

Temps de cohérence d'un gaz condensé à température non nulle

Hadrien Kurkjian, Emilia Witkowska⁽¹⁾ Yvan Castin, Alice Sinatra

Laboratoire Kastler Brossel, Ecole Normale Supérieure, Paris

⁽¹⁾Institut de Physique, Académie de Sciences Polonnaise, Varsovie

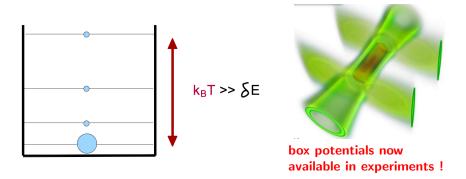
LPL, octobre 2019

Plan

- **1** The BEC and its coherence
- **2** The phase $\hat{\theta}_0$
- **3** BOSONIC CASE $d\hat{\theta}_0/dt$
- **4** Role of conserved quantities
- **5** Microscopic description
- **6** Bosons harmonic trap
- **7** CONCLUSIONS

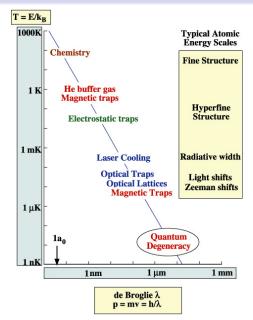
Bose-Einstein condensate

Bosons $T < T_c$: macroscopic population of a single particle state



 \Rightarrow Macroscopic coherence properties : spatial and temporal

BEC : Energy scales



Typical numbers for a BEC

Size: $\Delta x = 50 \,\mu \text{m}$

Number of atoms: $N = 10^6$

Temperature T = 100 nK $(\lambda_{th} = \sqrt{\frac{2\pi\hbar^2}{mk_B T}})$

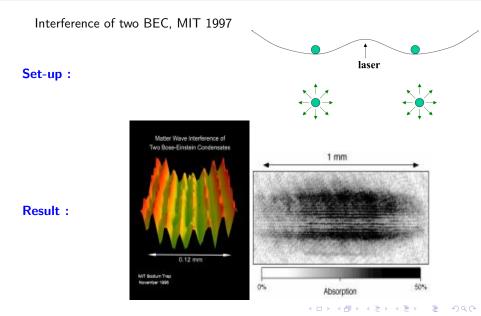
 $\begin{array}{l} {\sf Density} \ \rho = 10^{19} \ {\sf at/m^3} \\ (\rho \lambda_{th}^3 > 1) \end{array}$

Lifetime $\tau = 100 \text{ s}$

Figure from Burnett et al., Nature (2002)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

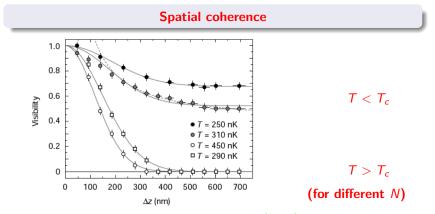
First evidence of phase coherence



BEC Spatial Coherence : *g*₁ correlation function

Spatial coherence of a single Bose-condensed gas

$$g_1(\mathbf{r}) = \langle \hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}(0)
angle
angle \stackrel{r o \infty}{\sim} \phi_0^*(\mathbf{r}) \phi_0(0) \langle \hat{a}_0^{\dagger} \hat{a}_0
angle; \quad \hat{\psi}(\mathbf{r}) = \sum_{lpha} \phi_{lpha}(\mathbf{r}) \hat{a}_{lpha}$$

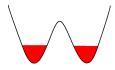


3

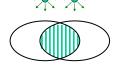
Figure from Bloch, Hänsch, Esslinger, Nature (2000),

BEC Time Coherence

Two BEC with a well-defined relative phase at time t = 0



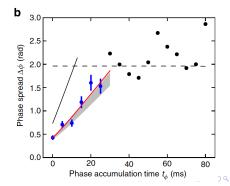
Interferometric measurement of the relative phase at time t



Temporal coherence

For how long do the condensates remember their (relative) phase ?

