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Abstract

Affinity maturation is crucial for improving the binding affinity of antibodies to antigens. This
process is mainly driven by point substitutions caused by somatic hypermutations of the
immunoglobulin gene. It also includes deletions and insertions of genomic material known
as indels. While the landscape of point substitutions has been extensively studied, a detailed
statistical description of indels is still lacking. Here we present a probabilistic inference tool
to learn the statistics of indels from repertoire sequencing data, which overcomes the pitfalls
and biases of standard annotation methods. The model includes antibody-specific matura-
tion ages to account for variable mutational loads in the repertoire. After validation on syn-
thetic data, we applied our tool to a large dataset of human immunoglobulin heavy chains.
The inferred model allows us to identify universal statistical features of indels in heavy
chains. We report distinct insertion and deletion hotspots, and show that the distribution of
lengths of indels follows a geometric distribution, which puts constraints on future mechanis-
tic models of the hypermutation process.

Author summary

Affinity maturation of B cell receptors is an important mechanism by which our body
designs neutralizing antibodies to defend us against pathogens, including broadly neutral-
izing antibodies, which target a wide range of variants of the same pathogen. Such anti-
bodies often contain key insertions and deletions to the germline gene, or “indels”, which
are caused by somatic hypermutations. However, the mechanism, frequency and role of
these indels are still elusive. We designed a computational method based on a probabilistic
framework to infer the characteristics of this mutational process from high-throughput
antibody sequencing experiments. Applied to human data, our approach provides a com-
prehensive quantitative description of insertions and deletions, opening avenues for better
understanding the process of affinity maturation and the design of vaccines for eliciting a
broad antibody response.
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Introduction

The extraordinary ability of the immune system to detect and neutralize pathogens is partly
assured by B cells, with the production of huge amounts of diverse immunoglobulins (Ig).
Their initial diversity, provided by stochastic V(D)] recombination [1-8], is further increased
by affinity maturation, a mutation-selection Darwinian process that takes place primarily in
germinal centers (as well as extrafollicularly prior to germinal center formation [9]), where
cells with the highest affinity to the pathogen compete for survival and proliferation [10-12].

During affinity maturation, cells diversify their immunoglobulin receptors through somatic
hypermutations (SHM), which are initiated by the activation-induced cytidine deaminase
(AID) enzyme [13] targeting immunoglobulin-coding genes. Its main effect is to cause point
substitutions with a much higher rate than classical somatic mutations, namely ~ 10~ substi-
tutions per base-pair per cell division [14, 15]. Since affinity maturation implies many prolifer-
ation and selection rounds, this process can lead to Ig with up to 30-40% of amino-acid
substitutions with respect to the initial V(D)] rearrangement. Statistics of SHM have been
extensively studied [5, 7, 16-22], mainly thanks to high-throughput repertoire sequencing [2,
3, 6, 8], although the link to the molecular details of AID functioning remains elusive.

But point mutations are not the only modifications found in matured Ig receptors. Dele-
tions and insertions of one or multiple base pairs, collectively referred to as indels, have been
detected in the V and J segments, albeit at a much lower rate than substitutions. Indels have
been reported both in both heavy and light Ig chains [23-32], with a frequency that grows with
the substitution rate during affinity maturation [23, 24, 28, 29]. Indels occur non-uniformly
along the V germline templates, with a preference towards complementary-determining
regions (CDRs) with respect to framework regions (FWRs); these ‘hotspots’ often coincide
with those for point mutations [24, 32-34].

Indels are known to be critical for the increase of antibody repertoire diversity, enhancing
the immune response in the presence of viral and bacterial pathogens as e. g. HIV-1 and influ-
enza [35-39] and in response to vaccination [32]. Several works have shown a beneficial
impact of indels for binding affinity and neutralization activity in vitro and in vivo [32, 40, 41],
opening new evolutionary pathways beyond point mutations. A particularly striking example
is given by anti-HIV-1 broadly-neutralizing antibodies (bnAbs), many of which have a high
indel load [42-44]. In particular, bnAb CH31 was shown to owe its neutralization breadth to a
particular long insertion in its lineage [39].

Yet, little is known about the biological mechanisms behind the occurence of indels. Obser-
vations show that inserted segments have a high homology with their flanking regions (either
on the 3’ or 5’ sides) [29, 31-33], possibly suggesting duplications rather than non-templated,
random insertions. A proposed mechanism [45, 46] involves template regions with repeats
and palindromic sequences, where the polymerase can “slip” during replication and “jump” to
a nearby homologous element on the templated strand, producing a loop in either the daugh-
ter or the templated strand. If this unpaired loop is not properly repaired by the specific DNA
repair mechanisms, according to its location on the daughter or the templated strand, it will be
propagated as an insertion or a deletion, respectively. This mechanism would also explain co-
localization of indels and SHM, since they could likely occur independently in the same sus-
ceptible regions (hot-spots due to repeats and palindromes) or also as a product of the repair
mechanisms targeting existing replication errors.

Deep high-throughput sequencing of Ig repertoires now allows us to gain insight into the
mechanisms of indels, and to collect statistics about their frequency, length distributions, and
positional preference. By contrast, previous studies [33, 34] have relied on relatively small data-
sets and therefore small number of indel events due to their rarity. In addition, most studies
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have focused on productive sequences, for which it is difficult to decouple intrinsic preferences
from selection effects. Here, we exploit a recently published large immunoglobulin heavy
chain (IgH) repertoire dataset comprising sequences from 9 healthy donors [8]. We developed
an inference methodology to provide robust indel statistics and to capture their universal fea-
tures in the face of natural individual variability.

Our approach uses a probabilistic framework to overcome the issue of annotation errors.
Classically, indels are identified by looking at the best-scoring annotation. Such deterministic
annotation is sometimes wrong, and we will show that this leads to systematic biases. Our
probabilistic method, which considers multiple indel and point-mutation scenarios weighted
by their probabilities, allows us to remove these biases, in a similar way to what was done for
inferring the statistics of VD] recombination [5, 7, 47]. A second key ingredient of our
approach is to assume that each sequence may have a different mutation rate, since repertoire
data combines B cells from various stages of affinity maturation. We first tested and validated
our method on synthetically produced data. We then applied it to Ig sequences with a frame-
shift in their CDR3 region, which are believed to be nonproductive and thus free of selection
biases. This allows us to characterize in great detail the statistics and intrinsic preferences of
indel generation.

