

Amortissement Landau-Khalatnikov des phonons dans un superfluide

Alice Sinatra, Yvan Castin

Laboratoire Kastler Brossel, Ecole Normale Supérieure, Paris

Hadrien Kurkjian

Laboratoire de Physique Théorique, Toulouse

Séminaire de la matière condensée, Jussieu Septembre 2022 🚛 🖉

Plan ●	Quantum hydro	Ph-ph interactions	L-K damping	Observability	Phase coherence	Conclusions O
Plar	n in the second s					

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

1 Quantum hydro

- **2** Ph-ph interactions
- 3 L-K DAMPING
- **4** Observability
- **5** Phase coherence
- 6 CONCLUSIONS

A superfluid with short-range interactions (with a gapless, phononic excitation branch) in three dimensions

 \Downarrow At low temperature \Downarrow

weakly interacting gas of phonons

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

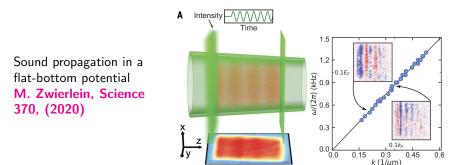
Irrespectively of :

- Statistics : bosons or paired fermions
- Interaction strength : gas or liquid

 $\textbf{Phonon damping} \leftrightarrow \textbf{phonon-phonon interactions}$

- Transport properties
- Intrinsic coherence time of the condensate

- Liquid Helium 4 spinless bosons \rightarrow Bose-Einstein condensation \rightarrow superfuidity ($\rho \sim 10^{30}$ atoms/ m^3 , $T_c \sim 2K$)
- Ultracold atomic gases unpolarized spin-1/2 fermions \rightarrow condensation of bound $\uparrow \downarrow$ pairs \rightarrow superfuidity ($\rho \sim 10^{19}$ atoms/m³, $T_c \sim \mu K$)

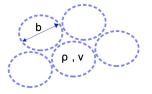


(日)

Two canonically conjugated quantum fields:

- local density $\hat{\rho}(r)$
- local phase $\hat{\phi}(\mathbf{r}) \rightarrow$ local velocity $\hat{\mathbf{v}}(\mathbf{r}) = \frac{\hbar}{m} \nabla \hat{\phi}(\mathbf{r})$

Coarse-grained (large scale) description of the fluid:



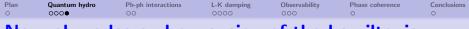
$$\rho^{-1/3}, \ \xi = \frac{\hbar}{mc} \ll \mathbf{b} \ll \lambda_{\rm th}, \ q_{\rm th}^{-1}$$

each grain is homogeneous, in local ground state, with overall velocity v.

$$\hat{H} = \int d^3r \left[\frac{1}{2}m\hat{\mathbf{v}} \cdot \hat{\rho}\hat{\mathbf{v}} + \mathbf{e}_0(\hat{\rho}) \right]$$

 $e_0(\rho) =$ ground state energy density at uniform density ρ

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ◎ ◆ ◆



Normal modes and expansion of the hamiltonian

Weak spatial fluctuations at low temperature

$$\hat{
ho}(r,t) = \hat{
ho}_0 + \delta \hat{
ho}(r,t)$$
 and $\hat{\phi}(r,t) = \hat{\phi}_0 + \delta \hat{\phi}(r,t)$

• Fourier expansion and diagonalization of linearized equations

$$\delta \hat{
ho}_{\mathsf{q}} \propto \sqrt{q} \left(\hat{b}_{\mathsf{q}} + \hat{b}_{-\mathsf{q}}^{\dagger} \right) \qquad \delta \hat{\phi}_{\mathsf{q}} \propto \frac{-i}{\sqrt{q}} \left(\hat{b}_{\mathsf{q}} - \hat{b}_{-\mathsf{q}}^{\dagger} \right) \quad \mathsf{with} \quad [\hat{b}_{\mathsf{q}}, \hat{b}_{\mathsf{q}}^{\dagger}] = 1$$

• An ensemble of weakly coupled harmonic oscillators

$$H_2 = \sum_{q
eq 0} \hbar \omega_q b_q^\dagger b_q$$

• Phonon dispersion relation :

$$\hbar\omega_q = \hbar c q$$
 with $mc^2 =
ho \frac{\mathrm{d}\mu}{\mathrm{d}
ho}$ and $\mu = \frac{\mathrm{d}e_0}{\mathrm{d}
ho}$