Figure from Tarik Berrada et al. Nat. Comm. (2013)



Fluctuations of N : T = 0 effect already measured

Case of a pure condensate, T = 0, simplest one mode model :

$$H = rac{g}{2} rac{N^2}{V}$$
 and $\mu = rac{gN}{V}$

condensate phase derivative :

$$[N, \theta] = i \qquad \qquad \dot{\theta} = \frac{1}{i\hbar}[\theta, H] = -\frac{gN}{\hbar V} = -\frac{\mu(N)}{\hbar}$$

N is a conserved quantity.

If *N* fluctuates around $\bar{N} \Rightarrow$ ballistic spreading of the phase

$$\operatorname{Var}\left[\theta(\mathbf{t}) - \theta(\mathbf{0})\right] = \frac{t^2}{\hbar^2} \left(\frac{d\mu(\bar{N})}{dN}\right)^2 \operatorname{Var} N$$

Sols (1994); Walls; You, Lewenstein (1996); Castin, Dalibard (1997) Seen in experiments on $\langle a_0^{\dagger}(t)b_0(t)\rangle$ (two-component condensates, equal time) rather than $\langle a_0^{\dagger}(t)a_0(0)\rangle$ (one component different times). T. Berrada, Nat. Comm. (2013)

Fluctuations of E : $T \neq 0$ effect not yet measured

Here we fix *N*. On the other hand $T \neq 0$, many modes. condensate phase derivative under ergodic assumption :

$$\dot{ heta} = rac{1}{i\hbar}[heta, extsf{H}] = -rac{\mu(extsf{E})}{\hbar}$$

 $\mu(E)$ =microcanonical chemical potential of the gas.

If the system is isolated during evolution, E is a conserved quantity. If E fluctuates around \overline{E} (canonical ensemble) \Rightarrow ballistic spreading of the phase

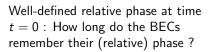
$$\operatorname{Var}\left[\theta(\mathbf{t}) - \theta(\mathbf{0})\right] \sim rac{t^2}{\hbar^2} \left(rac{d\mu(\bar{E})}{dE}
ight)^2 \operatorname{Var} E$$

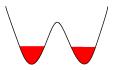
 \Rightarrow The spreading effect will be given by thermal fluctuations of μ at fixed N.

Temporal coherence of a BEC

A fundamental property of BEC, useful for applications

 $\begin{array}{l} \mbox{Macroscopic population of a single} \\ \mbox{particle state} \rightarrow \mbox{macroscopic} \\ \mbox{coherence} \end{array}$





Spatial coherence of a single condensed gas

$$g_1(r) = \langle \hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}(0) \rangle \rangle \stackrel{r \to \infty}{\sim} \phi_0^*(\mathbf{r}) \phi_0(0) \langle \hat{a}_0^{\dagger} \hat{a}_0 \rangle;$$

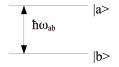
Temporal coherence of a single condensed gas

 $g_1(t,0) = \langle \hat{\psi}^{\dagger}(\mathsf{r},t) \hat{\psi}(\mathsf{r},0)
angle \stackrel{t o \infty}{\sim} |\phi_0(\mathsf{r})|^2 \langle \hat{\mathbf{a}}_0^{\dagger}(\mathsf{t}) \hat{\mathbf{a}}_0(\mathbf{0})
angle$

System in equilibrium, isolated, homogeneous, condensed

BEC versus thermal gas

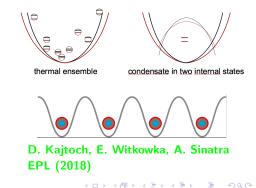
We all know atoms are useful oscillators



Example : atomic clocks

What about the BEC ?

- Absence of inhomogenous broadening
- BEC as a localized probe
- Use manybody physics : Mott to suppress the collisional shift
- Engineer correlations for "quantum metrology"



The condensate phase operator $\hat{\theta}_0$

We introduce the following representation for a bosonic mode ϕ

$$\hat{a}_{\phi} = \hat{A}_{\phi}\sqrt{\hat{n}_{\phi}} \qquad \hat{n}_{\phi} = \hat{a}_{\phi}^{\dagger}\hat{a}_{\phi} \qquad \hat{A}_{\phi} = rac{1}{\sqrt{\hat{n}_{\phi}+1}}\hat{a}_{\phi} \qquad (af(n)=f(n+1)a)$$

