## Numerical evidence for a Bonderson-Slingerland non-abelian hierarchy state at $\nu=12 / 5$

7th Symposium on Topological Quantum Computing Paris March 30th - April 1st

## Gunnar Möller

Cavendish Laboratory, University of Cambridge
Parsa Bonderson, Adrian Feiguin Microsoft Station Q, Santa Barbara

Joost Slingerland
Dias, Dublin
[further contributions by Arkadiusz Wójs, Univ. Cambridge]

## Overview

- Introduction \& Motivation
- The Bonderson-Slingerland hierarchy construction (a quick reminder - for details: see Parsa's talk on Monday)
- Special case considered: $\nu=12 / 5$
- Numerical verification of the BS state at $\nu=12 / 5$
- Search for an incompressible state at the shift of BS
- Analysis of two-point correlation functions of BS
- Overlaps of the BS and exact ground states
- Competition between RR, HH, and BS states at $\nu=12 / 5$
- Conclusions


## Motivation <br> New trial states from the Bonderson-Slingerland hierarchy construction I

Extend Halperin-Haldane hierarchy construction to the 2nd LL
Hierarchy construction in LLL:

- Concept: ‘Condensation’ of quasiparticles above a mother QH state
- Statistics of qp's determines the Laughlin-like wavefunctions
 suitable to describe correlations between quasiparticles
- Iterating condensation of qp's on subsequent quantum liquids yields states of the HH-hierarchy


## Motivation

New trial states from the Bonderson-Slingerland hierarchy construction II

Additional feature in 2nd LL: non-abelian statistics of qh in the mother-state!
energies for nearby quasiparticles will be split between fusion-channels

- Assume: all pairs of qh's prefer the vaccuum '1'-channel.
- Corresponding quasihole wavefunction is known for the Moore-Read Pfaffian state:


$$
\Psi_{0}\left(\left\{w_{\alpha}\right\}\right)=\prod_{\alpha<\beta}\left(w_{\alpha}-w_{\beta}\right)^{\frac{1}{2}} \prod_{\alpha}^{M} \prod_{k}^{N}\left(z_{k}-w_{\alpha}\right) \prod_{i<j}\left(z_{i}-z_{j}\right)^{2} \operatorname{Pf} \frac{1}{z_{i}-z_{j}}
$$

P. Bonderson and J. K. Slingerland, Phys. Rev. B 78, 067836 (2008).

## Motivation

New trial states from the Bonderson-Slingerland hierarchy construction III

Specialize to case of $\nu=12 / 5$ :

- semionic Laughlin qp's of Pfaffian may form liquid state with

$$
\Phi_{1}\left(\left\{u_{\alpha}\right\}\right)=\prod_{\alpha<\beta}\left(u_{\alpha}-u_{\beta}\right)^{\frac{5}{2}}
$$

$\mathrm{N}_{1}=\mathrm{N}_{0} / 2+1$
Quasiparticles


This yields the hierarchy state

$$
\begin{aligned}
\Psi_{\nu=\frac{12}{5}}\left(\left\{z_{i}\right\}\right) & =\int d u_{1} \ldots d u_{N_{1}} \Phi_{1}^{*}\left(u_{\alpha}\right) \Psi_{0}\left(z_{i} ; u_{\alpha}\right) \\
& \simeq \Psi_{\nu=1}^{(M R)} \times \Psi_{\nu=\frac{2}{3}}^{(C F)}
\end{aligned}
$$

P. Bonderson and J. K. Slingerland, Phys. Rev. B 78, 067836 (2008).

## Motivation <br> Properties of the Bonderson-Slingerland hierarchy states

- The physics predicted by the BS hierarchy is fundamentally different from that predicted by other models
- For condensation in charge sector, all states inherit the statistics of the underlying mother-state, i.e., they realize Majorana Fermions described by the Ising CFT.

In particular, for $\nu=12 / 5$, this implies the competition of three states with different shift $S$ on sphere [ $N_{\phi}=\nu^{-1} N-S$ ]

- the $\overline{R R}$ state, shift $S=-2, \Rightarrow$ parafermions
- the $B S$ state, shift $S=+2, \Rightarrow$ Majorana fermions
- the $H H / C F$ state, shift $S=+4, \Rightarrow$ abelian
$\Rightarrow$ Crucial to understand competition


## Numerical search for a BS state at $\nu=12 / 5$ - I

Charge gap as a function of the shift on sphere

## Exact diagonalization / DMRG on sphere


[Data from DMRG for the Coulomb Hamiltonian in a thin layer, $N_{e}=14$ ]

- clearly visible gap $\Delta\left(N_{\phi}\right)=E_{N_{\phi}+1}+E_{N_{\phi}-1}-2 E_{N_{\phi}}$ at the shift of the $\overline{R R}$ and $B S$ states
- small local maximum for $\mathrm{HH} / \mathrm{CF}$ state.
P. Bonderson, A. Feiguin, G. Möller and J. Slingerland, arXiv:0901.4965.