• Expansion of the hamiltonian

$$H = E_0 + H_2 + H_3 + H_4 + \dots$$

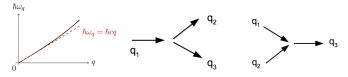
Plan	Quantum hydro	Ph-ph interactions	L-K damping	Observability	Phase coherence	Conclusions
0	0000	•0	0000	000	0	0

Phonon-phonon interactions

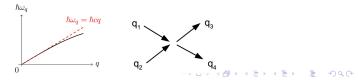
Correction to phonon dispersion relation $q\mapsto \omega_{\mathsf{q}}$ close to q=0

$$\hbar\omega_{\mathsf{q}} \underset{q\to 0}{=} \hbar cq \left[1 + \frac{\gamma}{8} \left(\frac{\hbar q}{mc}\right)^2 + \ldots\right]$$

• $\gamma > 0$: Beliaev and Landau 3-phonon processes dominant

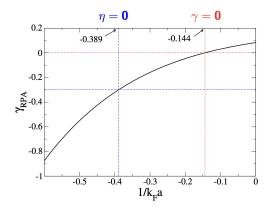


• $\gamma < 0$: 3-phonon processes forbidden by energy conservation, Landau-Khalatnikov 4-phonon processes are dominant

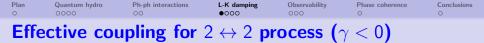


RPA calculation : H. Kurkjian, Y. Castin, A. Sinatra, PRA (2016)

$$\hbar\omega_{\mathfrak{q}} \underset{q\to 0}{=} \hbar cq \left[1 + \frac{\gamma}{8} \left(\frac{\hbar q}{mc} \right)^2 + \frac{\eta}{16} \left(\frac{\hbar q}{mc} \right)^4 + O\left(\frac{\hbar q}{mc} \right)^6 \right]$$



N.B. γ can also be tuned in liquid ⁴He by changing the pressure



$$H = E_0 + H_2 + H_3 + H_4 + \dots$$

$$q_1 \qquad \langle f | \hat{H}^{\text{eff}} | i \rangle = \langle f | \hat{H}_4 | i \rangle + \sum_{\lambda} \frac{\langle f | \hat{H}_3 | \lambda \rangle \langle \lambda | \hat{H}_3 | i \rangle}{E_i - E_{\lambda}}$$

Six intermediate states $|\lambda\rangle$. Inclusion of $\gamma \neq 0$ to avoid divergences

$$\hat{\mathcal{H}}_{\text{eff}} = \frac{mc^2}{\alpha J_3} \sum_{\alpha, \beta} \mathcal{A}_{\text{eff}}(\mathbf{q}_1, \mathbf{q}_2; \mathbf{q}_3, \mathbf{q}_4) \hat{b}^{\dagger}_{\mathbf{q}_3} \hat{b}^{\dagger}_{\mathbf{q}_4} \hat{b}_{\mathbf{q}_1} \hat{b}_{\mathbf{q}_2}$$

$$A_{
m eff}$$
 depends on the angles between the vectors, the energies (also of the intermediate states) and the thermodynamic quantities :

 q_1, q_2, q_3, q_4 $q_1+q_2=q_3+q_4$

$$\Sigma_{\rm F} \equiv \frac{\rho^3}{mc^2} \frac{{\rm d}^3 \mu}{{\rm d}\rho^3} \qquad \Lambda_{\rm F} \equiv \frac{\rho}{3} \frac{{\rm d}^2 \mu}{{\rm d}\rho^2} \left(\frac{{\rm d}\mu}{{\rm d}\rho}\right)^{-1}_{\text{cl}}$$

O O	Quantum hydro	Ph-ph interactions	L-K damping ○●○○	Observability	Phase coherence	Conclusions O			
Landau-Khalatnikov damping rate									

• The damping rate calculated with the Fermi Golden rule in the so called collisionless regime $\omega_q \gg \Gamma_{\rm th}$

$$\frac{d}{dt}\delta n_q = -\Gamma_q \delta n_q$$

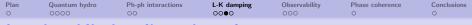
$$\Gamma_q \propto \int d^3 q_2 d^3 q_3 |\mathcal{A}_{\rm eff}|^2 \delta(\omega_3 + \omega_4 - \omega_2 - \omega_q) [\bar{n}_2(1 + \bar{n}_3)(1 + \bar{n}_4) - (1 + \bar{n}_2)\bar{n}_3\bar{n}_4]$$