 $\hat{A}_{\phi}|n:\phi\rangle = |n-1:\phi\rangle$ for n > 0 and $\hat{A}_{\phi}|0:\phi\rangle = 0$ $\hat{A}_{\phi}^{\dagger}|n:\phi\rangle = |n+1:\phi\rangle$ for $n \in \mathbb{N}$

 \hat{A}_{ϕ} is "almost unitary" : $\hat{A}_{\phi}\hat{A}^{\dagger}_{\phi} = 1$ $\hat{A}^{\dagger}_{\phi}\hat{A}_{\phi} = 1 - |0:\phi\rangle\langle 0:\phi|$

For a macroscopically populated mode ϕ_0 , we approximate $\hat{A}_{\phi_0} \simeq e^{i\hat{\theta}_0}$ with $\hat{\theta}_0$ an hermitian operator

Modulus-phase representation of condensate operator \hat{a}_0

$$\hat{a}_0=e^{i\hat{ heta}_0}\sqrt{\hat{N}_0}$$
 , $[\hat{n}_0,\hat{ heta}_0]=i$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Hamiltonian on a lattice (spinless bosons)

$$\hat{H} = b^3 \sum_{\mathbf{r}} \hat{\psi}^{\dagger}(\mathbf{r}) \left(-\frac{\hbar^2}{2m} \Delta_{\mathbf{r}} \right) \hat{\psi}(\mathbf{r}) + g_0 b^3 \sum_{\mathbf{r}} \hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}(\mathbf{r}) \hat{\psi}(\mathbf{r})$$

Space discretisation step *b*, consequent cut-off in $\mathbf{k} \in \mathcal{D} \equiv [-\frac{\pi}{b}, \frac{\pi}{b}]^3$

$$\begin{array}{ll} \textbf{Commutators} & [\hat{\psi}(\textbf{r}), \hat{\psi}^{\dagger}(\textbf{r}')] = \frac{\delta_{\textbf{r},\textbf{r}'}}{b^3} & ; & \textbf{Kinetic energy } \Delta_{\textbf{r}} \langle \textbf{r} | \textbf{k} \rangle = -k^2 \langle \textbf{r} | \textbf{k} \rangle \end{array}$$

Contact Interaction potential $V = g_0 \frac{\delta_{r,0}}{b^3}$ with $g_0 \neq g = \frac{4\pi\hbar^2 a}{m}$

 g_0 adjusted to obtain scattering length a on the lattice

$$\frac{1}{g_0} = \frac{1}{g} - \int_{\mathcal{D}} \frac{d^3k}{(2\pi)^3} \frac{m}{\hbar^2 k^2} \qquad \qquad \int_{\mathcal{D}} \frac{d^3k}{(2\pi)^3} \frac{m}{\hbar^2 k^2} = \frac{C}{g} \left(\frac{a}{b}\right)$$

$$\xi = \sqrt{\frac{\hbar^2}{m\rho g}}$$
 Bogoliubov : $\frac{a}{\xi} \propto \sqrt{\rho a^3} \rightarrow 0$ Lattice : $\frac{b}{\xi} = \frac{fixed}{\eta < 1}$ (Born)

Ground state energy expansion in powers of a/ξ at fixed η :

 $\frac{E_0}{N} = \frac{\rho g}{2} \left(1 + C_{\eta}^{(1)} \frac{a}{\xi} + \dots \right) \quad \text{Then } \eta \to 0 \text{ in the coeff (no divergence)}$

Bogoliubov theory (homogeneous $\phi_0 = 1/\sqrt{V}$)

Splitting of the field operator

$$\hat{\psi}(\mathbf{r}) = rac{\hat{a}_0}{\sqrt{V}} + \hat{\psi}_{\perp}(\mathbf{r}) \qquad \hat{N} = \hat{N}_0 + \sum_{\mathbf{r}} |\hat{\psi}_{\perp}(\mathbf{r})|^2$$

