Lectures at ECNU, Shanghai China, October 2019

"Spin squeezing for quantum metrology"

Alice Sinatra

Laboratiore Kastler Brossel, École Normale Suprieure, Paris France

In the two lectures, I will introduce the concept of spin squeezing and its interest for quantum metrology. As a physical example I will consider the one-axis twisting spin squeezing process that occurs in a two-component interacting Bose-Einstein condensate. For this example I will present two-mode analytical calculations and a more advanced analysis of the limitations due to decoherence and finite temperature. Always within the frame of the one-axis twisting Hamiltonian, I will also introduce entangled states beyond spin squeezing, such as Schrödinger cats and their sensitivity to decoherence.

- 1. Entangled states for quantum metrology
 - (a) Spin squeezing
 - (b) Frequency measurement by Ramsey sequence
 - (c) Frequency measurement using a maximally entangled state
 - (d) Phase estimation, Fisher information, Hellinger distance
 - (e) Quantum Fisher information
- 2. Entangled states by interactions in bimodal BEC
 - (a) Non-linear Hamiltonian
 - (b) Squeezing by non-linear dynamics
 - (c) Squeezing limit in presence of decoherence
 - (d) Microscopic description: dephasing due to particle losses
 - (e) Schrödinger cats by non-linear dynamics
 - (f) Fidelity of the cat state generation in the presence of losses
 - (g) Fidelity of the cat state generation at finite temperature

Experimental results

From 2016 Review of Modern Physics, Non-classical states of atomic ensembles: fundamentals and applications in quantum metrology, L. Pezze, A. Smerzi, M. Oberthaler, R. Schmied, P. Treutlein

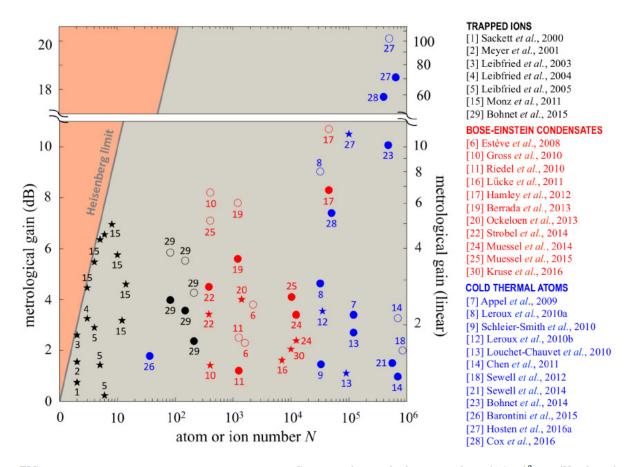
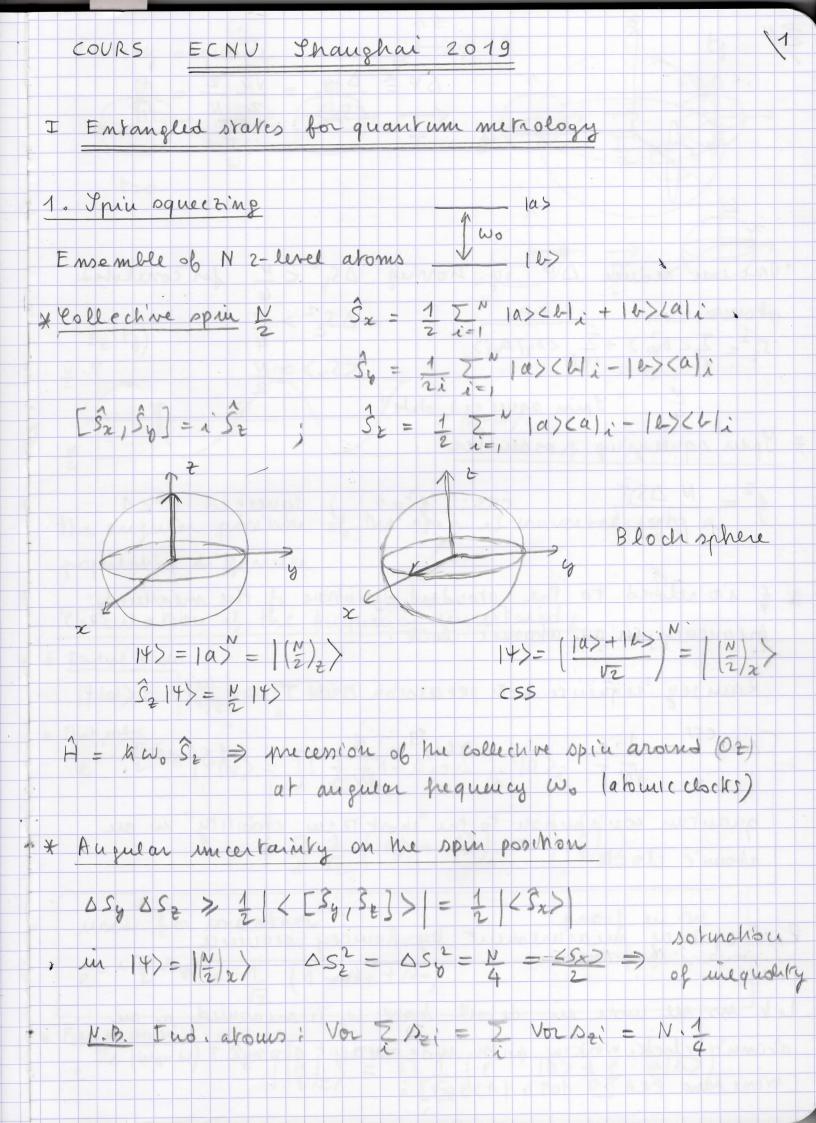
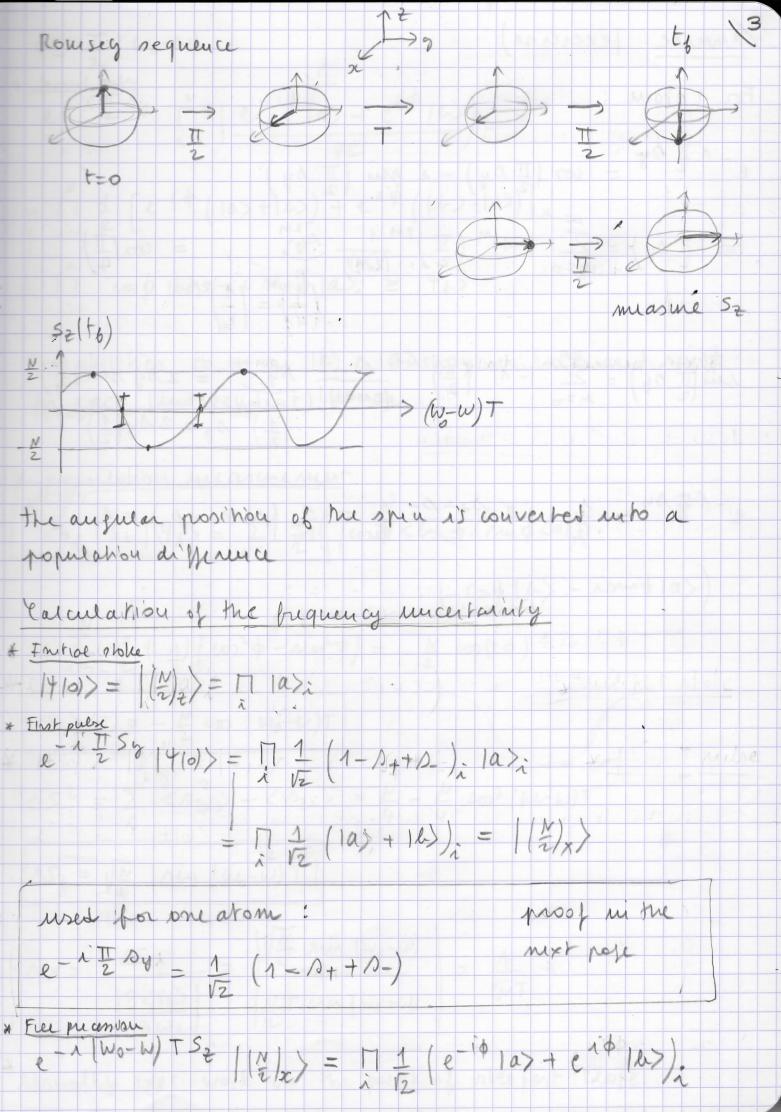
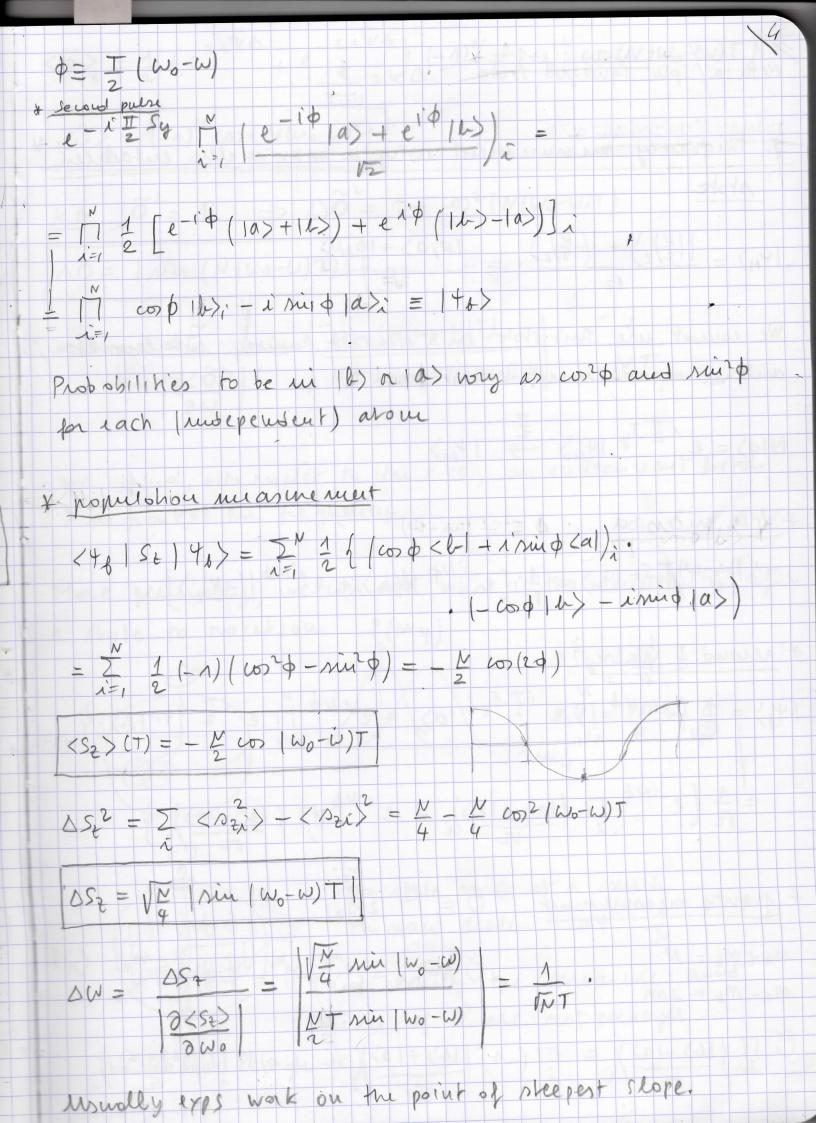