• We take the limit $\epsilon = k_B T/mc^2 \rightarrow 0$ at fixed $\tilde{q} = \hbar c q/k_B T$

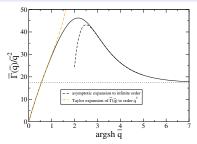
LANDAU-KHALATNIKOV DAMPING ($\gamma < 0$)

$$\frac{\hbar\Gamma_{\rm q}}{mc^2} \underset{T\rightarrow 0}{\sim} \frac{81(1+\Lambda_{\rm F})^4}{256\pi^4 |\gamma|} \left(\frac{mc}{\hbar\rho^{1/3}}\right)^6 \left(\frac{k_{\rm B}T}{mc^2}\right)^7 \tilde{\Gamma}(\tilde{q})$$

 $\tilde{\Gamma}$ (double integral) is a universal function of $\tilde{q} = \hbar c q / k_B T$ with simple asymptotic behaviors



Landau-Khalatnikov damping rate



$$\bar{\Gamma}(\bar{q}) = \frac{4\pi}{3\bar{q}n_q} \int_0^{+\infty} \mathrm{d}\bar{q}' \int_0^{\bar{q}+\bar{q}'} \mathrm{d}\bar{k} \; \bar{q}' \bar{k}\bar{k}' (1+n_{q'}) n_k n_{k'} [\min(q,q',k,k')]^3 \; \text{ avec } \; k+k' = q+q'$$

BEHAVIOR OF $\tilde{\Gamma}$ FOR SMALL \tilde{q} $\tilde{\Gamma}(\tilde{q}) = \frac{16\pi^5}{\tilde{q}^3} \tilde{q}^3 + \dots \qquad \tilde{\Gamma}(\tilde{q}) = \frac{16\pi\zeta(5)}{3}\tilde{q}^2 + \dots$

- Landau-Khalatnikov only calculated small- \tilde{q} and large- \tilde{q} limits
- They included a single diagram supposed to be dominant. We disagree, our result begin sub-leading by two orders in *q̃* in both limits.

Plan Quantum hydro Ph-ph interactions L-K damping Observability Phase coherence Conclusions Scaling with temperature of Landau-Khalatnikov damping rate

$$\Gamma_{q} \simeq \int d^{3}q_{2} d^{3}q_{3} |\mathcal{A}|^{2} \delta(\omega_{q} + \omega_{2} - \omega_{3} - \omega_{4})$$

• Wave vectors
$$q = ilde{q} rac{k_B T}{\hbar c}$$
 scale as T

- Integral dominated by almost aligned wave vectors, $\theta = \epsilon |\gamma|^{1/2} \tilde{\theta}$ with $\epsilon = \frac{k_B T}{mc^2}$. Hence solid angle $\propto T^2$
- Energy denominators in ${\cal A}$ scale as $q^3 \propto {\cal T}^3$
- $(\omega_q + \omega_2 \omega_3 \omega_4)$ vanishes for a linear spectrum (momentum conservation) and it is $\propto q^3 \propto T^3$ for a curved spectrum

$$\Gamma \sim \left[\begin{array}{c} T^3 \,\times\, T^2 \\ \text{solid angle} \end{array} \right]^2 \left| \frac{T^{3/2} \times T^{3/2}}{T^3} \right|^2 \frac{1}{T^3} = T^7$$

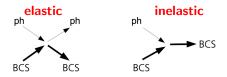
H. Kurkjian, Y. Castin, A. Sinatra, EPL (2016) H. Kurkjian, Y. Castin, A. Sinatra, Annalen der Physik (2017)

Can one observe Landau-Khalatnokov damping ?

• Concave dispersion relation otherwise Landau-Beliaev damping is dominant at low temperature

$$\Gamma_q^{
m LK} \mathop{\sim}\limits_{T
ightarrow 0} \propto q^3 T^4 \qquad {
m and} \qquad \Gamma_q^{
m LB} \mathop{\sim}\limits_{T
ightarrow 0} \propto q T^4$$

• Negligible damping by gapped excitations (rotons in helium or BCS pair-breaking excitation in Fermi gases)



• We calculated the damping by gapped excitations

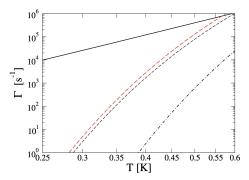
$$\Gamma_q^{
m rot} \sim Bq^4 T^{1/2} e^{-\Delta/k_B T}$$