## Numerical search for a BS state at $\nu=12 / 5$ - II Perturbation of the interaction around Coulomb

Simplest parametrization of interaction: $V_{1}^{\text {Coulomb }} \rightarrow V_{1}+\delta V_{1}$


- Both $B S$ and $\overline{R R}$ have a clear gap in region around Coulomb point, shown here for $N=14$.

Bonderson, Feiguin, Möller and Slingerland, arXiv:0901.4965.

## Numerical search for a BS state at $\nu=12 / 5$ - III

 Parametrization of general interactionsNeutral gap for general interactions $U$ varying $\left(V_{1}, V_{3}, V_{5}\right)$


- Gap for general $U$ reveals island of stability for the BS state very similar to that of its MR mother-state, and centered around the 2nd LL like potential.


## Numerical search for a BS state at $\nu=12 / 5$ - IV

Correlations in the tentative BS state

## Pair-correlation function $\left\langle\Psi^{\dagger}(\vec{R}) \Psi(0)\right\rangle$ on the sphere



- Correlation function indicative of incompressible state with pairing nature
- Also, angular momentum $L^{2}=0$ for $N=6, \ldots, 18$.

Bonderson, Feiguin, Möller and Slingerland, arXiv:0901.4965.

## Numerical search for a BS state at $\nu=12 / 5$ - V

Overlap of the BS state with the exact grondstate
Integrate $\mathcal{O}=\int d\left(z_{1}, \ldots, z_{N}\right) \Psi_{\text {BS }}^{*} \Psi_{\text {exact }}$ by Monte-Carlo sampling in position space


- Overlap large: up to 0.82 for $N=14\left[D_{L_{z}=0} \sim 1.9 \times 10^{7}\right]$.
- However, knowing that BS derives from the weak-pairing phase at $\nu=5 / 2$, could this be improved?


## Digression: weakly paired states

The Moore-Read state: one of many representatives in the weakly paired phase

- Moore-Read:
$\Psi_{\mathrm{MR}}=\operatorname{Pf}\left[\frac{1}{z_{i}-z_{j}}\right] \prod_{i<j}\left(z_{i}-z_{j}\right)^{2}$
- want explicit expression for general paired state in same universality class! (see Read \& Green, PRB 2000)

[variational parameters $u_{k}, v_{k} \rightarrow g_{k}=v_{k} / u_{k}$ ]
- in nosition snace:

- Composite-fermionize BCS: $\left[\tilde{\phi}\left(z_{i}\right)=J_{i}^{-1} \mathcal{P}_{\text {LıL }} J_{i} \phi\left(z_{i}\right)\right]$ $\psi C F-B C S=\operatorname{Pr}\left\lceil\sum_{k} g_{k} \tilde{\phi}_{k}\left(z_{i}\right) \tilde{\phi}_{-k}\left(z_{j}\right)^{\top} \prod_{i<j}\left(z_{i}-z_{j}\right)^{2}\right.$ G. Möller and S. H. Simon, Phys. Rev. B 77, 075319 (2008).


## Digression: weakly paired states

The Moore-Read state: one of many representatives in the weakly paired phase

- Moore-Read:
$\Psi_{\mathrm{MR}}=\operatorname{Pf}\left[\frac{1}{z_{i}-z_{j}}\right] \prod_{i<j}\left(z_{i}-z_{j}\right)^{2}$
- want explicit expression for general paired state in same universality class! (see Read \& Green, PRB 2000)
- start from BCS state: $|\mathrm{BCS}\rangle=\prod_{\mathbf{k}}^{\prime}\left(u_{k}+v_{k} c_{\mathbf{k}}^{\dagger} c_{-\mathbf{k}}^{\dagger}\right)|0\rangle$ [variational parameters $u_{k}, v_{k} \rightarrow g_{k}=v_{k} / u_{k}$ ]
- Composite-fermionize BCS: $\left[\tilde{\phi}\left(z_{i}\right)=J_{i}^{-1} \mathcal{P}_{\text {LıL }} J_{i} \phi\left(z_{i}\right)\right]$ $\psi C F-B C S=\operatorname{Pf} \sum^{\top} \sum_{k} \tilde{\phi}_{k}\left(z_{i}\right) \tilde{\phi}_{-k}\left(z_{j}\right)^{\top} \Gamma_{i<j}\left(z_{i}-z_{j}\right)^{2}$ G. Möller and S. H. Simon, Phys. Rev. B 77, 075319 (2008).