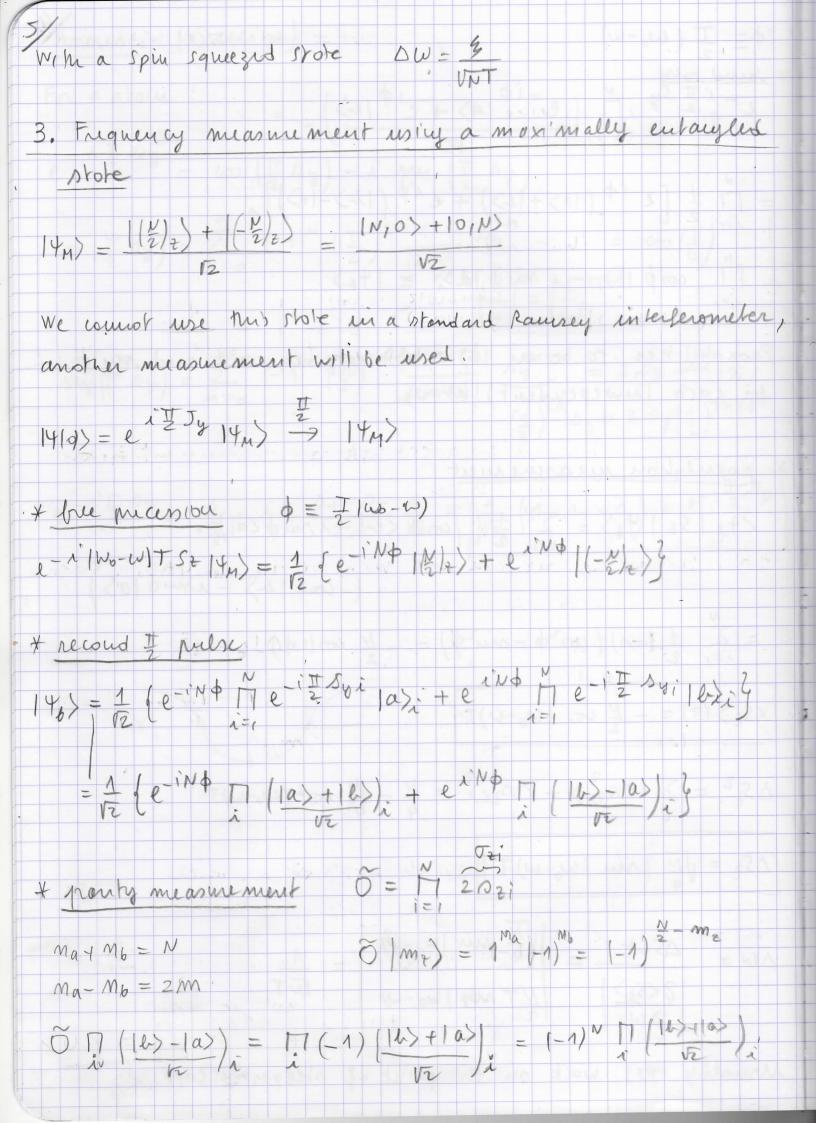
FIG. 2 Summary of experimental achievements. Gain over the standard quantum limit $(\Delta \theta_{SQL})^2 = 1/N$ achieved experimentally with trapped ions (black symbols), Bose-Einstein condensates (red) and cold thermal ensembles (blue). The gain is shown on logarithmic [left, dB, $10 \log_{10} (\Delta \theta_{SQL}/\Delta \theta)^2$] and linear [right] scale. The solid thick line is the Heisenberg limit $(\Delta \theta_{HL})^2 = 1/N^2$. Stars refer to directly measured phase sensitivity gains, performing a full phase estimation experiment. Circles are expected gains based on a characterization of the quantum state, *e.g.* calculated as $(\Delta \theta)^2 = \xi_R^2/N$, where ξ_R^2 is the spin-squeezing parameter, or as $(\Delta \theta)^2 = 1/F_Q$, where F_Q is the quantum Fisher information, see Sec. II. Filled (open) circles indicate results obtained without (with) subtraction of technical and/or imaging noise. Every symbol is accompanied by a number (in chronological order) giving the reference reported in the side table. Here N is the total number of particles or, in presence of fluctuations, the mean total.