Our expression of *B* disagrees with Landau-Khalatnikov and with Nicolis-Penco PRB (2018). Y. Castin, A. Sinatra, H. Kurkjian PRL (2017)+erratum

э

Landau-Khalatnikov damping in liquid ⁴He

Phonons $\omega_q = 2\pi \times 165 \text{ GHz} (q = 0.3\text{\AA}^{-1})$; $P = 20 \text{ bar} (\gamma = -6.9)$

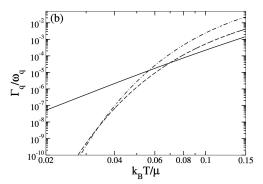


Solid : Landau-Khalatnikov 4-phonon damping. Dashed : elastic ph-roton processes (Red - original Landau-Khalatnikov) Dash-dotted : inelastic ph-roton processes

 $\Delta/k_B = 7.44$ K, $k_0 = 2.05$ Å⁻¹, c = 346.6 m/s The very low values of $\frac{\hbar q}{mc} = 0.13$ and of $\frac{k_B T}{mc^2} < 10^{-2}$ justify the use of quantum hydrodynamics

Plan Quantum hydro Ph-ph interactions L-K damping Observability Phase coherence Conclusions OCO Landau-Khalatnikov damping in a strongly interacting Fermi gas (BCS side)

Phonons $q = mc/2\hbar$ in a Fermi gas on the BCS side $1/k_F a^{-1} = -0.389$, $\gamma \simeq -0.30 < 0$. Parameters of the phonons and the fermionic quasiparticles have been estimated from BCS theory $\mu/\epsilon_F \simeq 0.809$



▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Solid : Landau-Khalatnikov 4-phonon damping. Dashed : elastic ph-BCS processes Dash-dotted : inelastic ph-BCS processes
 Plan
 Quantum hydro
 Ph-ph interactions
 L-K damping
 Observability
 Phase coherence
 Conclusions

 0
 0000
 000
 000
 000
 000
 0

Implications for the condensate coherence time

Small system isolated from the environnement (ultracold fermionic atoms, microcanonical ensemble)

• Finite coherence time due to condensate phase spreading

$$\langle \hat{a}_0^\dagger(t) \hat{a}_0(0)
angle \propto \langle e^{-i[\hat{ heta}(t) - \hat{ heta}(0)]}
angle$$

 \bullet Quantum version of $2^{\rm nd}$ Josephson equation with q-hydro

$$\hat{ heta} = 2\hat{\phi}_0$$
 ; $-rac{\hbar}{2}rac{d\hat{ heta}}{dt} = \mu_0(\hat{N}) + \sum_{q
eq 0}rac{d\hbar\omega_q}{dN}\hat{b}^\dagger_q\hat{b}_q \equiv \hat{\mu}$

- Phonon collisions decorrelate the occupation numbers
 - Convex $(\gamma > 0)$ ightarrow $Var[\hat{ heta}(t) \hat{ heta}(0)] \propto rac{T^4 t}{N}$ diffusive

A. Sinatra, Y. Castin, E. Witkowska PRA (2009)

• Concave $(\gamma < 0) \rightarrow \text{Var}[\hat{\theta}(t) - \hat{\theta}(0)] \propto \frac{T^{20/3}t^{5/3}}{N}$ super-diffusive Y. Castin CRP (2019)

Plan O	Quantum hydro	Ph-ph interactions	L-K damping	Observability	Phase coherence	Conclusions •
Con	clusions					

- We calculated the purely phononic damping rate in a superfluid with concave dispersion relation (2 ↔ 2 processes).
- In the limit $\epsilon = k_B T/mc^2 \rightarrow 0$ at fixed $\tilde{q} = \hbar cq/k_B T$ we find $\hbar\Gamma \propto (k_B T)^7 \tilde{\Gamma}(\tilde{q})$

where $\tilde{\Gamma}$ is a universal function of \tilde{q} .

• We correct the original Landau-Khalatnikov result in the large- \tilde{q} and small- \tilde{q} limit.

e.g. small- \tilde{q} limit : $\hbar\Gamma_q \propto q^3 T^4$ (Landau : $\hbar\Gamma_q \propto q T^6$)

- We apply the theory to liquid helium and Fermi gases, including competing processes (sub-leading in the $T \rightarrow 0$ limit) where the phonons interact with gapped excitations.
- The phonon damping has implications for the condensate coherence time.