Results
Insertion and deletion events scale with the mutation rate

We conduct our analysis on a recently published high-throughput IgH repertoire dataset,
obtained from the blood of 9 healthy donors [8]. IgM and IgG expressing cells were isolated
and analyzed separately. Using raw sequence data, we further segregated IgH sequences into
productive (P) and nonproductive (NP) sequences, depending on whether their CDR3 had a
frameshift or not. Since hypermutation indels are rare (see below) compared to VD] recombi-
nation frameshifts, we assumed that nonproductive sequences were already faulty at genera-
tion. Cells with NP sequences owe their survival to a successful IgH rearrangement on the
second chromosome, meaning that the NP sequences themselves are free of selection effects.
Most productive sequences undergo various selection processes, which bias the statistics of
their features [5]. Here we mainly restrict our analysis to nonproductive sequences to capture
the biochemistry of the hypermutation machinery. We obtained 421, 185 IgG and 459, 165
IgM nonproductive sequences from 9 donors.

To get preliminary insights into indel statistics, we first annotated each sequence determin-
istically using IgBLAST [48]. We estimated the rates per base pair of SHM point mutations,
deletions and insertions, in both IgM and IgG compartments, separately for each individual
and each of the productive and nonproductive subsets (Fig 1A). Mutation rates for productive
sequences are consistent with previous estimates [33], with more mutations in IgG than in
IgM. Some individual variability is present, suggesting variations in the degree of antigen
exposure across individuals. Nonproductive sequences have higher rates of SHM than produc-
tive ones, especially for insertions and deletions (~10-fold difference for IgM and a bit less for
IgG), suggesting that mutations are mainly deleterious.

Fig 1B shows the distribution of the number of indels in the IgG subset across donors. For
comparison, a Poisson-distribution fit agrees well with the data, but underestimates sequences
with many indels. Point mutations and indels both accumulate during affinity maturation and
are mediated by AID [24, 28, 29, 32-34]. Indels are mostly present in highly point-mutated
sequences. Both types of mutations have been reported to co-localize along the sequence, pref-
erably in the CDRs [33, 34]. They have also been shown to co-localize temporally, as deduced
from the analysis of antibody phylogenetic trees [32, 39]. Consistent with this picture, we
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Fig 1. Indel statistics in real IgG sequences from deterministic annotation. (A) Somatic hyper-mutations (SHM), deletion (del) and insertion (ins)
absolute rates per base pair for the 9 Briney donors [8]. Segregation into productive (P) and nonproductive (NP) sequences coded by colors; data points
from IgM sequences are also reported, for comparison. (B) Fraction of IgG sequences (productive and nonproductive) with exactly » indels, either
separated by type (del or ins) or cumulated; mean and standard deviation over the 9 donors represented by the markers and bars, respectively. The
dashed black line represents the closest Poisson trend for cumulated indels of both types. (C) Fraction of SHM (in nucleotides) along IgG sequences
(productive and nonproductive) conditioned on having exactly » indels, again either cumulated or separated by type; averages and one standard
deviation bars over the 9 donors. (D) Length profiles for deletions, after NP-P segregation. Average and standard deviation over the 9 donors
represented by the solid line and the shaded area around, respectively; corresponding average lengths are represented by the two vertical dashed lines.
(E) Same as (D), but for insertions. (F) Overlap between inserted base pairs and same-length flanking regions on either 3’ or 5’ side along the sequence
(larger is considered); average and one standard deviation over the 9 donors given by solid line and shaded area around, respectively. For comparison,
overlap between random insertions and flanking regions is also reported (details in the main text). (G) Distribution of distances between deletions
along the same sequence, measured as the number of base pairs in between, for IgG sequences (productive and nonproductive) hosting exactly two
deletions and no insertions (data pooled together from the 9 donors); inset shows the full distribution, main plot focuses on the short-distance region.

https://doi.org/10.1371/journal.pcbi.1010167.9001
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observe that the average point-mutation rate per base pair in IgG grows linearly with the num-
ber of indel events (Fig 1C).

Length and composition of inserted and deleted segments

Deletion and insertion length profiles, which show the distributions of the number of deleted
or inserted base pairs, are shown in Fig 1D and 1E. Signatures of selection can be seen through
an increased preference for multiples of 3 in productive versus nonproductive sequences, sug-
gesting that indels that induce a frameshit are deleterious. The effect is only present at short
deletion lengths, but holds for long insertion lengths. Note that a weaker 3-fold periodicity is
also present in nonproductive sequences, despite them being in principle free of selection
effects. This could come from sequences that were previously productive but were frameshifted
relatively recently due to an indel in the CDR3. Long insertions are favored in productive
sequences in comparison to long deletions, probably because of stability and functionality con-
straints [33]. By constrast, in nonproductive sequences deletions and insertions follow similar
statistics, suggesting a common mechanism. Both insertions and deletions are approximately
geometrically distributed, at least in the tail that describes large inserted or deleted segments.
This geometric law puts strong constraints on the type of biophysical mechanisms by which
indels may be created.

A proposed mechanism for indels is the polymerase slippage model [45, 46]. In germline
regions that have repeats and palindromic sequences, the polymerase can “slip” during replica-
tion and “jump” to the closeby homologous element on the templated strand, resulting in a
insertion or duplication depending on the location of the polymerase on the daughter or tem-
plated strand. In this scenario, insertions would be the result of duplications, and would thus
be expected to be homologous to their flanking regions. The analysis of inserted segments in
nonproductive sequence does reveal a higher than expected overlap with the best matching of
the two immediately flanking sequences (Fig 1F). Previous similar observations were made on
small numbers of productive sequences [33], for which effects of selection may confound the
effect. Note that overlap is substantially different from 1 (= 0.8), suggesting 20% additional
errors in the duplication, which is much higher than the mean point-substitution rate per base
pair (around 5-6%). Also, we find a weak preference for the 5’ end as a duplication source (S1
Fig). However, we found no significant overlap between deleted segments and their flanking
regions (S2 Fig). This suggests either that the slip-and-jump mechanism does not favor homol-
ogous regions for deletions, or that other mechanisms are responsible for deletions, such as
double-strand breaks [34, 49].