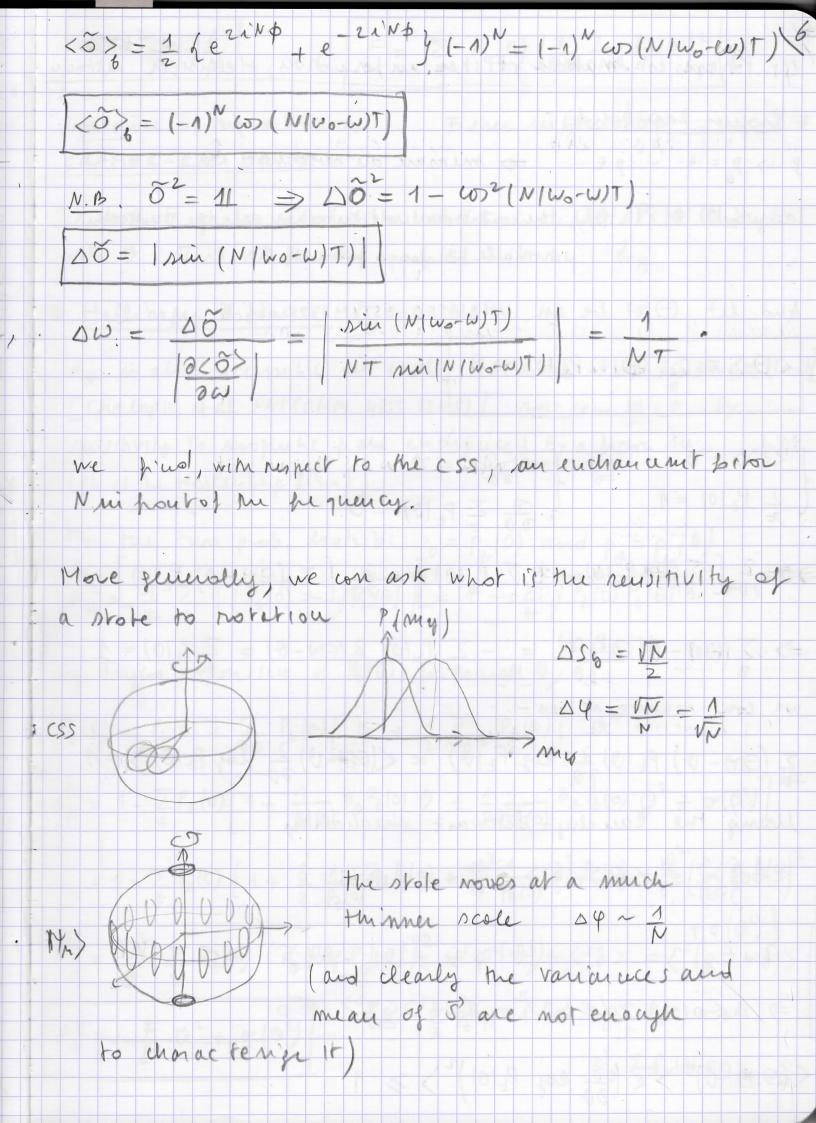


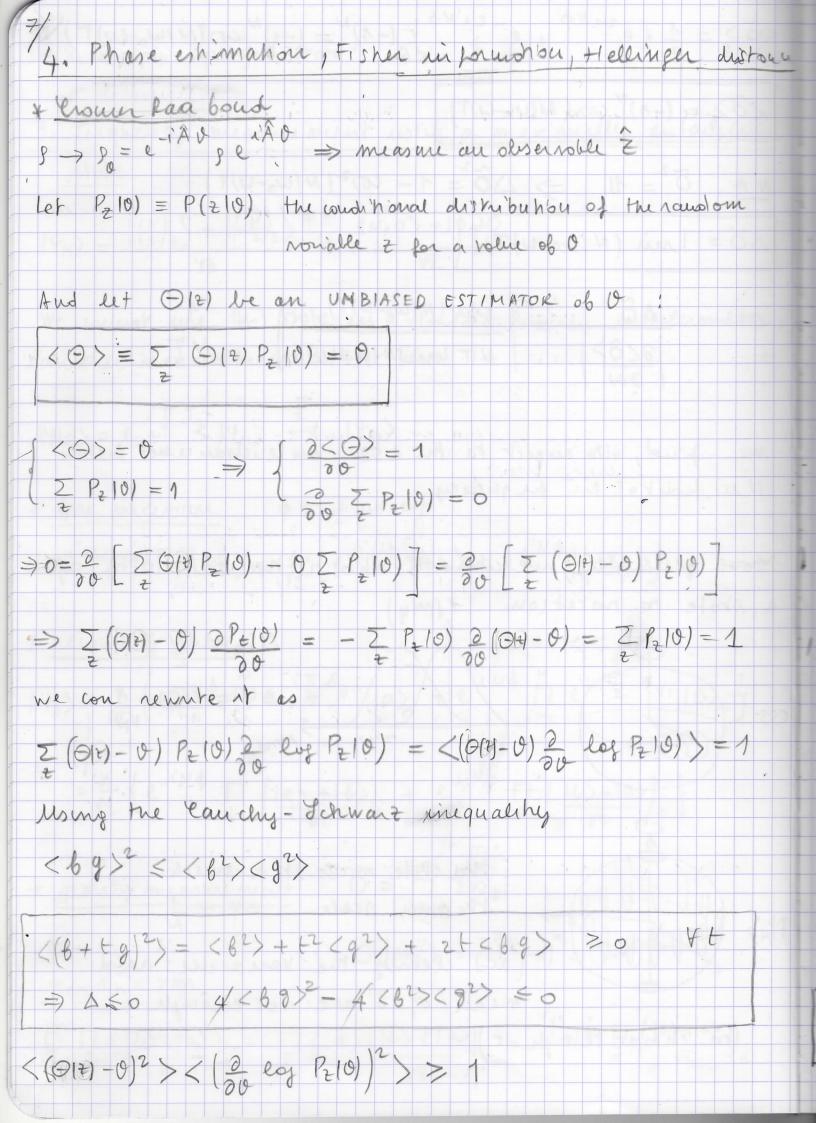
			-			×
	est					
1 P	reloh		mes	au	au	
	L Co	32	nea		in	
Z N	fe		re A	3~		
JN Z	NT4		191	rdbi		
52	1 S2					
φ ²			K			epi
2		r .	clo			inc
> v3	Pyj>	css	mic			n'm
	<pre>> e</pre> <pre>< o</pre> <pre>< o</pre>		ator a w	ihou	uner in c	ing n 1050
	+ E i + j	2	au	1hib		vork
and the	2)	251 3>1	, ri	001		ck .
	Des Ny	N a IC	ency	run		clos
X	u co onis 2 = 2 3 = 2	2 =	requ			mic
2/	d				-	ari
						In the to the

