§90(z) 11 V(Z) — COS¢(Z)€Z.\/§(’O(Z)
H(p) = 0'(77)6235@(77) <€ > H:t(n) _ eﬂ:icﬁ(n)/QeQ—f@@(ﬁ)

Ground state is an antisymmetrized two layer state: 331 state
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a,b = +1,...,N

quasihole states are obtained by inserting Hy H- pairs

¢ ¢qual number of H; and H.-
e states are labeled by orderings of Hy and H-

® for 2n quasiholes there are 2™ inear independent orderings




Quasielectrons in the Moore-Read state

Take 331 representation V(z) = cos QS(Z)ei\/igo(z)
Hi(n) = o Ei0(1)/2 , 5075 #(n)

And fermionize the quasihole: | H, (n) = e va P g2 56(n) g—in/Txa (MF s x2(n)

Leads to two different operators | P, (7)) = / 42 = Tz (w0l =27t |nl*) (H:'9J) (w)

describes localized e/4 charges Different orderings of ‘+’ and ¢-’ span the Hilbert
space for the multi quasielectron state
P AN R \
Uz%' / T | V | dqe:  (Pr(n)Py(m)P-(0)P-(na)V (1) ...V (2w)
LT (P4 ()P— ()P (13)P— (1) V (1) ... V (2))

3
.i e wave function does not correspond to a specific
X fusion channel of the quasielectrons
¢ non-Abelian statistics is hidden entirely in the
Berry phase




Condensation of quasielectrons

Haldane/Halperin hierarchy:
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Unique trial wave function e Integration can be performed analytically
¢ Integration over quasielectron position amounts to an
average over different fusion channels

A(k +1)

Fermionicv=1/2 — v= Sk -1

Ak +1)
4k +1) -1

Bosonic v=1 —> VU




The bosonic state at v=4/3

k=0 and M=N7/2 yields trial wave function for fermionic v = 4/7 or bosonic v = 4/3

Uy =S [{01 (1- 122 —2)%(1-2)} x {95 (3—3)2(4—4)%(3 — 4)}] T

The fundamental quasihole has charge q;, = e/3

su(3)2 fusion rules ac,

comments:

Derivatives come from the quasielectrons and are needed to obtain a non-
vanishing result

Natural interpretation as a symmetrized two layer state with v=2/3 bosonic Jain
states in the layers

Generalization to a hierarchy of non-Abelian quasielectron condensates




Conclusions

Construction of a quasielectron operator (nearly on the same footing as quasiholes)

ecorrect charge
equasilocal
estatistics hidden in the Berry phase

Condensates of non-Abelian quasielectrons (Haldane/Halperin hierarchy)
e filling factors - v =4m/(4m-1) bosonic
- v=4m/(8m-1) fermionic

¢ fundamental quasholes have charge e/q for filling fraction v =p/q

are non-Abelian, but not of Ising type

Example: v =1 —» v =4/3: su(2) — su(3)2 (Fibonacci x Abelian )

Generalization to a hierarchy of non-Abelian quasielectron states