Indels co-localize with each other and with point mutations even in absence
of selection

Since point mutations tend to co-localize in hotspot regions, and indels are associated with
point mutations, we wondered if indels co-localized as well. Fig 1G shows the distribution of
distances between two consecutive deletion events along the same sequence. To rule out possi-
ble confounding factors, we focused on sequences with exactly two deletion events and no
insertions. Since such sequences are rare, we pooled the IgG repertoires (P and NP) of all indi-
viduals for this analysis. The full distribution (inset) is highly non-uniform, consistent with the
observation that indels concentrate on CDRs [33, 34]. In addition, we observe a striking deple-
tion of deletion pairs separated by less than 3 base pairs. This depletion is an artifact of the
alignment software, which merges deletion events if they are too close to each other. This effect
implies that the indels involving ~ 50—60 base pairs reported in Fig 1D and 1E may result
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from such mergers, which standard alignment tools cannot disentangle. Our probabilistic
framework will allow us to address this issue in the following sections.

We then studied the positional preference of indels along the V segment. To establish a uni-
versal profile across all V genes, we used the gapped absolute indexing provided by IMGT
[50], and pooled the sequences of all 9 donors. The resulting profiles for nonproductive and
productive sequences are shown in Fig 2A and 2B. Due to alignment gaps and finite read
lengths, many IMGT positions are only observed in a fraction of sequences (black line). The
indel profiles are highly non-uniform, with generally higher rates in the CDRs than in the
Framework Regions (FWR), with the exception of a deletion hotspot the end of FWR3. We
note that these trends, which are consistent with previous reports on productive sequences
[33, 34], are found also in nonproductive sequences, suggesting that they cannot be attributed
to selective or functional effects.
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Fig 2. Indel profiles. (A) Mutation profiles for out-of-frame (NP) sequences, pooling together all the 9 Briney donors [8] and all the V templates (with
shaded area representing individual variability), using the absolute IMGT indexing of positions [50]. Due to alignment gaps and finite read lengths,
many IMGT positions are only observed in a fraction of sequences (black line). Mutation profiles are rescaled to account for this, and are masked for
IMGT positions appearing in less than 2% of sequences (dashed horizontal line). Indel rates past IMGT position 310 are also not reported due to
ambiguities with junctional diversity. (B) Same as (A), for in-frame (P) sequences. (C) Scatter plot between the SHM profile and the deletion profile for
NP sequences; linear regression line is reported, together with numerical results (correlation coefficient r and p value). (D) Same as (C), here comparing
deletion profiles for NP sequences versus P sequences. (E) Correlation between all the mutation profiles, computed either on NP or on P sequences.

https://doi.org/10.1371/journal.pchi.1010167.g002
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The different mutation profiles (point mutations, insertions, deletions, productive versus
nonproductive) are correlated (Fig 2C-2E), meaning that indel and point-mutation hotspots
are largely shared. Deletion profiles are well correlated with both point-mutation and insertion
profiles. These correlations are larger than between insertions and point mutations, suggesting
a possibly different mechanism for the two types of indels. In addition and consistently with
this picture, deletions and point mutations show an enrichment of co-localization (within a
few base pairs) relative to what would be expected from their shared positional preferences,
while insertions and point mutations do not (S3 Fig). These observations are consistent with
the leading model that deletions are caused by double-strand breaks [34, 49].

Profiles in productive versus nonproductive sets are very similar, suggesting that the posi-
tional effects of functional selection on indels and point-mutation preferences is weak, and
that most of the previously reported biases in indel positions [33] are due to the positional
preference of the involved enzymes rather than to selection.

A probabilistic alignment algorithm

While deterministic annotations give us a good picture of indel statistics, they may introduce
systematic biases that could confound the analysis, as e.g. the spurious gap in the inter-deletion
interval distribution (Fig 1G), or the over-estimation of long indel events. To give just an
example of possible mistakes by deterministic annotation algorithms, a long indel observed in
a sequence may have in fact been caused by several shorter indel events at the same site or
close by. To evaluate the probability of the end product, one should consider all possible such
decompositions into two or more indel events, and sum their probabilities. To address this
issue, we designed a probabilistic approach to annotate and analyze hypermutated V segments,
similarly to what was previously proposed to infer the statistics of V(D)J recombination from
B- and T-cell receptor repertoires [5, 47] and implemented in the IGoR tool [7].

We first define a generative model of point mutations, insertions and deletions, with
unknown parameters that describe the main statistics of the mutation process: distribution of
SHM rates across sequences, mean ratios of deletion and insertion rates to the point mutation
rate, and insertion and deletion length profiles. These parameters are then learned from the
data using a maximum-likelihood estimator, which is implemented in practice through an
expectation-maximization algorithm. In this framework, the likelihood of a particular out-
come of the SHM process is obtained by summing the probabilities of all possible scenarios of
germline V templates, point mutations, insertions, and deletions that would yield that
sequence. In principle, this means that all alignments to germline V segments should be taken
into account, and not just the best-scoring one as in traditional methods. However, many
unlikely alignment scenarios can be pruned out of the list before computation (see Methods).
In practice, this implies that only one plausible germline V gene is typically considered. Once
the parameters of the model are learned, they can be analyzed in their own right, or the model
may be used to generate synthetic datasets to test hypotheses. Fig 3A summarizes the general
workflow of the method.