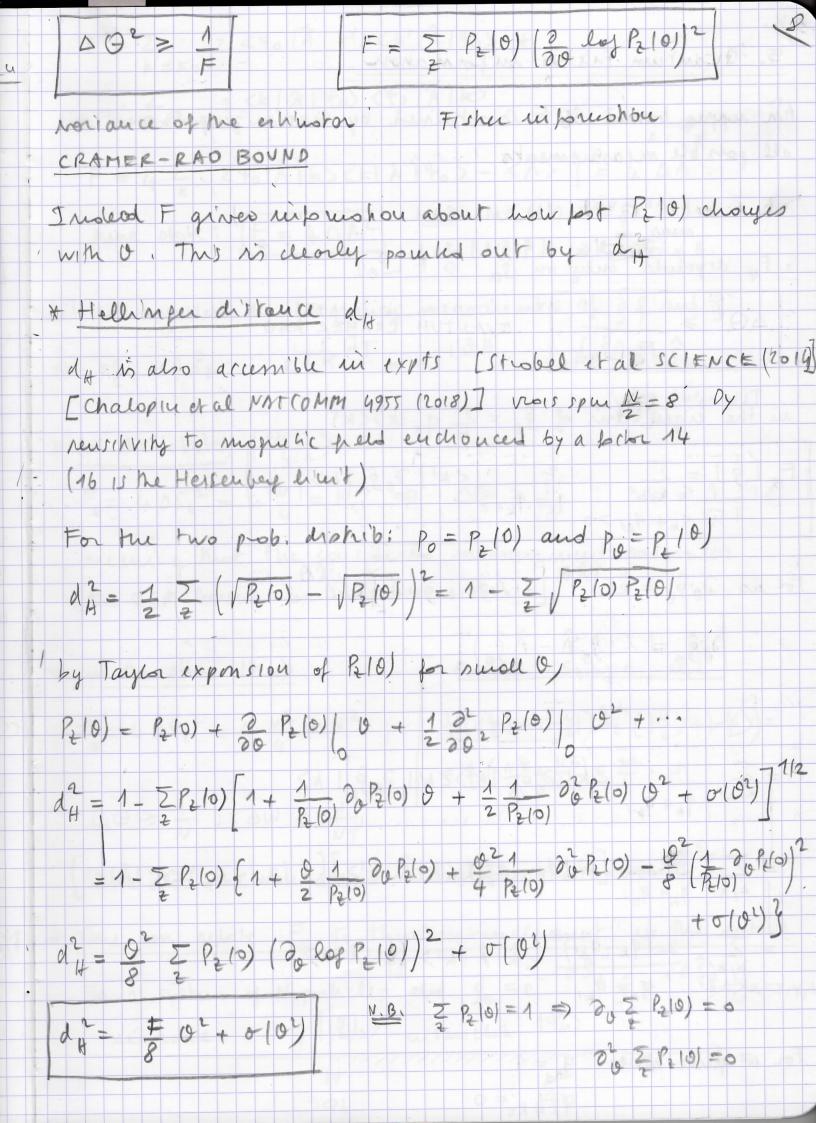


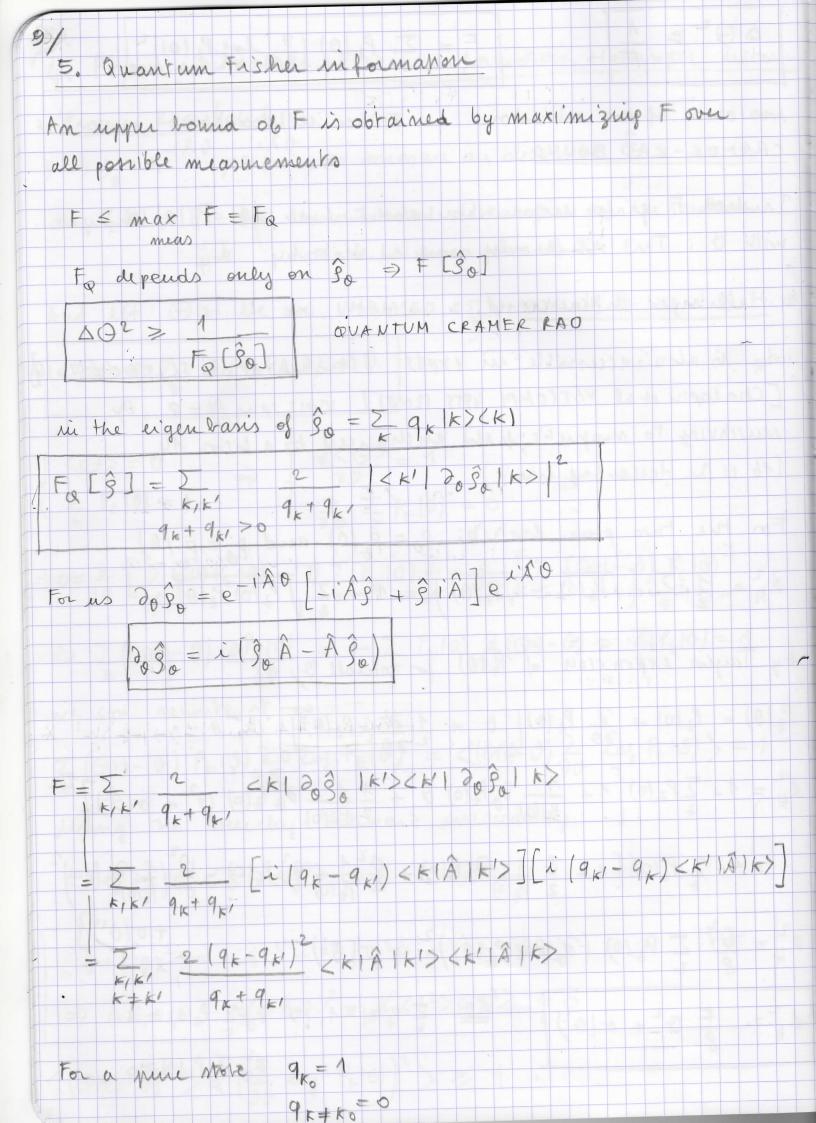


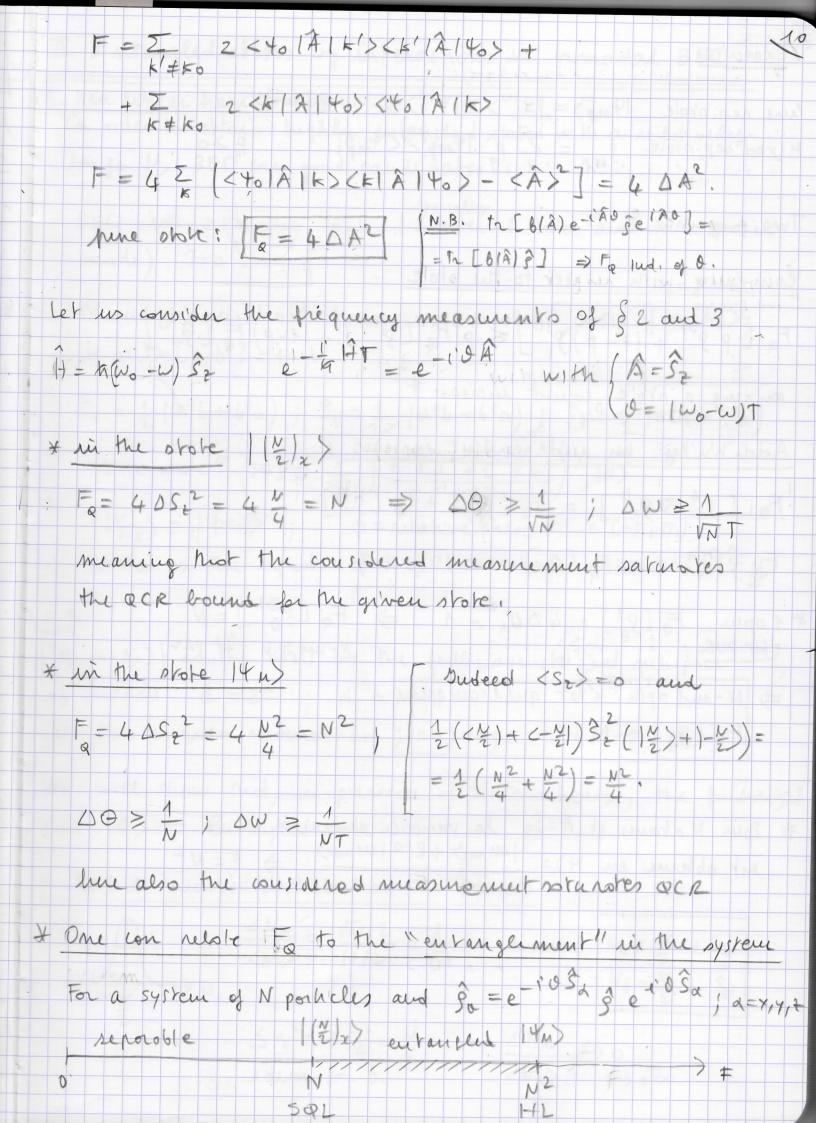






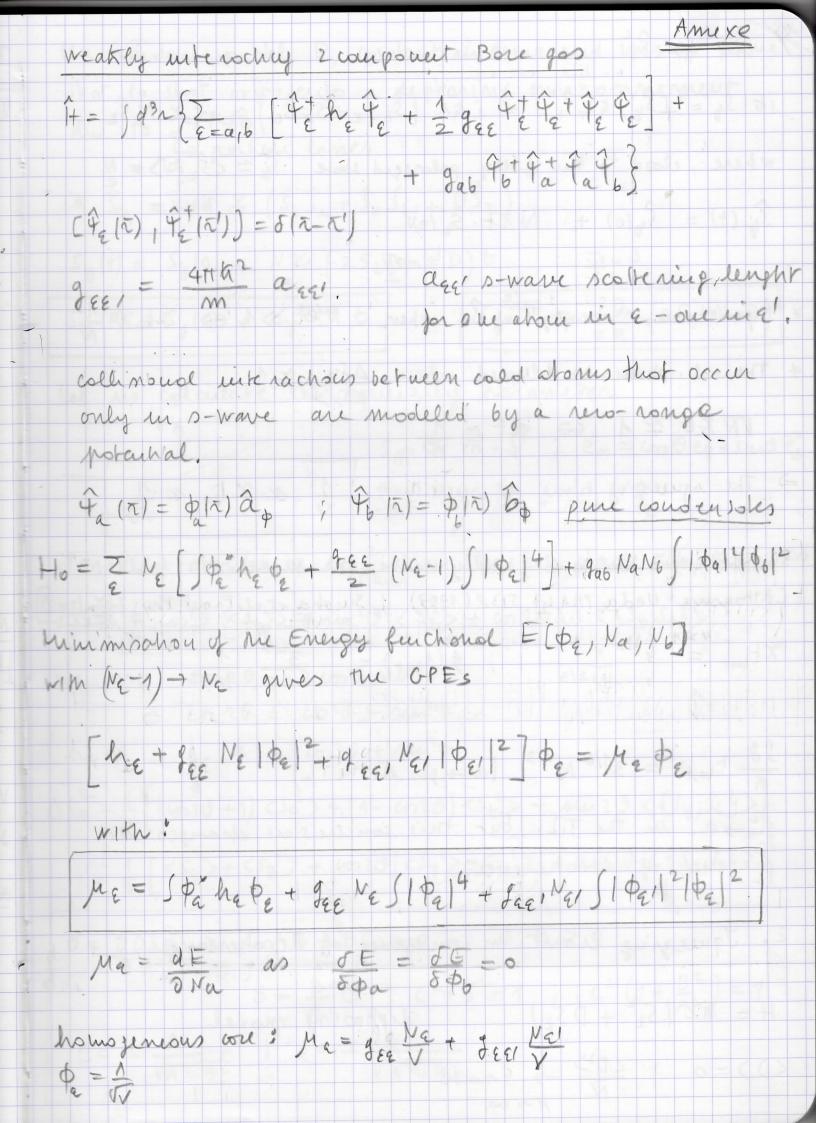




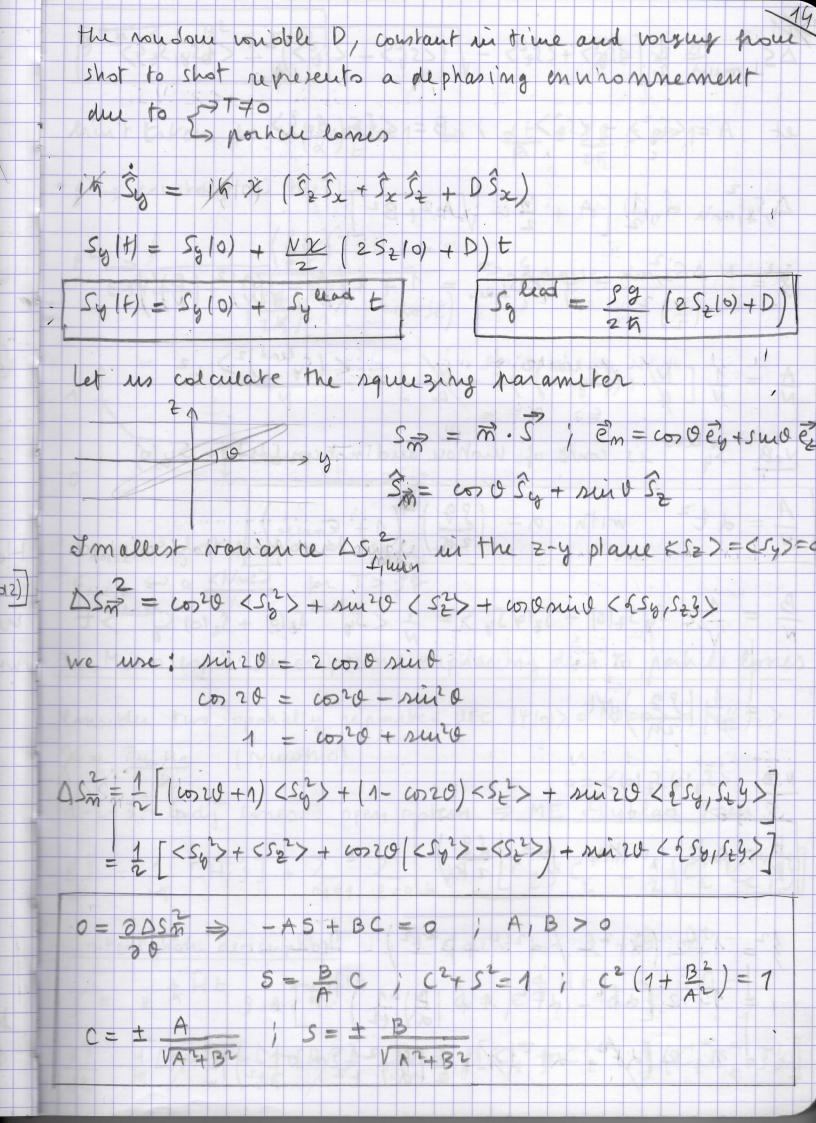


I Entangled states by interactions in himodal BEC 11 . O. Non linear hamiltonian In order to obtain highly entangled states with a relatively large N, BEC ere good candidates. BEC in 2 modes a, b (2 m/mel stokes and same spohol mode) T=0. NG=N-Na Nudishinguishable borous in 2 modes: boris { Na, No >} $[a_1 a^+] = [b_1 b^+] = 1$ $S_{2c} = \frac{1}{2} (atb + bta) ; S_{y} = \frac{1}{2i} (atb - bta) ; S_{z} = \frac{1}{2} (ata - btb)$ "phose above $|\phi\rangle = \frac{1}{|\psi|} \left(\frac{e^{i\frac{1}{2}}a^{i} + e^{-i\frac{1}{2}\frac{1}{2}\frac{1}{2}}}{|\psi|} \frac{10}{|\psi|} \right)$ $|\langle \frac{N}{2}\rangle_{2}\rangle \equiv |\langle \hat{p} = 0 \rangle$; $\phi = relative phase \in (-\pi, \pi)$ \neg stotes on the equation of the Plack sphere with $|\langle \overline{S} \rangle| = N$ M.B INai N-Na) is the bon's for the fully syruchized subspoce $ab N-spin d = 2^N ; ds = N+1$ In the angula momentum language is 215=2, M323 We will show mot, in presence of interochoris, the pochorized spec 10> > entroughed above. + Porhill number distribution in 10=0) $\frac{\Delta Na}{\Delta Na} = \frac{\sqrt{N/2}}{N/2} = \frac{1}{\sqrt{N}}$ underd Na = N + Sz >> Na No=N-Sz N SNa= DS2 = 14 DNa >0 idem for b. <Na> N>+00

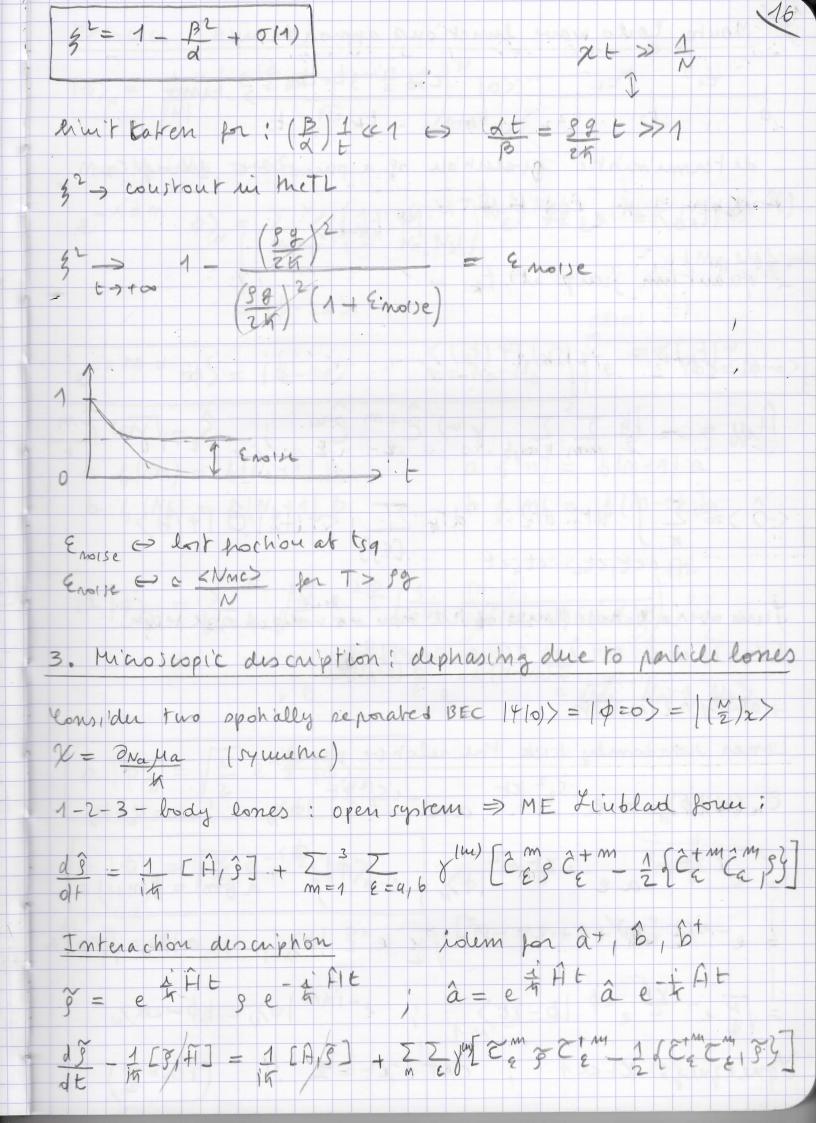
* Expansion of the energy $E(Na, Nb) = \overline{E} + \frac{\partial E}{\partial Na} (Na - \frac{N}{2}) + \frac{\partial E}{\partial Nb} (Nb - \frac{N}{2}) + \frac{\partial E}{\partial Nb} (N$ + $\frac{1}{2} \left\{ \frac{\partial^{2} E}{\partial N_{a}^{2}} \left(\frac{N_{a} - \frac{N}{2}}{2} \right)^{2} + \frac{\partial^{2} E}{\partial