## Digression: weakly paired states

The Moore-Read state: one of many representatives in the weakly paired phase

- Moore-Read:
$\Psi_{\mathrm{MR}}=\operatorname{Pf}\left[\frac{1}{z_{i}-z_{j}}\right] \prod_{i<j}\left(z_{i}-z_{j}\right)^{2}$
- want explicit expression for general paired state in same universality class!
 (see Read \& Green, PRB 2000)
- start from BCS state: $|\mathrm{BCS}\rangle=\prod_{\mathbf{k}}^{\prime}\left(u_{k}+v_{k} c_{k}^{\dagger} c_{-\mathbf{k}}^{\dagger}\right)|0\rangle$ [variational parameters $u_{k}, v_{k} \rightarrow g_{k}=v_{k} / u_{k}$ ]
- in position space: $\left\langle\left\{\mathbf{r}_{i}\right\} \mid \mathrm{BCS}\right\rangle=\operatorname{Pf}\left[\sum_{\mathrm{k}} g_{\mathbf{k}} e^{i \mathbf{k} \cdot\left(\mathbf{r}_{l}-\mathbf{r}_{m}\right)}\right]$
- Composite-fermionize BCS: $\left[\tilde{\phi}\left(z_{i}\right)=J_{i}^{-1} \mathcal{P}_{\text {LıL }} J_{i} \phi\left(z_{i}\right)\right]$

G. Möller and S. H. Simon, Phys. Rev. B 77, 075319 (2008).


## Digression: weakly paired states

The Moore-Read state: one of many representatives in the weakly paired phase

- Moore-Read:

$$
\Psi_{\mathrm{MR}}=\operatorname{Pf}\left[\frac{1}{z_{i}-z_{j}}\right] \prod_{i<j}\left(z_{i}-z_{j}\right)^{2}
$$

- want explicit expression for general paired state in same universality class!
 (see Read \& Green, PRB 2000)
- start from BCS state: $|\mathrm{BCS}\rangle=\prod_{\mathbf{k}}^{\prime}\left(u_{k}+v_{k} c_{k}^{\dagger} c_{-\mathbf{k}}^{\dagger}\right)|0\rangle$ [variational parameters $u_{k}, v_{k} \rightarrow g_{k}=v_{k} / u_{k}$ ]
- in position space: $\left\langle\left\{\mathbf{r}_{i}\right\} \mid \mathrm{BCS}\right\rangle=\operatorname{Pf}\left[\sum_{\mathbf{k}} g_{\mathbf{k}} e^{\mathbf{i k} \cdot\left(\mathbf{r}_{l}-\mathbf{r}_{m}\right)}\right]$
- Composite-fermionize BCS: $\left[\tilde{\phi}\left(z_{i}\right)=J_{i}^{-1} \mathcal{P}_{\text {LLL }} J_{i} \phi\left(z_{i}\right)\right]$

$$
\psi^{C F-B C S}=\operatorname{Pf}\left[\sum_{\mathbf{k}} g_{\mathbf{k}} \tilde{\phi}_{\mathbf{k}}\left(z_{i}\right) \tilde{\phi}_{-\mathbf{k}}\left(z_{j}\right)\right] \prod_{i<j}\left(z_{i}-z_{j}\right)^{2} .
$$