Orthogonal number-conserving field $\hat{\Lambda}$

$$\hat{\Lambda}(\mathbf{r}) = e^{-i\hat{\theta}_0}\hat{\psi}_{\perp}(\mathbf{r}) \qquad [\hat{\Lambda}, \hat{\theta}_0] = [\hat{\Lambda}^{\dagger}, \hat{\theta}_0] = 0, \qquad [\hat{N}, \hat{\theta}] = i$$

Elimination of the condensate variables from the Hamiltonian

$$H(\hat{\psi}, \hat{\psi}^{\dagger}) \rightarrow H(\hat{N}, \hat{\Lambda}, \hat{\Lambda}^{\dagger})$$
 $\hat{N}_{0} = \hat{N} - \sum_{\mathbf{r}} |\hat{\Lambda}(\mathbf{r})|^{2}$

The Bogoliubov Hamiltonian is quadratic in $\hat{\Lambda}$ and $\hat{\Lambda}^{\dagger}$

$$H_{\text{Bog}}(\hat{N}) = \frac{g_0 \hat{N}^2}{2V} + \sum_{r} b^3 \left[\hat{\Lambda}^{\dagger} \left(h_0 + \frac{g_0 \hat{N}}{V} \right) \hat{\Lambda} + \frac{g_0 \hat{N}}{2V} \left(\hat{\Lambda}^2 + \hat{\Lambda}^{\dagger 2} \right) \right]$$

 $\frac{\mathrm{d}\hat{\theta}_0}{\mathrm{d}t}$

Explicit calculation : coarse-grain time average

Heisenberg picture :
$$i\hbar \frac{d\hat{\theta}_0}{dt} = -i \frac{\partial H_{\text{Bog}}(\hat{N}, \hat{\Lambda}, \hat{\Lambda}^{\dagger})}{\partial N} |_{\Lambda, \Lambda^{\dagger}}$$

 $\frac{d\hat{\theta}_0}{dt} = -\frac{1}{\hbar} \left\{ \frac{g_0 \hat{N}}{V} + \frac{g_0}{V} \sum_{\mathbf{r}} b^3 \left[\hat{\Lambda}^{\dagger} \hat{\Lambda} + \frac{1}{2} \left(\hat{\Lambda}^2 + \hat{\Lambda}^{\dagger 2} \right) \right\}$

Expansion over eigenmodes of linear equations of motion for $\Lambda, \Lambda^{\dagger}$

$$\begin{pmatrix} \hat{\Lambda}(\mathbf{r}) \\ \hat{\Lambda}^{\dagger}(\mathbf{r}) \end{pmatrix} = \sum_{\mathbf{k}\neq\mathbf{0}} \frac{e^{i\mathbf{k}\cdot\mathbf{r}}}{V^{1/2}} \left[\begin{pmatrix} U_k \\ V_k \end{pmatrix} \hat{b}_{\mathbf{k}} + \begin{pmatrix} V_k \\ U_k \end{pmatrix} \hat{b}_{-\mathbf{k}}^{\dagger} \right]$$

COARSE-GRAIN TIME AVERAGE OF $d\hat{\theta}_0/dt$

$$-\hbar \overline{\frac{\mathrm{d}\hat{\theta}_{0}}{\mathrm{d}t}^{t}}^{t} = \mu_{0}(\hat{N}) + \sum_{\mathbf{k}\neq\mathbf{0}} \frac{\partial\epsilon_{k}}{\partial N} \hat{n}_{\mathbf{k}}$$

with $\mu_0(\hat{N}) = \frac{\mathrm{d}E_0(N)}{\mathrm{d}N}$ and $E_0(N) = \frac{g_0N^2}{2V} - \sum_{\mathbf{k}\neq\mathbf{0}}\epsilon_k V_k^2$ $U_k \pm V_k = \left(\frac{E_k}{\epsilon_k}\right)^{\pm 1/2}$; $\epsilon_k = \sqrt{E_k(E_k + 2\rho g_0)}$; $E_k = \frac{\hbar^2 k^2}{2m_b^2}$; $\rho = \frac{N}{V}$

Physical interpretation of $\frac{d\hat{\theta}_0}{dt}^t$: contribution of thermal excitations