N_{b}} \left(\frac{N_{b} - \frac{N}{2}}{2} \right)^{2} + \frac{\partial^{2} E}{\partial N_{a} \partial N_{b}} \left(\frac{N_{a} - \frac{N}{2}}{2} \right)^{2} + \frac{\partial^{2} E}{\partial N_{a} \partial N_{b}} \left(\frac{N_{a} - \frac{N}{2}}{2} \right)^{2} + \frac{\partial^{2} E}{\partial N_{a} \partial N_{b}} \left(\frac{N_{a} - \frac{N}{2}}{2} \right)^{2} + \frac{\partial^{2} E}{\partial N_{a} \partial N_{b}} \left(\frac{N_{a} - \frac{N}{2}}{2} \right)^{2} + \frac{\partial^{2} E}{\partial N_{a} \partial N_{b}} \left(\frac{N_{a} - \frac{N}{2}}{2} \right)^{2} + \frac{\partial^{2} E}{\partial N_{b}} \left(\frac{N_{a} - \frac{N}{2}}{2} \right)^{2} + \frac{\partial^{2} E}{\partial N_{a} \partial N_{b}} \left(\frac{N_{a} - \frac{N}{2}}{2} \right)^{2} + \frac{\partial^{2} E}{\partial N_{a} \partial N_{b}} \left(\frac{N_{a} - \frac{N}{2}}{2} \right)^{2} + \frac{\partial^{2} E}{\partial N_{a} \partial N_{b}} \left(\frac{N_{a} - \frac{N}{2}}{2} \right)^{2} + \frac{\partial^{2} E}{\partial N_{a} \partial N_{b}} \left(\frac{N_{a} - \frac{N}{2}}{2} \right)^{2} + \frac{\partial^{2} E}{\partial N_{a} \partial N_{b}} \left(\frac{N_{a} - \frac{N}{2}}{2} \right)^{2} + \frac{\partial^{2} E}{\partial N_{a} \partial N_{b}} \left(\frac{N_{a} - \frac{N}{2}}{2} \right)^{2} + \frac{\partial^{2} E}{\partial N_{a} \partial N_{b}} \left(\frac{N_{a} - \frac{N}{2}}{2} \right)^{2} + \frac{\partial^{2} E}{\partial N_{a} \partial N_{b}} \left(\frac{N_{a} - \frac{N}{2}}{2} \right)^{2} + \frac{\partial^{2} E}{\partial N_{a} \partial N_{b}} \left(\frac{N_{a} - \frac{N}{2}}{2} \right)^{2} + \frac{\partial^{2} E}{\partial N_{b}} \left(\frac{N_{a} - \frac{N}{2}}{2} \right)^{2} + \frac{\partial^{2} E}{\partial N_{a} \partial N_{b}} \left(\frac{N_{a} - \frac{N}{2}}{2} \right)^{2} + \frac{\partial^{2} E}{\partial N_{a} \partial N_{b}} \left(\frac{N_{a} - \frac{N}{2}}{2} \right)^{2} + \frac{\partial^{2} E}{\partial