The generative model is defined so as to be simple enough to be tractable, while recapitulat-
ing the main features of the SHM process. Its parameters are directly interpretable in terms of
basic SHM statistics. Each sequence has a distinct point-mutation rate y per base pair, corre-
sponding to its maturation age, drawn from a distribution P(y). Motivated by the linear rela-
tion between indel and point-mutation rates (Fig 1C), we assume that the rates of insertion
and deletion events are given by fi,,s X y and fae; X y, where S, and B4 are sequence-indepen-
dent factors. Then insertions, deletions, and point mutations are drawn randomly with these
three rates, uniformly along the sequence. The lengths of each insertion and deletion event are
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independent realizations of a 100, 000 synthetic sequences repertoire represented as a solid line with the shaded area around, for both deterministic and
probabilistic estimates. In the inset, the A estimations of the fraction of truly naive sequences; color coding is the same as the main plot. (C)
Performance of the probabilistic alignment software vs deterministic one when increasing the density of indels; estimation of the average point-
mutation rate in the upper panel, and of the ratio of insertion to point-mutation rates /3, , in the lower panel (the deletion rate 8, has a very similar
behavior, shown in S4 Fig). Average values plus one standard deviation error bars are obtained over the A/ independent synthetic repertoires. (D)
Insertion length profiles for the largest value of i, considered in panel (C); mean and one standard deviation over the N independent realizations
shown. Deletion length profile is again completely analogous, shown in 54 Fig. The vertical dotted line signals the maximal size £ = 30 used for
generating insertions and deletions, then correctly identified by the probabilistic approach.

https://doi.org/10.1371/journal.pchi.1010167.9003

drawn from two distributions P;,s(¢i,s) and Pge(€4e1)- The set of parameters to be inferred is
collectively called 0 = (P, Bins Bael> Pins Pael)> and corresponds to the basic statistics of the SHM
process. To calculate the sum of probabilities over all plausible scenarios efficiently, we use a
forward algorithm that avoids computing the sum explicitly. Mathematical details of the prob-
abilistic model and of the likelihood maximization are reported in the Methods section.

Validation of the probabilistic approach on synthetic data

The ability of our inference procedure to recover the true indel statistics can be tested by using
large enough synthetic datasets. To this aim, we generated A = 10 independent repertoires of
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100, 000 synthetic sequences each, restricted to the V segment, using realistic parameters simi-
lar to those obtained by the analysis of standard annotation (Fig 1). Naive sequences were first
generated by drawing V templates according to their frequencies in the data. Then, point and
indel mutations were added according a generative SHM model belonging to the class
described above. We assumed a mixture of 10% naive cells, defined as cells that have not gone
through the hypermutation process at all, 4 = 0, and 90% experienced cells with y distributed
according to a shifted Gamma distribution mimicking a realistic distribution for point muta-
tions (Gamma with mode y = 0.07, standard deviation = 0.04, and shift —0.02; see Methods for
details). The lengths of insertions and deletions followed geometric distributions with charac-
teristic scale £ = 15 and a maximum value of 30 base pairs.

On each of these synthetic datasets, we compare two methods for estimating the parameters
of the model. The first method is the one used in the previous sections of the paper: synthetic
sequences are aligned to germline V segments using a deterministic tool; then, from these
alignments, the statistics P(u), Biys, etc, are directly computed from their frequencies. The sec-
ond method is the probabilistic inference approach outlined in the previous section.

In Fig 3B we report results for a realistic rescaled indel rate, B4e) = Bins = 0.025, of the same
order of magnitude of the ones found for nonproductive IgG sequences through standard
annotation, see Fig 1A. The fraction of naive cells (4 = 0), shown in inset, and the distribution
of u for experienced cells, shown in the main figure, are correctly inferred only by the probabi-
listic approach. An example of the error made by the deterministic approach involves naive
sequences: sequences with no SHM are always labeled as “naive” by the best-scoring align-
ment, while the probabilistic method considers the possibility that they come from an experi-
enced cell (4 > 0) in which no SHM has had the chance to occur (which happens with
probability e ", where L is the length of the V segment). This leads the deterministic method
to systematically overestimate the true number of naive sequences. The performance of the
deterministic method degrades as the rescaled insertion rate S, is increased (and f4 with it,
Fig 3C). In that regime of frequent indels, best-scoring alignments merge nearby events,
underestimating their relative frequency and compensating resulting errors by an increased
mutation rate y. By constrast, the probabilistic method recovers the ground truth even at very
high indel densities, corresponding to 3 deletion and 3 insertion events per sequence on aver-
age. The merging of nearby indels also causes the deterministic algorithm to find an excess of
non-existing long insertion events above 30 base pairs, while the probabilistic one correctly
assigns their frequency to zero (Fig 3D). The analogous of panels 3C and 3D for deletions are
reported in S4 Fig.

Opverall, this analysis on synthetic data shows that while the deterministic analysis correctly
captures the main statistics of SHM, it may fail on other quantities such as the fraction of truly
naive cells, or the frequency of rare, long indels.

Inference within the probabilistic framework

We next applied our probabilistic inference method to the analysis of nonproductive IgH
sequences from the 9 donors of [8] to learn the parameters of the SHM process free of selection
effects. We thus obtain individual-specific distributions of maturation ages (Fig 4A, green).
For comparison, the naive deterministic estimate, based on the frequency of errors in best-
scoring alignments, is also reported (red). We observe substantial variability across individuals,
probably due to diverse histories of experience with antigens. The probabilistic method finds
more sequences with a small, non-zero maturation age (94.3%+4.1%) than the deterministic
one (83.1%+8.6%), see Fig 4B. Because such sequences often have no mutations, the determin-
istic method underestimates that number (as confirmed by our synthetic data results, see Fig
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Fig 4. Results of probabilistic algorithm on IgG repertoire data. Probabilistic SHM-indel models trained on the 9 Briney healthy donors [8] (IgG
sequences always shown, plus IgM only shown when relevant); for comparison, models based on deterministic assignments are also shown. (A) Point-
mutation rate distributions; vertical lines locate average values for the distributions; deterministic distributions come from a smoothed version of SHM
fraction histograms (more details in the main text); shaded areas show the confidence interval of the inference result (estimated from a Poisson noise
assumption). (B) Corresponding estimates of the fraction of truly naive sequences, with a comparison also with the IgM case. (C) Validation of the
inference results on one of the largest donors (326713); full histogram for the number of SHM in the main plot, corresponding scatter plot in the inset
(correlation coefficients: 74er, = 0.947 VS rprop, = 0.996). (D) Estimates for the rescaled (i.e. divided by the point-mutation rate) deletion and insertion
rates per base pair; IgM is shown for comparison. (E) Inferred deletion length profile (solid line for the mean over the 9 donors, plus shaded area
around for standard deviation), compared to the deterministic estimate (only mean shown). Vertical lines with the same color coding refer to the mean
lengths. (F) Same as (E), but for insertions.

https://doi.org/10.1371/journal.pchi.1010167.9004

3B), suggesting that the probabilistic approach gives a more accurate result. While we don’t
know the ground truth for the true distribution of maturation ages, we can verify this interpre-
tation on the distribution of point mutations. In Fig 4C we compare predictions from the
deterministic and probabilistic approaches for the IgG repertoire of one donor. Consistent
with our intuition, the deterministic distribution overrepresents unmutated sequences, while
the probabilistic distribution is in excellent agreement with the data. In addition, the model
reproduces the super-Poissonian distribution of the number of indels (S5 Fig).