Canonical ensemble

$$\hat{\sigma}_{\mathrm{can}} = rac{e^{-eta \hat{H}_{\mathrm{Bog}}}}{Z}$$
 with $\hat{H}_{\mathrm{Bog}} = E_0(N) + \sum_{\mathbf{k} \neq \mathbf{0}} \epsilon_k \hat{n}_{\mathbf{k}}$ $\bar{n}_k = rac{1}{e^{eta \epsilon_k} - 1}$

Free energy of ideal bose gas (Bogoliubov quasi particles)

$$F = E_0(N) + k_B T \sum_{\mathbf{k}} \ln(1 - e^{\beta \epsilon_k})$$
$$\mu_{\text{can}} = \left(\frac{dF}{dN}\right)_{V,T} = \mu_0(\hat{N}) + \sum_{\mathbf{k}\neq \mathbf{0}} \frac{\partial \epsilon_k}{\partial N} \bar{n}_k = -\hbar \left\langle \frac{\overline{d\hat{\theta}_0}^{t}}{dt}^t \right\rangle_{\text{can}}$$

Phase derivative \leftrightarrow "chemical potential operator"

$$\frac{\overline{d\hat{\theta}_0}^t}{dt}^t = -\frac{\hat{\mu}}{\hbar}$$

References

Bosons

- A. Sinatra, Y. Castin, E. Witkowska, "Nondiffusive phase spreading of a Bose-Einstein condensate at finite temperature", PRA **75** (2007).
- A. Sinatra, Y. Castin, E. Witkowska, "Coherence time of a Bose-Einstein condensate", PRA (2009).
- A. Sinatra, Y. Castin, E. Witkowska, "Limit of spin squeezing in trapped Bose-Einstein condensates", EPL (2013).
- Y. Castin, A. Sinatra, "Temps de cohérence d'un condensat de Bose-Einstein dans un gaz isolé harmoniquement piégé", C. R. Phys. (2018) [free access] (english arXiv:1803.03168).

Fermions

- H. Kurkjian, Y. Castin, A. Sinatra, "Phase operator and blurring time of a pair-condensed Fermi gas" PRA (2013).
- H. Kurkjian, Y. Castin, A. Sinatra, "Brouillage thermique d'un gaz cohérent de fermions", C. R. Phys. (2016) [free access] (english arXiv:1502.05644).
- Y. Castin, "Étalement de la phase et cohérence temporelle d'un gaz de fermions condensé par paires à basse température", C. R. Phys. (2019) [free access] (english arXiv:1807.10476).

Time coherence and condensate phase

• Time correlation of condensate amplitude $\langle a_0^{\dagger}(t)a_0(0)\rangle$:

thermally popolated	
modes = noisy	\rightarrow
environnement	

decay of the correlation function, spreading of the condensate phase

• Equivalently, we can consider the variance of the condensate phase difference $Var \left[\theta(t) - \theta(0)\right]$ as a function of time *t*.

Modulus-phase representation : $a_0 = e^{i\theta}\sqrt{N_0}$, $[N_0, \theta] = i$

For a Gaussian probability distribution of $\theta(t) - \theta(0)$ and weak fluctuations of N_0

$$|\langle a_0^{\dagger}(t)a_0(0)
angle|\simeq \langle N_0
angle \exp\left\{-rac{1}{2} \mathrm{Var} \left[heta(\mathbf{t})- heta(\mathbf{0})
ight]
ight\}$$

Intrinsic sources of the condensate phase spreading

First source : shot to shot fluctuations of conserved quantities, as N (total number), or E (total energy) in the canonical ensemble.

It gives rise to :

- Ballistic spreading of the phase difference $Var \left[\theta(\mathbf{t}) \theta(\mathbf{0})\right] \sim At^2$
- Gaussian decay of $\langle a_0^{\dagger}(t)a_0(0)\rangle$
- Coherence time scaling as \sqrt{N} in a finite system.

Second source (even for fixed E and N) : fluctuations of quasiparticle numbers that perturbing the the condensate phase.

It gives rise to :

• **Diffusive spreading** of the phase difference $Var \left[\theta(t) - \theta(0)\right] \sim 2Dt$

- Exponential decay of $\langle a_0^{\dagger}(t)a_0(0)
 angle$
- Coherence time scaling as N in a finite system.

