Ultra-cold Fermi gases

F. Chevy

Laboratoire Kastler Brossel, Paris

Evaporative Cooling of ultra-cold atoms

To maintain an efficient cooling, U₀ dereases with T

The Pauli Exclusion Principle and the evaporative cooling of ultra-cold Fermi gases

Collision between two atoms. Effective potential in the I-wave:

$$V_{\rm eff}(r) = V(r) + \frac{\hbar^2 \ell(\ell+1)}{2mr^2}$$

Interatomic potential

centrifugal potential

At low temperature, the atomes cannot cross the centrifugal Barrier: only s-wave collisions. Symmetrization for identical particles: even I-wave collisions forbidden for polarized fermions.

Suppression of elastic collisions in a spin polarized Fermi gas

Use spin mixtures or several atomic species (eg ⁶Li-⁷Li, K-Rb...)

B. DeMarco, J. L. Bohn, J.P. Burke, Jr., M. Holland, and D.S. Jin, Phys. Rev. Lett. **82**, 4208 (1999).

How do we measure temperature: Time of flight absorption imaging

T/T_F<0.05 Atom number~10⁵

Superconductivity and superfluidity

Quantum fluids

Bose Einstein condensates

Superconductivity an helium 3

Attractive fermions at zero temperature

Deep potential : 2-body bound state. Many body ground state : BEC of molecules

Shallow potential $(V_0 < V_0^*)$: no 2-body bound state. No superfluid?

Many body effects: BCS pairing at arbitrarily low V_0 (³He, superconductors)

The BEC-BCS crossover

At low energy, real potential replaced by

Scattering length $a \sim (V_0 - V_0^*)^{-1}$

$$V_0 > V_0^* \Leftrightarrow a > 0$$

$$v_0 \sim v_0$$

 $n |a|^3 \sim 1$

 \mathbf{V}^*

 $V_0 < V_0^* \Leftrightarrow a < 0$

BCS state

Binding energy ~ $E_F e^{-1/k_F |a|}$

 $V_{\rm pseudo} = \frac{4\pi\hbar^2 a}{\delta(\mathbf{r})}$

?????

Size of the molecules ~ *a* Binding energy $E_b = -\hbar^2 / ma^2$

The BEC-BCS « patchwork »

(Fano) - Feshbach resonances in cold atoms

 $\begin{array}{c} 200 \\ 100 \\ 0 \\ -100 \\ -100 \\ 0.0 \\ 0.5 \\ 0.5 \\ 0.5 \\ 1.0 \\ 1.5 \\ 2.0 \\ 0.6 \\ 0.5 \\ 0.5 \\ 0.6 \\ 0.5 \\ 0.6 \\ 0.5 \\ 0.6 \\ 0.6 \\ 0.5 \\ 0.6 \\$

6Li

Bosons near a Feshbach resonance: Bose-Nova (C. Weiman).

Looking for the Feshbach resonance of Lithium

Predicted position of the resonance

Losses in ⁶Li (fermions)

Inhibition of inelastic losses In fermionic gases

2 body (dimers) losses mainly : decay towards deeply bound states)

$$\dot{N} = -G\langle n \rangle N$$

Scaling law $G \sim a^{-2.0 + /-0.8}$ (theory Petrov *et al.G* ~ $a^{-2.55}$)

3/4 atom loss requires 2 atoms of same spin close to each other.

Molecular BEC's around the world

Momentum distribution

Broadening of the Fermi-Dirac in the presence of interactions (Viverit et al.PRA 69, 013607 (2004))

Experiment vs theory

Measurement of the zero temperature universal equation of state of the strongly interacting Fermi gas

Dimensional analysis:

$$\mu_{\uparrow} = \frac{\hbar^2}{2m} (6\pi^2 n)^{2/3} f(1/na^3)$$

For a=@, $f(1/na^3)=f(0)$, independent on density

$$\mu_{\uparrow} = \xi \frac{\hbar^2}{2m} \left(6\pi^2 n \right)^{2/3}$$

Determination of ξ

Experiment	ENS	0.41(15)	Theory	BCS	0.59
	Rice	0.46(5)		Astrakharchick	0.42(1)
	JILA	0.46(10)		Perali	0.455
	Innsbruck	0.27(10)		Carlson	0.42(1)