N_{b}} \left(\frac{N_{a} - \frac{N}{2}}{2} \right)^{2} + \frac{\partial^{2} E}{\partial N_{b}} \left(\frac{N_{a} - \frac{N}{2}}{2} \right)^{2} + \frac{\partial^{2} E}{\partial N_{b}} \left(\frac{N_{a} - \frac{N}{2}}{2} \right)^{2} + \frac{\partial^{2} E}{\partial N_{b}} \left(\frac{N_{a} - \frac{N}{2}}{2} \right)^{2} + \frac{\partial^{2} E}{\partial N_{b}} \left(\frac{N_{a} - \frac{N}{2}}{2} \right)^{2} + \frac{\partial^{2} E}{\partial N_{b}} \left(\frac{N_{a} - \frac{N}{2}}{2} \right)^{2} + \frac{\partial^{2} E}{\partial N_{b}} \left(\frac{N_{a} - \frac{N}{2}}{2} \right)^{2} + \frac{\partial^{2} E}{\partial N_{b}} \left(\frac{N_{a} - \frac{N}{2}}{2} \right)^{2} + \frac{\partial^{2} E}{\partial N_{b}} \left(\frac{N_{a} - \frac{N}{2}} \right)^{2} + \frac{\partial^{2} E}{\partial N_{b}} \left(\frac{N_{a} - \frac{N}{2}} \right)^{2} + \frac{\partial^{2} E}{\partial N_{b}} \left(\frac{N_{a} - \frac{N}{2}} \right)^{2} + \frac{\partial^{2} E}{\partial N_{b}} \left(\frac{N_{a} - \frac{N}{2}} \right)^{2} + \frac{\partial^{2} E}{\partial N_{b}} \left(\frac{N_{a} - \frac{N}{2}} \right)^{2} + \frac{\partial^{2} E}{\partial N_{b}} \left(\frac{N_{a} - \frac{N}{2}} \right)^{2} + \frac{\partial^{2} E}{\partial N_{b}} \left(\frac{N_{a} - \frac{N}{2}} \right)^{2} + \frac{\partial^{2} E}{\partial N_{b}} \left(\frac{N_{a}$ · (N6-2)} + ··· E (NaINE) = E + (Ma-Mo)St + 2 [PNaMa + PNb Mb - PNaMb - PNb jiali St H = (Ma-Mb) Sz + KX Sz $\chi = \frac{1}{24} \left(\partial_{Va} \mu a + \partial_{Vb} \mu_{b} - 2 \partial_{Va} \mu_{b} \right)$ in the symmetric core N.B. CA, NaJ = CA, NoJ = S $F_{M_{L}} = K_{1} \times S_{2}^{2}$ How makes squeizing and also moximally entangled wokes storking from 10): 1. Iqueezing by NL dismonics symuchic spohielly sep. modes (gab = 0 = g housgeneous BEC, $=) \chi = \frac{4}{5}$ Ma = & Na M6 = 4 NG NX = 38. pute at the T.L.