Condensate correlation function

The system state : $\hat{\rho} = \sum_{\lambda} \prod_{\lambda} |\psi_{\lambda}\rangle \langle \psi_{\lambda}|$ with $\hat{H} |\psi_{\lambda}\rangle = E_{\lambda} |\psi_{\lambda}\rangle$

Correlation function in a many-body eigenstate ψ_{λ}

$$\begin{split} g_1^{\lambda}(t) &\simeq \bar{N}_0 \langle e^{-i\hat{\theta}_0(t)} e^{i\hat{\theta}_0(0)} \rangle = \bar{N}_0 e^{iE_{\lambda}t/\hbar} \langle \psi_{\lambda} | e^{-i\hat{H}_{\theta}t/\hbar} | \psi_{\lambda} \rangle \\ \text{with } \hat{H}_{\theta} &= e^{-i\hat{\theta}_0} \hat{H} e^{-i\hat{\theta}_0} \quad \text{where we used } e^{\xi\hat{A}} F(\hat{B}) e^{-\xi\hat{A}} = F(e^{\xi\hat{A}}\hat{B}e^{-\xi\hat{A}}) \\ \text{Then we write } : \quad \hat{H}_{\theta} &= \hat{H} + \hat{W} \text{ and} \\ \hat{W} &\equiv e^{-i\hat{\theta}_0} \hat{H} e^{i\hat{\theta}_0} - \hat{H} = \underbrace{-i[\hat{\theta}_0, \hat{H}]}_{O(\hat{N}^0)} \underbrace{-\frac{1}{2}[\hat{\theta}_0, [\hat{\theta}_0, \hat{H}]]}_{O(\hat{N}^{-1})} + \dots \end{split}$$

Correlation function in a many-body eigenstate ψ_{λ}

$$g_1^{\lambda}(t) \simeq ar{N}_0 e^{iE_{\lambda}t/\hbar} \langle \psi_{\lambda} | e^{-i(\hat{H}+\hat{W})t/\hbar} | \psi_{\lambda}
angle \qquad \hat{W} = \hbar rac{d heta_0}{dt} + O(rac{1}{N})$$

For a large system, $\hat{W} \ll \hat{H} = O(\hat{N})$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = のへで

Link with the problem of a state weakly coupled to a continuum (Resolvant and projectors method)

- $g_1^{\lambda}(t) \propto \text{probability amplitude that the system, initially prepared in state <math>|\psi_{\lambda}\rangle$, is still there at time *t* for the perturbed evolution of Hamiltonian $\hat{H} + \hat{W}$
- In the thermodynamic limit (quasi-continuous spectrum), the perturbation has two effects:
 - energy shift: angular frequency $(E_{\lambda} + \langle \psi_{\lambda} | \hat{W} | \psi_{\lambda} \rangle + O(N^{-}1))/\hbar$
 - exponential decay with a rate (Fermi golden rule) :

$$\gamma_{\lambda} = rac{\pi}{\hbar} \sum_{\mu
eq \lambda} |\langle \psi_{\mu} | \hat{W} | \psi_{\lambda}
angle|^2 \, \delta(\mathcal{E}_{\lambda} - \mathcal{E}_{\mu})$$

CORRELATION FUNCTION IN A MANY-BODY EIGENSTATE ψ_{λ} $g_1^{\lambda}(t) \simeq \bar{N}_0 \,\mathrm{e}^{-\mathrm{i}t\langle\psi_{\lambda}|\hat{W}|\psi_{\lambda}\rangle/\hbar} \,\mathrm{e}^{-\gamma_{\lambda}t} \qquad \hat{W} = \hbar \frac{d\hat{\theta}_0}{dt} + O(\frac{1}{N})$

Gaussian decay of $g_1^{\lambda}(t)$ (dominant contribution)

Coarse grain phase derivative : for $\hbar/\epsilon_k^{\rm th} \ll t \ll \gamma_{\rm coll}^{-1}$

Generalization - to the quantum case and $\mathcal{T} \neq 0$ - of the second Josephson equation

$$-\hbarrac{d\hat{ heta}}{dt}=\mu_0(\hat{N})+\sum_krac{d\epsilon_k}{dN}\ \hat{n}_k\equiv\hat{\mu}$$