Equation of state at finite temperature

Goal: measure the thermodynamical equation of state S(U,N) •Prepare an ideal gas and measure $T/T_F \sim S$ • Ramp slowly the magnetic field to a=@•Measure the potential energy $E=m*^2 < x^2 > /2=U/6$ (Virial theorem)

J. T. Stewart, J. P. Gaebler, C. A. Regal, and D. S. Jin, Phys. Rev. Lett. 97, 220406 (2006).
L. Luo, B. Clancy, J. Joseph, J. Kinast, and J. E. Thomas, Phys. Rev. Lett. 98, 080402 (2007)

Radio-frequency spectroscopy: Measurement of the excitation spectrum.

~ARPES (Angle Resolved Photo-Electrons Spectroscopy) in condensed matter physics

a) Non interagting Fermi gas

- b) Unitary limita=
- c) Molecular BEC a>0

J. T. Stewart, J. P. Gaebler, and D. S. Jin, Nature **454**, 744 (2008). T.-L. Dao, A. Georges, J. Dalibard, C. Salomon, and I. Carusotto. Phys. Rev. Lett. 98, 240402 (2007).

Superfluidity: vortex lattices (MIT)

Fermions in optical lattices

Ultra cold atoms in Optical Lattices

Optical lattices: periodic potential created by the interference of several laser beams

Imaging the first Brillouin Zone

Momentum distribution after time of flight for various filling factors.

M. Köhl, H. Moritz, T. Stöferle, K. Günter, T. Esslinger Phys. Rev. Lett. **94**, 080403 (2005).

Repulsive fermions in an optical lattice

Fermi-Hubbard hamiltonian

$$H = J \sum_{\langle i,j \rangle} c^{\dagger}_{i\sigma} c_{j\sigma} + U \sum_{i} c^{\dagger}_{i\uparrow} c_{i\uparrow} c^{\dagger}_{i\downarrow} c_{i\downarrow}$$

Small U/J: conductor

Large U/J: insulator

For bosons see M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch and I. Bloch Nature **415**, 39-44 (2002)

Mott transition in superfluid Fermi gases

R. Jördens, N. Strohmaier, K. Günter, H. Moritz and Tilman Esslinger, Nature **455**, 204-207 (11 September 2008) U. Schneider, L. Hackermuller, S. Will, Th. Best, I. Bloch, T. A. Costi, R. W. Helmes, D. Rasch, A. Rosch, Science **322**,1520 (2008)

High resolution imaging in optical lattices

A. Itah, H. Veksler, O. Lahav, A. Blumkin, C. Moreno, C. Gordon, J. Steinhauer, arXiv:0903.3282

P-wave Feshbach resonances

P-wave Feshbach resonances

Coupling to a I-wave Feshbach state: enhancement of Iwave interactions.

S-wave superfluid: coupling with spin degrees of freedom (see eg axial phase of ³He)

P-wave Feshbach resonances in cold atoms

Localization of p-wave resonances in lithium and potassium

(m_{f_1}, m_{f_2})	Theory (G)	Experiment (G)
(1/2, 1/2)	159	160.2(6)
(1/2, -1/2)	185	186.2(6)
(-1/2, -1/2)	215	215.2(6)

J. Zhang, E.G.M. van Kempen, T. Bourdel, L. Khaykovich, J. Cubizolles, F. Chevy, M. Teichmann, L. Tarruell, S.J.J.M.F. Kokkelmans, and C. Salomon, Phys. Rev. A 70, 030702 (2004);
C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, Phys. Rev. Lett. 90, 053201 (2003).

Narrower structures than for s-wave resonances
Higher loss rate

Observation of p-wave Feshbach molecules

Time of flight expansion of p-wave molecules

Lifetime of p-wave molecules

Prospects

Spin imbalanced superfluids
Stabilize p-wave molecules (eg in a Mott insulator state)
Search for Néel antiferromagnetic state in lattice
Frustration in triangular lattice
Low dimensional systems (1D, 2D)
Fast rotating systems, quantum Hall effect

The ENS ultra-cold Fermi group

The lithium group

The lithium-potassium group