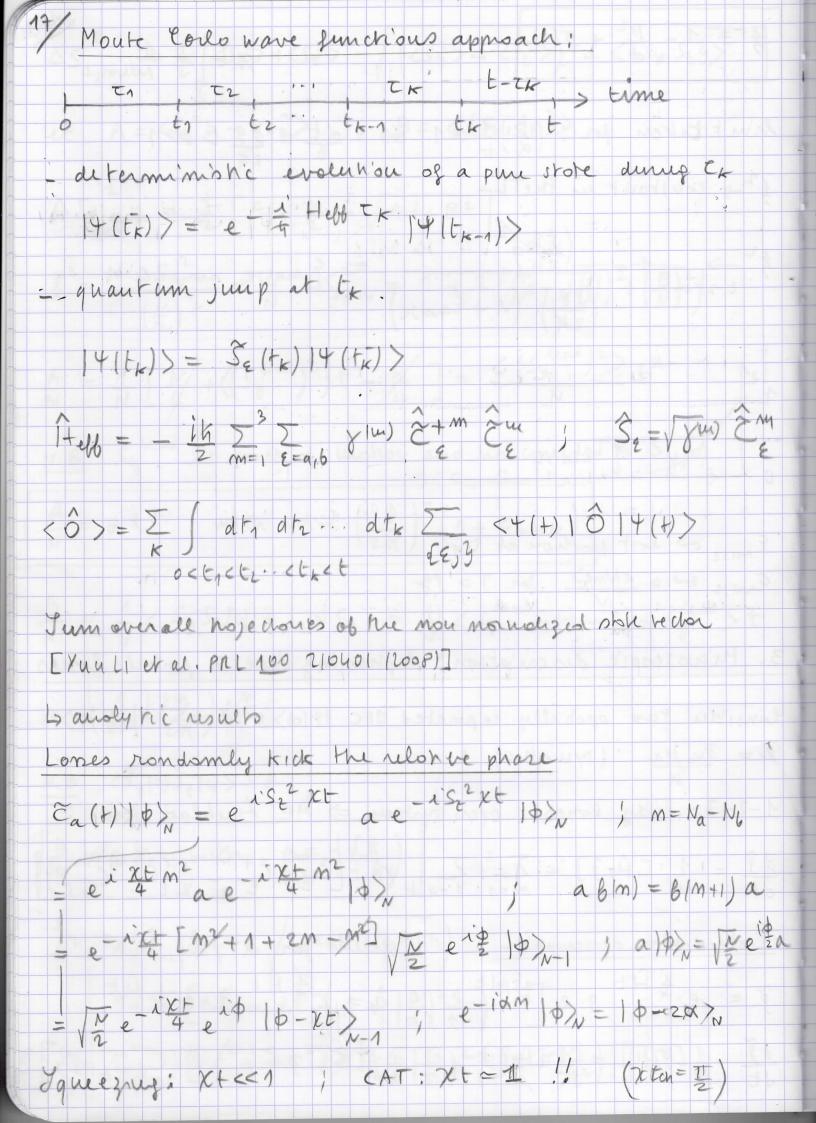


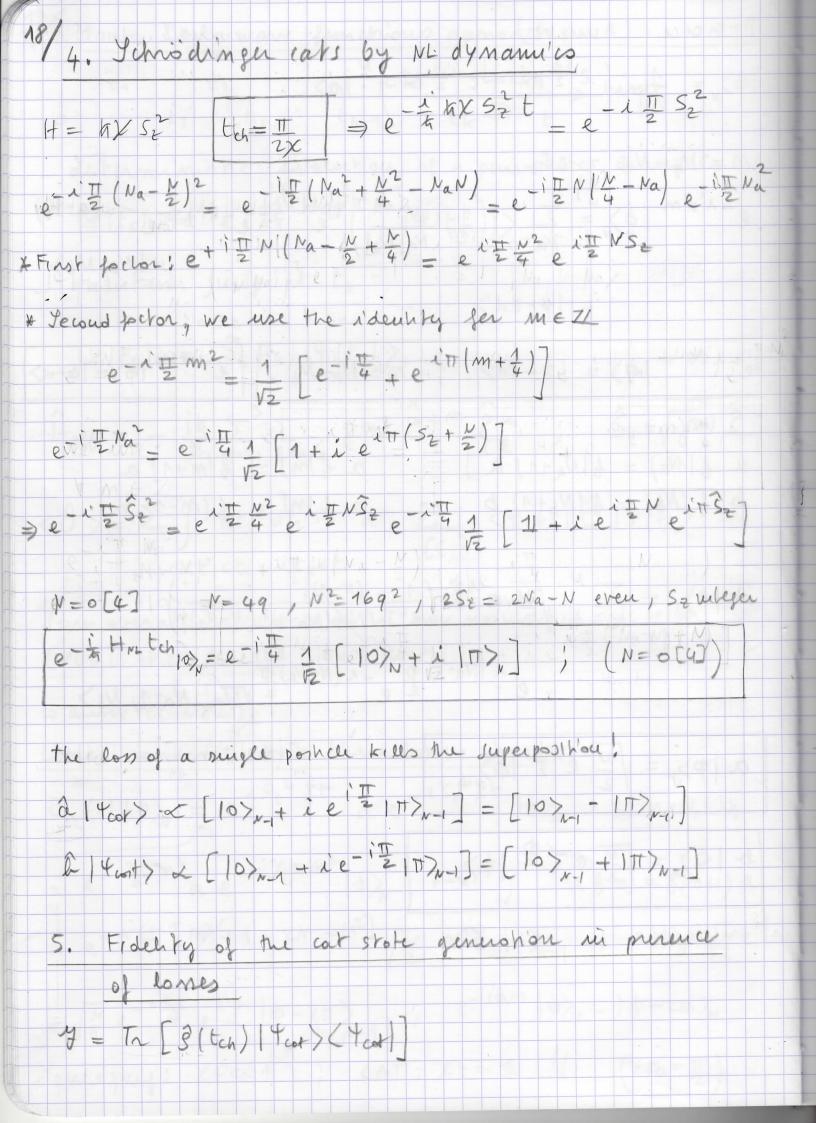
13/ H= KX SZ $i\hbar \hat{s}_{g} = \hat{c}\hat{s}_{g}, \hbar \hat{x}\hat{s}_{z}^{2} = i\hbar \hat{x} (\hat{s}_{z}\hat{s}_{z} + \hat{s}_{z}\hat{s}_{z}) \simeq i\hbar \hat{x} N\hat{s}_{z}$ where, close to the fully polorized state Sz = (Sz B) = 1/2 $\hat{S}_{y}(t) = \hat{S}_{y}(0) + N \chi t \hat{S}_{z}(0)$ $\frac{1}{2} \frac{1}{2} \frac{1}$ * Sy lecoures "a copy" of Sz when NXt > 1 => Xt >> 1 * The rel. phase is blemed where DSy = 1 VNXt ~ 1 67 xt ~ 1 1 ce x tag ce 1 => The squeesing hime is such that In fact one can analy hidly salve the model to find [Kilogowa Veda MA47 5138 (1993) ; Sucha et al. Front, Phys 7.86 (202) $\frac{N \gg 1}{1} \frac{116}{N^{2}/3} \frac{2}{1} \frac{N \gg 1}{2} \frac{323}{1} \frac{1}{2} \frac{1}{N^{2}/3} \frac{1}$ S& that = 31/6 NA13 (diverges in the TL) 32 30 in the T.L. but this conclusion changes in presence of decoheneuce. , 2. Ique zing limit in presence of de coherence dephosing model $H = \pi \chi \left(S_{2}^{2} + D S_{2} \right)$ 1 402 -> Enoise $\langle D \rangle = 0$

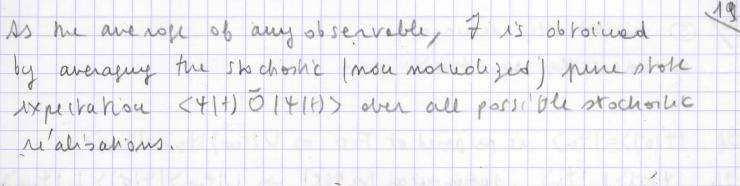


 $\frac{15}{\Delta S_{\perp,min}} = \frac{1}{2} \left[\frac{(S_{b}^{2}) + (S_{t}^{2}) - \sqrt{((S_{b}^{2}) - (S_{t}^{2}))^{2} + (S_{t}^{2})^{2} + (S$ Let $A = \langle S_{3}^{2} \rangle - \langle S_{2}^{2} \rangle$; $B = \langle \langle S_{3}, S_{2}^{3} \rangle$ $\Delta S_{1,min} = \frac{1}{2} \left[A + \frac{N}{2} - \sqrt{A^2 + B^2} \right]$ $\mathcal{J}^{2} = \frac{N \Delta S_{1}}{\left(\frac{N}{2}\right)^{2}} = \frac{4}{N} \left[\frac{\partial S_{1}}{\partial u_{1}} = 1 + 2\left(\frac{A}{N} - \sqrt{\frac{A}{N}}\right)^{2} + \left(\frac{B}{N}\right)^{2} \right]$ A = 1 [W/+ ((Sie ed)2) +2 - W] = < (Sie ed)2) +2 N = N [H/+ ((Sie ed)2) +2 - W] = < (Sie ed)2) +2 N = N [H/+ ((Sie ed)2) +2 - W] = < (Sie ed)2) +2 N.B. Syled is const. of motion and not coulded to Sylo) $\frac{A}{N} = dt^{2} \quad \text{with} \quad d = \left(\frac{2\theta}{2\pi}\right)^{2} \left(1 + \epsilon_{\text{noise}}\right)$ $\frac{B}{N} = \frac{1}{N} \leq \frac{5}{9} S_2(0) + \frac{5}{2} S_1 S_2 > = \frac{1}{N} \leq \frac{5}{9} \frac{1}{5} \frac{1}{2} S_2(0) + \frac{5}{9} \frac{1}{5} \frac{1}{5}$ $=\frac{1}{N}\left(\frac{39}{2q}\right)Nt$ N.B (Sylo) Szlo)>=0 $\frac{B}{N} = BE$ with $B = \left| \frac{Sq}{2K} \right|$ $\frac{3^{2}}{1} = 1 + 2 \left(x + 2 - \sqrt{x^{2} + y^{2}} + y^{2} + y^{2} \right)$ $= 1 + 2 \left[df^2 - df^2 \left(1 + \left[\frac{B}{a} \right] \frac{21}{t^2} \right) \frac{112}{1} \right]$ $= 1 + 2 \left[4f - 4f^{2} \left[7 + \frac{1}{2} \left[\frac{3}{6} \right] \frac{21}{t^{2}} + \frac{1}{5} \left[\frac{1}{5} \right] \right] \right]$









> The only trojectory contributing to 7 is the one with no lones!

1+01ta)>= e= 5 1del ta 1/0=0>

(IBL) Ĥell = - ik X N + ĤNL (Schrödugen pichene)

140(tai)>= e= 20N tan e= & ANL tan 10=0/N / [N, Am]=0

 $= e^{-\frac{1}{2}\delta N t u } | t cat \rangle$

 $Y = Ta \left[\hat{p}(ton) | tor X tor) \right] = e^{-\delta N t u t}$

The polency decoys N nines poster mon me porticle

6. Fideling of the at state demustion at printe temperature

Quariporticles in the gos coustitute a dephasing environce=

ment for the constants are we want NO QP!

Ig=0 TxxTc loual gos BEC in interval state a
It - pulse : ideal gos phone state 10=0>,
adiabatically raine of g (344=866 / 946=0)

endue to the cost shale

(4)