In Fig 4D we report estimates for rescaled indel rates, i.e. ratios of indel to point-mutation
rates. They are consistent between the deterministic and probabilistic methods, as expected
from the analysis on synthetic data, because of the relatively low indel rates in real data. They
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are also well conserved across individuals. While the raw mutation rates depend on the history
of affinity maturation, ratios between them are not expected to depend on it. They should
instead be determined by universal biophysical mechanisms of DNA damage and repair,
which explains their relative conservation. Similarly, the indel length profiles (Fig 4E and 4F)
are consistent between the deterministic and probabilistic methods, as well as across individu-
als, pointing again to the universality of the biophysical mechanisms at play. However, the
average deletion and insertion lengths are slightly larger in the probabilistic estimate, due to a
more reliable evaluation of low-probability events corresponding to the tails of the
distributions.

Discussion

Most studies of SHM insertions and deletions, and even point mutations, consider productive
rearrangements. Instead, we focused our analysis on nonproductive sequences to study the sta-
tistics of mutation inherent to the biochemistry of the SHM process, free of subsequent selec-
tion effects. However, we found a strong correlation between the productive and
nonproductive positional profiles of SHM, implying that most of the heterogeneity is of bio-
chemical origin, rather than stemming from selection. Further studies of the differences in
SHM statistics between productive and nonproductive sequences could shed light on the struc-
tural and functional constraints that selection imposes on antibodies during affinity
maturation.

Because nonproductive sequences and indel SHM are both rare, the combination of both is
extremely rare, necessitating a very large dataset such as the one provided by Briney et al. [8].
This study included 9 subjects, which allowed us to assess inter-individual variability. We
found that features of the SHM process associated to the biochemistry of the process, such as
the positional profiles, the ratio of the number of indels to point mutations, and the distribu-
tion of insertion and deletion lengths, were mostly conserved across subjects. By contrast, the
distribution of the mutational age of antibodies, which reflects their unique immune history,
was specific to each individual. While we studied individual sequences, we know that those are
organized in distinct lineages originating from naive germline sequences. This could lead to
multiple-counting mutations occuring in several sequences of the same lineage. However,
since this effect is random and decoupled from the mutation process itself in nonproductive
sequences, we only expect it to increase errors due to sampling. The low individual variability
reported for most summary statistics provides an upper bound on that error.

We report a large positional heterogeneity, with a similar relative variability between point
and indel hypermutations. Indels tend to concentrate around the CDR1 and CDR2 loops, as
do point mutations [51], and consistently with previous reports on productive sequences [33].
However, our results show that the positional profiles of point, insertion, and deletion SHM
are still distinct (albeit correlated), suggesting a complex picture of how the 3 processes result
from AID selectivity and positional preference.

The precise mechanism causing SHM indels and point mutations is still elusive. Our results
confirm the main prediction of the polymerase slippage model [45, 46] for indels, namely that
inserted segments are homologous to their immediately flanking regions. This complements
earlier observations from [33], but without the interference of selection, and on a much bigger
dataset allowing for more detailed statistics. By contrast, we found that deleted segments are
not significantly homologous to their neighborhood, suggesting the slippage is not driven by
sequence homology, but reaches out to a random position along the DNA. An alternative
hypothesis is that deletions are driven by double-strand breaks caused by AID, consistent with
our and previous observations that they tend to co-localize with point mutations [34, 49]. In
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the slippage model, the indel length corresponds to the distance by which the polymerase slips.
Both have a characteristic exponential tail in their distribution, compatible with the processive
motion of the slipping polymerase with random stopping.

Our probabilistic approach is not only useful for annotating sequences and inferring rates,
but it can also be used as a generative model to produce synthetic datasets for computational
controls. However, the model makes a few simplifying assumptions for the sake of computa-
tional tractability. First, its positional profiles are constant, in contradiction with the data. Sec-
ond, inserted segments are assumed to be uniformly random, ignoring homology to flanking
regions. While these approximations are unlikely to affect our results, future refinements of
the generative model would be welcome to create more realistic datasets.

We evaluated the conditions under which the probabilistic approach we introduced added
value to the classical deterministic annotation of mutated antibodies. For most of the bulk rep-
ertoire, where the rate of hypermutation is relatively low, both approaches yielded similar
results, with a notable exception: the fraction of “naive” sequences that have not undergone
any affinity maturation. This definition of naive is distinct from usual phenotypic characteriza-
tion based on isotype classification, flow cytometry [52] or single-cell RNA sequencing data
[53], although they are correlated. This proportion is always overestimated by the determin-
istic method. Since the SHM process is stochastic, some sequences having undergone affinity
maturation may not have accumulated any mutation at all. These sequences are always consid-
ered naive by the deterministic approach, while the probabilistic method considers both possi-
bilities, correcting that bias.

Beyond the bulk of the repertoire, the probabilistic approach is most useful for analyzing
heavily mutated sequences, where it is difficult to distinguish point mutations from nearby
insertion and deletion events. While a minority, such sequences are very important. They are
found in the largest clonal families having undergone the longest affinity maturation, and so
are the most experienced and selected ones. HIV1-related bnAbs, which often contain many
indels, are examples of such sequences [54]. The relatively low frequency of indels that we
report could explain why effective bnAbs are rare, and only emerge naturally in a small per-
centage of infected individuals. In that regard, evidence that indels frequently appear in
response to some vaccination protocols [32] suggests promising strategies for HIV
vaccination.

Methods
Data and preprocessing

We exploited publicly available IgM and IgG repertoire data from a recent ultra-deep reper-
toire study of immunoglobulin heavy chains (IgH), including approximately 3 billions
sequences in total, coming from 9 different healthy donors [8]. The V region is well covered by
the mRNA sequencing protocol, starting from nucleotide position ~ 66 along the templates
for almost all the sequences; CDR3 and ] gene are also covered.

