Class : XYReflexionSymmetricPeriodic3DHamiltonian
XYReflexionSymmetricPeriodic3DHamiltonian :
prototype: XYReflexionSymmetricPeriodic3DHamiltonian (XYReflexionSymmetricPeriodic3DOneParticle* , bool , bool , double , double , double , double , double , double , int , int , int , ThreeDConstantCellPotential* PotentialInput )
description:constructor from data
input parameters:
space = Hilbert space
pairX = whether basis is pair in X direction, if not impair
pairY = whether basis is pair in Y direction, if not impair
xSize = the sample length in X direction
ySize = the sample length in Y direction
zSize = the sample length in Z direction
mux = effective mass in X direction
muy = effective mass in Y direction
muz = effective mass in Z direction
nbrCellX = number of steps in X direction
nbrCellY = number of steps in Y direction
nbrCellZ = number of steps in Z direction
PotentielInput = pointer to a 3D potential with constant value in a cell
XYReflexionSymmetricPeriodic3DHamiltonian :
prototype: XYReflexionSymmetricPeriodic3DHamiltonian (const XYReflexionSymmetricPeriodic3DHamiltonian& hamiltonian )
description:copy constructor (without duplicating datas)
input parameters:
hamiltonian = reference on hamiltonian to copy
~XYReflexionSymmetricPeriodic3DHamiltonian :
prototype: ~XYReflexionSymmetricPeriodic3DHamiltonian ()
description:destructor
XYReflexionSymmetricPeriodic3DHamiltonian::Clone :
prototype: AbstractHamiltonian* XYReflexionSymmetricPeriodic3DHamiltonian::Clone ()
description:clone hamiltonian without duplicating datas
input parameters:
return value: pointer to cloned hamiltonian
SetHilbertSpace :
prototype: void SetHilbertSpace (AbstractHilbertSpace* hilbertSpace )
description:set Hilbert space
input parameters:
hilbertSpace = pointer to Hilbert space to use
GetHilbertSpace :
prototype: AbstractHilbertSpace* GetHilbertSpace ()
description:get Hilbert space on which Hamiltonian acts
input parameters:
return value: pointer to used Hilbert space
GetHilbertSpaceDimension :
prototype: int GetHilbertSpaceDimension ()
description:return dimension of Hilbert space where Hamiltonian acts
input parameters:
return value: corresponding matrix elementdimension
ShiftHamiltonian :
prototype: void ShiftHamiltonian (double shift )
description:shift Hamiltonian from a given energy
input parameters:
shift = shift value
MatrixElement :
prototype: Complex MatrixElement (RealVector& , RealVector& V2 )
description:evaluate matrix element
input parameters:
V1 = vector to left multiply with current matrix
V2 = vector to right multiply with current matrix
return value: corresponding matrix element
MatrixElement :
prototype: Complex MatrixElement (ComplexVector& , ComplexVector& V2 )
description:evaluate matrix element
input parameters:
V1 = vector to left multiply with current matrix
V2 = vector to right multiply with current matrix
return value: corresponding matrix element
LowLevelMultiply :
prototype: ComplexVector& LowLevelMultiply (ComplexVector& , ComplexVector& vDestination )
description:multiply a vector by the current hamiltonian and store result in another vector
low level function (no architecture optimization)
input parameters:
vSource = vector to be multiplied
vDestination = vector where result has to be stored
return value: reference on vectorwhere result has been stored
LowLevelMultiply :
prototype: ComplexVector& LowLevelMultiply (ComplexVector& , ComplexVector& , int , int nbrComponent )
description:multiply a vector by the current hamiltonian for a given range of idinces
and store result in another vector, low level function (no architecture optimization)
input parameters:
vSource = vector to be multiplied
vDestination = vector where result has to be stored
firstComponent = index of the first component to evaluate
nbrComponent = number of components to evaluate
return value: reference on vector where result has been stored
LowLevelAddMultiply :
prototype: ComplexVector& LowLevelAddMultiply (ComplexVector& , ComplexVector& vDestination )
description:multiply a vector by the current hamiltonian for a given range of indices
and add result to another vector, low level function (no architecture optimization)
input parameters:
vSource = vector to be multiplied
vDestination = vector at which result has to be added
return value: reference on vectorwhere result has been stored
LowLevelAddMultiply :
prototype: ComplexVector& LowLevelAddMultiply (ComplexVector& , ComplexVector& , int , int nbrComponent )
description:multiply a vector by the current hamiltonian for a given range of indices
and add result to another vector, low level function (no architecture optimization)
input parameters:
vSource = vector to be multiplied
vDestination = vector at which result has to be added
firstComponent = index of the first component to evaluate
nbrComponent = number of components to evaluate
return value: reference on vector where result has been stored
EvaluateInteractionFactors :
prototype: void EvaluateInteractionFactors (bool , bool pairY )
description:evaluate all interaction factors
input parameters:
pairX = whether basis is pair in X direction, if not impair
pairY = whether basis is pair in Y direction, if not impair
EvaluateSinusWaveFunctionOverlap :
prototype: double*** EvaluateSinusWaveFunctionOverlap (double , int , int nbrState )
description:evaluate sinus wave function overlaps on a cell in a given direction
input parameters:
size = system length in the choosen direction
nbrStep = number of subdivision in the choosen direction
nbrState = number of state in the choosen direction
return value: tridimensionnal array containg all matrix elements for all cells (first two indices using symmetric storage)
EvaluateCosinusWaveFunctionOverlap :
prototype: double*** EvaluateCosinusWaveFunctionOverlap (double , int , int nbrState )
description:evaluate cosinus wave function overlaps on a cell in a given direction
input parameters:
size = system length in the choosen direction
nbrStep = number of subdivision in the choosen direction
nbrState = number of state in the choosen direction
return value: tridimensionnal array containg all matrix elements for all cells (first two indices using symmetric storage)
EvaluatePlaneWaveFunctionOverlap :
prototype: bool EvaluatePlaneWaveFunctionOverlap (int , int , double** , double** &imaginaryArray )
description:evaluate the plane wave function overlap
input parameters:
nbrStep = number of steps in the given direction
nbrState = number of states chosen for this direction
realArray = 2D array containing the real elements of the overlap
imaginaryArray = 2D array containing the imaginary elements of the overlap
Back to index.