G. Möller and S. H. Simon, Phys. Rev. B 77, 075319 (2008).

## Digression: weakly paired states

Apply concept of general pair wavefunctions to BS wavefunction

- Bonderderson-Slingerland states derive from the weakly paired states at $\nu=5 / 2 \Rightarrow$ make use of variational degrees of freedom in its pair wavefunction
previously: $\Psi_{\frac{2}{5}}^{(\mathrm{BS})}=\operatorname{Pf}\left[\frac{1}{z_{i}-z_{j}}\right] \prod_{i<j}\left(z_{i}-z_{j}\right) \Psi_{\frac{2}{3}}^{(\mathrm{CF})}$
with generalized pair wavefunction:
$\Rightarrow \Psi_{\frac{2}{5}}^{(\mathrm{BS})}\left[g_{k}\right]=\operatorname{Pf}\left[\sum_{\mathbf{k}} g_{\mathbf{k}} \tilde{\phi}_{\mathbf{k}}\left(z_{i}\right) \tilde{\phi}_{-\mathbf{k}}\left(z_{j}\right)\right] \prod_{i<j}\left(z_{i}-z_{j}\right) \Psi_{\frac{2}{3}}^{(\mathrm{CF})}$,
with the projected CF orbitals $\tilde{\phi}\left(z_{i}\right)=J_{i}^{-1} \mathcal{P}_{\text {LLL }} J_{i} \phi\left(z_{i}\right)$, and with $\Psi_{\frac{2}{3}}^{(\text {CF) }}$ generated from CF in negative flux.
P. Bonderson, A. Feiguin, G. Möller and J. Slingerland, arXiv:0901.4965.
G. Möller and S. H. Simon, Phys. Rev. B 77, 075319 (2008).
G. Möller and S. H. Simon, Phys. Rev. B 72, 045344 (2005).


## Numerical search for a BS state at $\nu=12 / 5$ continued

 More overlaps for the BS states with general pairingOverlaps in Monte-Carlo simulations, with optimization of $\left\{g_{k}\right\}$



- Overlaps further increased: up to 0.92 for $N=14$.
- Number of variational parameters on sphere small $(\leq 5)$


## Competition of different trial states at $\nu=12 / 5$

Having established the $\nu=12 / 5$ state with shift $S=2$ as a BS state: $\Rightarrow$ now study competition between different candidate states


- find $E / N_{e}=-0.3416(5),-0.342(3)$, and $-0.3421(5)$ for $S=H H, B S$, and $R R$ using $N \geq 12$.
$\Rightarrow$ very close competition, cannot confidently distinguish states


## Competition of different trial states at $\nu=12 / 5$ - discussion



## Recapitulate

- $e_{\mathrm{HH}}=-0.3416(5)$
- $e_{B S}=-0.342(3)$
- $e_{R R}=-0.3421(5)$
- Estimate of energies, including their order, susceptible to details of extrapolation (linear/quadratic, system sizes, etc.)
- Additional physical effects as Landau-level mixing and finite width likely to determine state that champions competition
- Torus data mostly supports $\overline{R R}$, but also indicates proximity of $B S$ state

Both $\overline{R R}$ and $B S$ can potentially be realized at $\nu=12 / 5$,
depending on details of sample geometry
P. Bonderson, A. Feiguin, G. Möller and J. Slingerland, arXiv:0901.4965.

## Competition of different trial states at $\nu=12 / 5$ - discussion



## Recapitulate

- $e_{\mathrm{HH}}=-0.3416(5)$
- $e_{\mathrm{BS}}=-0.342(3)$
- $e_{R R}=-0.3421(5)$
- Estimate of energies, including their order, susceptible to details of extrapolation (linear/quadratic, system sizes, etc.)
- Additional physical effects as Landau-level mixing and finite width likely to determine state that champions competition
- Torus data mostly supports $\overline{R R}$, but also indicates proximity of BS state

Both $\overline{R R}$ and $B S$ can potentially be realized at $\nu=12 / 5$,
depending on details of sample geometry
P. Bonderson, A. Feiguin, G. Möller and J. Slingerland, arXiv:0901.4965.

## Competition of different trial states at $\nu=12 / 5$ - discussion



## Recapitulate

- $e_{\mathrm{HH}}=-0.3416(5)$
- $e_{B S}=-0.342(3)$
- $e_{R R}=-0.3421(5)$
- Estimate of energies, including their order, susceptible to details of extrapolation (linear/quadratic, system sizes, etc.)
- Additional physical effects as Landau-level mixing and finite width likely to determine state that champions competition of $B S$ state

Both $\overline{R R}$ and $B S$ can potentially be realized at $\nu=12 / 5$,
depending on details of sample geometry
P. Bonderson, A. Feiguin, G. Möller and J. Slingerland, arXiv:0901.4965.

## Competition of different trial states at $\nu=12 / 5$ - discussion



## Recapitulate

- $e_{\mathrm{HH}}=-0.3416(5)$
- $e_{B S}=-0.342(3)$
- $e_{R R}=-0.3421(5)$
- Estimate of energies, including their order, susceptible to details of extrapolation (linear/quadratic, system sizes, etc.)
- Additional physical effects as Landau-level mixing and finite width likely to determine state that champions competition
- Torus data mostly supports $\overline{R R}$, but also indicates proximity of $B S$ state

Both $\overline{R R}$ and $B S$ can potentially be realized at $\nu=12 / 5$,
depending on details of sample geometry
P. Bonderson, A. Feiguin, G. Möller and J. Slingerland, arXiv:0901.4965.