We first preprocessed raw sequences as in [22], using pRESTO (release 0.5.13) from the
Immcantation pipeline [55]. Then, we performed a standard annotation through the IgBLAST
standalone tool [48], (release 1.13.0, with default values for penalties), referring to IMGT for
germline templates [50] (only functional (F) genes are considered, totaling 265 IGHV different
templates, alleles included). We also applied quality filters, keeping only sequences with prop-
erly annotated V gene, ] gene and CDR3, and covering at least 200 base pairs of the V segment.
We checked using synthetic data that this quality filter does not substantially alter the underly-
ing indel distribution below length 60, although sequences with very long indels are slightly
less likely to pass it (S6 Fig).
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Unique molecular identifiers (UMI) were used in the original study to correct for PCR
amplification biases. We grouped reads with the same UMI to build consensus sequences for
downstream analysis in which read counts were ignored, allowing for a maximum error rate of
10% within each group. Sequences corresponding to low numbers of reads per UMI (e.g. 1 or
2) are expected to be more affected by sequencing errors, because of the inability to build a
consensus sequence from multiple reads. We verified that our results are not affected by this
potential source of error, by repeating the standard annotation analysis on UMIs represented
by at least 3 reads (S7 Fig). Thus, to make the most of the available data, we did not discard
sequences with low number of reads per UMI.

It is very hard to call mutations in the CDR3 because of its variability, and the ] region is
very short. Therefore we restricted ourselves to the V region, starting from the beginning
of the read, up to the conserved cysteine before the beginning of the CDR3. We call that
sequence s.

Modeling approach

We start from a repertoire {s} of size N. Let {t} be the set of (truncated) V templates used for
the alignment (the same 265 templates exploited for IgBLAST annotation). For each sand t, a
deterministic alignment algorithm, based on the standard Needleman-Wunsch (NW) algo-
rithm for pairwise global alignments with affine score for gaps [56], provides only the align-
ment with the highest score S(s, f).

The value of the parameters used in the NW algorithm were chosen according to the actual
frequency of related events in human IgG heavy chains, as estimated through IgBLAST anno-
tation (Fig 1). Assuming an average point-mutation rate of ~ 5%, an indel rate of 0.05%, and
an exponentially decaying length distribution of indels with characteristic length £ = 10,
we have the following log-odd penalties (using natural logarithm): ~ —0.05 for matching and
~ -3 for mismatching aligned base pairs; >~ —7.7 for opening a deletion gap; ~ —0.1 for
extending it; ~ —9.1 for opening an insertion gap; and —1.5 for extending it (including the log
(4) ~ 1.4 penalty for chosing the base pair) [56]. Note that since the alignment is global, only
relative values of the penalty matter.

The optimal alignment is built through a dynamic-programming strategy, relying recur-
sively on the optimal alignments of shorter blocks. The key modification we introduce to the
standard NW algorithm is to sum over all the possibilities during the recursive scheme, rather
than choosing the optimal one at each step. The result is then no longer an optimal global
alignment score, but rather the sum of the likelihoods of all the possible global alignments
between s and t, summed over all templates ¢. Each possible alignment contributes to the final
sum proportionally to its likelihood, yielding a probabilistic likelihood of the sequence, by con-
trast with the deterministic score of the standard NW algorithm.

The resulting likelihood of the sequence s, L(s; /), depends on the model parameters 6. The
total likelihood of the whole repertoire is then given by:

£0) = [T£s:0), (1)

where we assumed independent sequences, ignoring the lineage structure of the repertoire (see

Discussion). Maximizing the likelihood with respect to 0 gives an estimate 0 for the alignment
parameters that best describe the data.

Recursive algorithm for the alignment

We now give the details of the computation of L(s; 6). Consider a sequence s and a template ¢.
Indexing starts from zero, including an initial “placeholder” position for potential gaps,
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running over actual base pairs from s and ¢ (gaps are not taken into account directly in this
indexing). So s; is the i-th symbol along s, while sy.; is the portion of s running from the first
actual symbol s; to i-th symbol s; included, preceded by the “empty” placeholder position 0.

As in NW, the alignment procedure always starts from the beginning of the two sequences s
and t, and goes through all the possibilities by extending the previous alignment for shorter
pieces of s and t. In our case, however, we sum over these possibilities, rather than keep the
best-scoring one. The indices on s and ¢ are not constrained to increase at the same time; an
asymmetric increase corresponds to a deletion or an insertion.

The alignment score for the portion s up to position 7 included (sq,;) and the portion of t up
to position j included (f;) is computed by relying on the previous alignments of shorter por-
tions, according to the following possibilities:

« 5;1 and t;_; were previously aligned to each other, so the alignment advances by one position
on both sequences, with a match (s; = t;) or a mismatch (s; # t;);

» t;was previously aligned with s, k <, so that a gap on s of length i~k has to be taken into
account (i. e., a deletion of templated bases);

« s; was previously aligned with #, k' < j, so that a gap on f of length j — &’ has to be taken into
account (i. e., an insertion of non-templated bases).

In the standard NW algorithm, each of these possibilities is linked to a score, and only the
largest among them is kept. Here, instead, we work directly with likelihoods, and then we sum
over them according to the following recursion:

S(s0. tO:j) = S t():j—]) M(s;, tj)

_|_ZS(50:,<, to:j) Lyai — k) (2)

+ZS(SU:U t():k/) rins(i - k,)

kr<j

where M(s;, ;) is the match/mismatch probability between nucleotide s; and ¢, I'ge1(€) is the
probability of a deletion of length ¢, and I';,5(€) is the probability of an insertion of length €.
The initial conditions of the recursion are:

S(s 1) = 1
S(S0.0 1) = S(Spsr ty) Taai = k)
; (3)

S(sp t(]:j) = 28(507 tosr) Dins G — K7).

ki<j

The final score S(s, t) = S(sy,;,, t,.;,) gives the likelihood of s aligning to #, obtained as the sum

over all possible alignments.
Likelihoods M, Py, and P;, can be further described as:

Lya(€) = pag X Pya(f)

Z (1)
Fos(0) = sty % Poy() % (1/4)"

assuming uniformly random insertions, where Pgeyins(€) is the distribution of deletion and
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insertion lengths, and:
M(Si7 t]) = (1 — Ky — ﬂins)

x[(1 =) I(s, = tj) + ul(s; # tj)]

(5)

with I(-) being the indicator function (equal to one if argument is true, otherwise equal to
zero). The rates pqe), thins, and p are interpreted as the deletion, insertion, and point mutation
rates per base pair.