Indeed $\hat{\mu}$ is the adiabatic derivative of the $H_{
m Bog}$ with respect to N

$$H_{
m Bog} = E_0(\hat{N}) + \sum_k \epsilon_k \, \hat{n}_k$$

$$\langle \psi_{\lambda} | \hat{W} | \psi_{\lambda} \rangle \underset{\text{ETH}}{\simeq} - \mu_{\text{mc}}(E_{\lambda}, N_{\lambda})$$

• we now have to average $g_1^\lambda(t) \simeq \bar{N}_0 \, \mathrm{e}^{-\mathrm{i}t\langle\psi_\lambda|\hat{W}|\psi_\lambda\rangle/\hbar}$ over $|\psi_\lambda\rangle$

(日) (同) (三) (三) (三) (○) (○)

Coherence time for ballistic spreading

- Linearizing $\mu_{
 m mc}(E_{\lambda},N_{\lambda})$ around (\bar{E},\bar{N}) ,
- The averaging $g_1^{\lambda}(t) \simeq \bar{N}_0 e^{-i\mu_{
 m mc}(E_{\lambda},N_{\lambda})t/\hbar}$ over $|\psi_{\lambda}\rangle$ gives :

TIME CORRELATION FUNCTION

$$g_1(t)\simeq ar{N}_0\mathrm{e}^{\mathrm{i}\mu_\mathrm{mc}(ar{E},ar{N})t/\hbar}\mathrm{e}^{-\mathbf{t}^2/2\mathbf{t}_\mathrm{br}^2}$$

Spreading of the condenstate phase

$$\operatorname{Var}\left[\hat{\theta}(t) - \hat{\theta}(0)\right] \stackrel{t o \infty}{=} \operatorname{At}^2 + \dots$$

• Characteristic time

BLURRING TIME FOR BALLISTIC SPREADING

$$\frac{1}{2t_{\rm br}^2} = \mathbf{A} = \mathsf{Var}\left(N\frac{\partial\mu_{\rm mc}}{\partial N}(\bar{E},\bar{N}) + E\frac{\partial\mu_{\rm mc}}{\partial E}(\bar{E},\bar{N})\right)$$

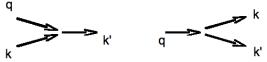
AC

Physical origin of ergodicity

The system is described by weakly interacting quasi particles

$$H = E_0 + \sum_{\mathbf{k} \neq \mathbf{0}} \epsilon_k b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} +$$
cubic terms + quartic terms

Interactions among Bogoliubov modes ensure ergodicity



Landau and Beliaev processes

The populations n_k fluctuate \rightarrow the condensate phase spreads

Phase derivative $\dot{\theta}(t)$:

$$\dot{ heta}(t)\simeq -\mu_{\Phi}/\hbar + \sum_{\mathbf{k}
eq \mathbf{0}}\left(\partial_{N}\epsilon_{k}
ight)\,n_{\mathbf{k}}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Phase diffusion (subdominant)

• On can rewrite

$$\gamma_{\lambda} = \int_{0}^{+\infty} \mathrm{d}t \left[\mathsf{Re} \left\langle \frac{\mathrm{d}\hat{\theta}_{0}(t)}{\mathrm{d}t} \frac{\mathrm{d}\hat{\theta}_{0}(0)}{\mathrm{d}t} \right\rangle_{\lambda} - \left\langle \frac{\mathrm{d}\hat{\theta}_{0}}{\mathrm{d}t} \right\rangle_{\lambda}^{2} \right]$$

• thus this is the phase diffusion coefficient :

$$\gamma_{\lambda} \underset{\text{ETH}}{=} D(E_{\lambda}, N_{\lambda}) \simeq D(\bar{E}, \bar{N})$$

MAIN RESULT AFTER ENSEMBLE AVERAGE

$$g_{1}(t) \simeq \bar{N}_{0} e^{2i\mu_{\rm mc}(\bar{E},\bar{N})t/\hbar_{\rm e}-t^{2}/2t_{\rm br}^{2}} e^{-\mathsf{D}(\bar{\mathsf{E}},\bar{\mathsf{N}})t}$$
$$\operatorname{Var}\left[\hat{\theta}(t) - \hat{\theta}(0)\right] \stackrel{t \to \infty}{=} \mathsf{At}^{2} + \mathsf{2Dt}$$