## Competition of different trial states at $\nu=12 / 5$ - discussion



## Recapitulate

- $e_{\mathrm{HH}}=-0.3416(5)$
- $e_{B S}=-0.342(3)$
- $e_{\mathrm{RR}}=-0.3421(5)$
- Estimate of energies, including their order, susceptible to details of extrapolation (linear/quadratic, system sizes, etc.)
- Additional physical effects as Landau-level mixing and finite width likely to determine state that champions competition
- Torus data mostly supports $\overline{R R}$, but also indicates proximity of $B S$ state

Both $\overline{R R}$ and $B S$ can potentially be realized at $\nu=12 / 5$, depending on details of sample geometry
P. Bonderson, A. Feiguin, G. Möller and J. Slingerland, arXiv:0901.4965.

## Conclusions

- The Bonderson-Slingerland hierarchy construction predicts a $\nu=12 / 5$ state with shift $S=+2$ on the sphere
- Multiple pieces of evidence establish this state as a robust incompressible state described by the BS wavefunction:
- Clear neutral and charge gap for $N=6, \ldots, 18$
- 'Nice' correlations and $\left\langle L^{2}\right\rangle=0$ for all states of the series
- Large overlap with the BS trial wavefunction
- Extent of the BS state in interaction space similar to that of the $\nu=5 / 2$ state from which it derives.
- General pair-wavefunctions further increase overlaps
- Energetically competitive with $\overline{R R}$ (and HH ), outcome may depend on finer experimental details:
P. Bonderson and J. K. Slingerland, Phys. Rev. B 78, 067836 (2008).
P. Bonderson, A. Feiguin, G. Möller and J. Slingerland, arXiv:0901.4965.

Experimental signatures of competing trial states at $\nu=12 / 5$
Summary of possible experimental probes:

|  | RR | BS | HH |
| :---: | :---: | :---: | :---: |
| qp charge | $\frac{e}{5}$ | $\frac{e}{5}$ | $\frac{2 e}{5}$ |
| weak tunnelling <br> $\left(I \sim V^{4 \Delta_{q p}-1}\right)$ | $\Delta_{q p}=\frac{1}{5}$ | $\Delta_{q p}=\frac{9}{80}$ | $\Delta_{q p}=\frac{1}{5}$ |
| strong tunnelling <br> $\left(G \sim T^{4 \Delta_{e}-2}\right)$ | $\Delta_{e}=2$ | $\Delta_{e}=\frac{3}{2}$ | $\Delta_{e}=\frac{3}{2}$ |
| braiding | $Z_{3}$ parafermions | Ising | abelian |

- Distinguishing tunnelling exponents for edge states difficult - Interferometry could clearly distinguish braiding statistics
W. Bishara, G. A. Fiete, C. Nayak, Phys. Rev. B 77, 241306(R) (2008).
P. Bonderson, A. Feiguin, G. Möller and J. Slingerland, arXiv:0901.4965.


## Experimental signatures of competing trial states at $\nu=12 / 5$

Summary of possible experimental probes:

|  | RR | BS | HH |
| :---: | :---: | :---: | :---: |
| qp charge | $\frac{e}{5}$ | $\frac{e}{5}$ | $\frac{2 e}{5}$ |
| weak tunnelling <br> $\left(I \sim V^{4 \Delta_{q p}-1}\right)$ | $\Delta_{q p}=\frac{1}{5}$ | $\Delta_{q p}=\frac{9}{80}$ | $\Delta_{q p}=\frac{1}{5}$ |
| strong tunnelling <br> $\left(G \sim T^{4 \Delta_{e}-2}\right)$ | $\Delta_{e}=2$ | $\Delta_{e}=\frac{3}{2}$ | $\Delta_{e}=\frac{3}{2}$ |
| braiding | $Z_{3}$ parafermions | Ising | abelian |

- Distinguishing tunnelling exponents for edge states difficult
- Interferometry could clearly distinguish braiding statistics
W. Bishara, G. A. Fiete, C. Nayak, Phys. Rev. B 77, 241306(R) (2008).
P. Bonderson, A. Feiguin, G. Möller and J. Slingerland, arXiv:0901.4965.