Based on evidence from data (Fig 1C), we assume that these rates scale together with the
mutational age, since both types of mutations accumulate with time during affinity maturation
cycles. We thus write:

= K, Hael = H X ﬁdel ) Hins = K X ﬁins’ (6)

where 4 and i, are constant (repertoire-specific) ratios, and y is sequence specific, as sug-
gested by the wide range of mutabilities in the data. The ratios Sey/ins Will also be referred to as
rescaled deletion and insertion rates. The mutation rate y is treated as a hidden variable,
whose distribution P(u) is a model parameter.

The likelihood of each sequence is obtained by summing over all mutation rates and tem-
plates:

£05:0) = [ diu P )6l ), )
with £(s|; ¢) = > _p, S5, tli; ¢), (8)

with p, uniform, and where the parameters 8 have been separated into two components: 6 = (P
(1), ¢), with ¢ = (Bael Bins Pael(£), Pins(£)). In Eq (8) we made explicit the dependence of align-
ment score on the mutational age y, and indel parameters ¢.

The repertoire is composed of a mixture of cells that have undergone some mutational pro-
cess, presumably in germinal centers, and cells that have stayed naive. To properly model this,
we further assume that the prior distribution of mutation rates has two parts:

P(u) = fo(u) + (1 — f) P(p), (9)

where fis the fraction of naive cells, and P(u) is a smooth probability density.

Likelihood maximization

To maximize the likelihood, Eqs (1) and (7), we employ a combination of Expectation-Maxi-
mization (EM) [57, 58] for updating P(u), and gradient ascent for updating ¢.

We denote by 6" = (P* (u), ¢') the value of the parameters at iteration t. Following EM, we
define the pseudo log-likelihood to be maximized with respect to 0 at each iteration:

0" — arg max Q(0]0"), (10)
with

QUOI0) = > (log (sl &) P(1,)]),, o ()

N
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where the mean (-),,|5;6" is with respect to the posterior distribution:

_ L(slus 8) P'(wy)
= fdu L(slug ¢') P(uy)

Because of the separation between naive g, = 0 and experienced cells, this posterior may also
be decomposed as:

P(us; 0") (12)

P(uls: 0) = £ (1) + (1 — 1) Py s: 0, (13
with
. FLG50; )
B = FLE0:0) + (L —f) [ s L6l 6) B () (14
and

oo L(slug 07 P(w,)
Pl 0 = e (el 0) ) 15)

The pseudo-likelihood Q can be decomposed into two terms corresponding to the two factors
inside the logarithm of Eq (11), log £(s|u; ¢) and log P(u). The first one only depends on 6
through ¢, and the second one only through P(y), allowing for their independent maximization.

Maximization with respect to P(4). To maximize Q under the normalization constraint,
we define the functional with Lagrange multipliers:

QOI) = Q010 + 11~ [ dup(). (16)
The extremal condition with respect to P(y') gives:
LJe S, — w)
0= = /dsP s 0) ——=———=— 17
5o~ 2 | Pl 0 e )

When plugging functional forms (13) and (9) in it, together with the extremal condition with
respect to A, we get:

[)r+1('u) - Zs(l _f;[) 13(.“|5§ Ot)

S 18)

ft+l ‘_f _ Z\l]zfsf (19)

N

Intuitively, the new estimate of the smooth part P(u) of the repertoire-wide distribution is
the weighted average of the sequence-specific posterior distributions over the repertoire. Simi-
larly, the new estimate for the fraction f of naive cells is given by the average over the repertoire
of the probability of being naive.

Maximization with respect ¢. To maximize the first term of Q with respect to ¢, we use
Monte Carlo sampling to represent the integral over the posterior P(u|s;6"):

Nvc

Z<log£(5|#sa ¢)>us\$:0’ = ZZIOgE(SLU”‘; ¢)7 (20)

s s n=1

with g, ~ P(ug|s;6).
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Then, the extremal condition with respect to ¢; reads:

0
Vi= a—Q,ZZlogasmm; ¢) = 0. (21)

Since we could not find an exact update rule for ¢,, we relied on gradient ascent to maximize
the likelihood. Each gradient component V! can be estimated numerically by infinitesimally

shifting ¢;:
log £, (sl .; 1) — log L,(s|u, ;; ")
vt ~ s s,n i s s,n 22
where ¢! is equal to ¢ for all the components but i, which has been increased by &.
We updated ¢ according to a momentum gradient-ascent update rule:
¢ = PP+ AV + 0 (¢ =), (23)

with learning rate o and inertial term ', whose dependence on the iteration step ¢ was chosen
to optimize convergence and to avoid long-time oscillations [59]:

t

—2t/T x
t+3’

o xe , o

(24)

with T being the maximum number of time iterations allowed. In Eq (23), P denotes the pro-
jection onto the simplex defined by the constraints B4¢; > 0, Sins > 0, Pgei(€) > 0, Piys(€) > 0,
and ) ,P,,(¢) = >",P, (¢) = 1. Projection was done using the procedure described in

Ref. [60].

Speeding up the computation

The algorithm described so far is computationally very costly. Just the basic step of computing
the alignment likelihood £(s|u; ¢) for a single sequence at fixed g is time-consuming: if we
allow for a maximum size € = © for single-event deletions and insertions, then the requested
number of operations roughly scales as L, x (L;) x N, x (20 + 1), where N; is the number of V
templates considered and (L, is their average length. This has to be repeated for each
sequence, for each mutation rate, for each template, and for each direction of the gradient, and
all of this at each iteration. Below we describe approximations that considerably speed up the
code.

Pruning the alignment matrix. Indels are quite rare in real Ig sequences, with most
sequences having none or at most one, located around well defined regions. Allowing for pos-
sible indels (of size © at most) everywhere in every sequence contributes very little to the final
cumulated alignment likelihood, wasting computational time. Dropping implausible terms
would dramatically reduce the computational cost, pushing the factor L x (L;) x (2@ + 1)
almost down to L,.