Phase diffusion occurs even in the absence of energy fluctuations Equation for $\frac{d\hat{\theta}_0(t)}{dt}$ + kinetic equations describing the quasi-particles collisions allow us to calculate γ_{λ} and γ

The system

- Harmonically trapped Bosons with zero-range interactions. *a* = *s*-wave scattering length
- The gas is in equilibrium in the deeply condensed regime
- State of the system (generalized ensemble) :

$$\hat{\sigma} = \sum_{\lambda} P_{\lambda} |\psi_{\lambda}(N_{\lambda}, E_{\lambda})\rangle \langle \psi_{\lambda}(N_{\lambda}, E_{\lambda})|$$

 $Var(E) = O(\bar{E})$ and $Var(N) = O(\bar{N})$ in the thermodynamic limit.

• Thermodynamic limit in the trap :

 $N
ightarrow \infty,$ with μ_{GP} and T fixed $ightarrow \omega_{lpha} \propto 1/N^{1/3}$

Considered regime : $\hbar\omega_{\alpha} \ll \mu_{GP}, k_B T$

• Collisionless regime for the quasi-particles (opposite to hydrodynamic regime)

 $\gamma_{\rm coll} \ll \omega_{\alpha}$ where $\gamma_{\rm coll}^{-1} =$ collision time between thermal Bogolibov QP

Ballistic phase spreading coefficient A

$$\operatorname{Var}\left[\hat{ heta}(t) - \hat{ heta}(0)
ight] \stackrel{t o \infty}{=} At^2 + \dots$$

• For a statistical mixture of canonical ensembles (same *T*, different *N*) with Poissonian fluctuations of *N*

$$A = A_{\text{Pois}} + A_{\text{can}}$$

$$\label{eq:A_tau} \textbf{A}_{\textbf{T}=\textbf{0}}(1+\textbf{O}(\textbf{f}_{\rm nc})) \qquad \textbf{A}_{\rm can}(\textbf{T})=\textbf{O}(\textbf{f}_{\rm nc})$$

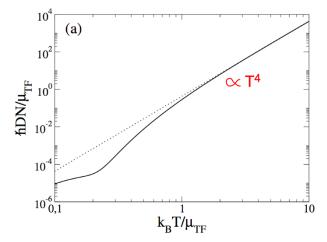
• Unless fluctuations of *N* are reduced/suppressed, the T = 0 contribution to the ballistic coefficient dominates

For POISSONIAN FLUCTUATIONS OF N

(日)、

Phase diffusion coefficient in a trap

$$\operatorname{Var}\left[\hat{ heta}(t) - \hat{ heta}(0)
ight] \stackrel{t o \infty}{=} At^2 + 2Dt + \dots$$



ł

Independent of the ensemble and of the trap frequencies

Conclusions

- We calculate the intrinsic coherence time of a condensate in thermal equilibrium.
- Coherence time \leftrightarrow phase dynamics, and $d\hat{\theta}_0/dt \propto$ "chemical potential operator" including pair-breaking and pair-motion excitations.
- As $\hat{\theta}_0(t) \simeq -\mu_{\rm mc}(E)t/\hbar$, energy fluctuations from one realization to the other \rightarrow Gaussian decay of the coherence $t_{\rm br} \propto N^{1/2}$.
- In the absence of energy fluctuations, the coherence time scales as N due to the diffusive motion of $\hat{\theta}_0$.

$$\operatorname{Var}\left[\hat{\theta}(t) - \hat{\theta}(0)\right] \stackrel{t \to \infty}{=} At^2 + 2D(t - t_0) + o(1)$$

- Calculated A, D and t_0 in a harmonic trap, for $\omega_{\alpha} \ll \mu_{\rm TF}$, $k_B T$, collisionless regime $\gamma_{\rm coll} \ll \omega_{\alpha}$ and ergodic motion of quasiparticles (anisotropic trap)
- If properly rescaled, $A \propto 1/N$, $D \propto 1/N$ and t_0 are universal functions of $k_B T/\mu_{\rm TF}$