Plausible locations for gaps can be identified by computing, for each pair of positions (i, f)
along s and ¢, the likelihood that the alignment goes through that pair. This is given by:

Sij = S(sy tl:j) X S(SiJrl:LS? tj+l:L1)a (25)

where the first term is computed as described above, and the second term similarly, but using
a backward iteration on the reverted sequences. Normalizing by the total alignment likelihood,
we obtain a relative probability that the correct alignment passes through (i, ),

S, = S;/S(s, ).
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The entries of this matrix can now be used to prune the terms of the recursive Eq (2). When
S ;; is smaller than a fixed threshold 9 = 107°, we set S(s, ;, t,;) to zero and avoid computing it

and including it in further sums.

To implement this strategy, we need to first run the forward and backward iterations with-
out any pruning, for an initial guess of the parameters (y;, ¢). The S ;; matrix computed in this
way is then used to define the pairs of positions to be kept in future computations. After that,
all subsequent evaluations of S(s, t) in the optimization algorithm are done with only those
pairs of positions.

Reducing the number of templates. Another important performance improvement
comes from pruning the list of plausible templates for each sequence s. In principle, the sum in
Eq (8) runs over all the templates f, but in practice only one of them actually contributes in a
non negligible way. Thus, we only keep the V template t* closest to s, as given by the alignment
score of the standard NW algorithm:

L(slu; @) = D pi Sl thus 8) = S(s, 1|1 6)- (26)

The computational cost of L(s; 0) is then reduced further by a factor N,.

Averaging over the hidden age factor. Another demanding operation is the average over
the hidden variable y; by Monte-Carlo sampling. In principle, the number of Monte-Carlo
samples Ny;c should be very large. In practice, we used a single N, = 1 sample at each itera-
tion. This simplification works because parameters evolve slowly at each iteration, especially in
the last convergence steps, which allows for time averaging as a substitute for large MC
sampling.

Posterior approximation. To calculate and sample from the posterior P(us;0), we evalu-
ated it on a finite set of values of y (called nodes), and interpolated the rest of the function
using a smooth piecewise cubic interpolation [61]. The nodes are set for each sequences to be
placed around the naive estimate of the mutation rate y; based on the NW alignment, in addi-
tion to 2 key nodes at ¢ = 0 and 1. We used from 15 to 25 nodes depending on how mutated
the sequence was.

As both alignment parameters ¢ and repertoire-wide distribution P(y) get updated during
inference, the positions of the nodes are updated for each sequence as well, by placing them
around the previously estimated maximum of the posterior with a spread given by its inverse
curvature.

The prior distribution P(y) was numerically stored by binning uniformly the [0, 1] interval
with a bin size of 0.0005.

Generation of synthetic data

In order to mimic real distributions of the repertoire-wide point-mutation rate P(y), we used a
shifted Gamma distribution:

PO = gy e ) e 27)
with a, f determined by the mode and standard deviation of the unshifted Gamma distribu-
tion: (@—1)/8 = 0.07 and v/a/ 8 = 0.04; and where z(at, B, yo) is a normalization constant. In
practice, we drew values from the Gamma distribution with parameters o, f, and then sub-
tracted 0.02 from it, discarding negative values. The resulting distribution has non-zero proba-
bility for infinitesimally small values and a mode of i = 0.05. We used this distribution for
generating synthetic data when validating the software and reported as ground truth in Fig 3.
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Supporting information

S1 Fig. Fraction of times the overlap between inserted base pairs and same-length flanking
region on the 3’ end is larger than the overlap with the 5’ end along the sequence; averages
and one standard deviation over the 9 Briney donors given by solid line and shaded area
around, respectively. For comparison, overlap between random insertions and flanking
regions is also reported (details in the main text). A weak preference for the 5 end is supported
by a KS-test p-value of 0.04, when comparing true insertions with randomized ones.

(TIFF)

S2 Fig. Overlap between deleted base pairs and same-length flanking regions on either 3’
or 5’ end along the sequence (larger is kept); averages and one standard deviation over the
9 Briney donors given by solid line and shaded area around, respectively. For comparison,
overlap between random deletions and flanking regions is also reported (details in the main
text).

(TIFF)

$3 Fig. Distribution of the distance (in base pairs) separating (A) deletions or (B) insertions
from the closest point mutation in nonproductive IgG sequences, normalized by the null
expectation obtained by reshuffling indel and point mutations between sequences with the
same V gene (to control for the positional biases of Fig 2). Average and error bars are over the
9 donors.

(TIFF)

S4 Fig. (A) Probabilistic vs deterministic estimates of the rescaled deletion rate f§,, at increas-
ing values of indels density. Averages values plus one standard deviation error bars are
obtained over the NV independent synthetic repertoires. (B) Deletion length profiles for the
largest value of f3,, considered in panel (A); mean and standard deviations over the A/ inde-
pendent realizations.

(TIFF)

S5 Fig. Model prediction for frequency of (A) deletions, (B) insertions, and (C) both inser-
tions and deletions, in IgG nonproductive sequences, compared to the data. Mean and vari-
ance are over the 9 donors. Poisson distributions with the same means as the data are shown
for comparison.

(TIFF)

S6 Fig. Distribution of deletion lengths in 5 synthetic repertoires of 500, 000 sequences
each. Synthetic sequences were generated as in Fig 3D, but with a cut-off of 100 base pairs
instead of 30 for indel lengths, and with indel-to-point-mutation rates f4e = Bins = 0.025. The
blue curve shows the true distribution of deletions lengths in the full dataset, while the orange
curve shows the same distribution in sequences that have passed the quality filters described in
Methods section. Mean and standard deviation over the 5 subsets shown.

(TIFF)

S7 Fig. Indel statistics from Fig 1, compared to those obtained from sequences with at least
3 reads per UMI. No systematic error due to sequencing errors (expected to be larger in UMI
with low counts) can be detected. (A) Mutation rates per base pair, for both IgM and IgG. (B)
Length profiles for deletions in IgG. (C) Length profiles for insertions in IgG. Vertical lines
show mean values.

(TIFF)
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