Non linear neurons in the low noise limit:
a factorial code maximizes information transfer
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Abstract

We investigate the consequences of maximizing information transfer in a simple
neural network (one input layer, one output layer), focussing on the case of non linear
transfer functions. We assume that both receptive fields (synaptic efficacies) and transfer
functions can be adapted to the environment.

The main result is that, for bounded and invertible transfer functions, in the case
of a vanishing additive output noise, and no input noise, maximization of information
(Linsker’sinfomaz principle) leads to a factorial code - hence to the same solution as
required by the redundancy reduction principle of Barlow.

We show also that this result is valid for linear, more generally unbounded, transfer
functions, provided optimization is performed under an additive constraint, that is which
can be written as a sum of terms, each one being specific to one output neuron.

Finally we study the effect of a non zero input noise. We find that, at first order
in the input noise, assumed to be small as compared to the - small - output noise, the
above results are still valid, provided the output noise is uncorrelated from one neuron
to the other.
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1 Introduction

In the theoretical approaches to the analysis of sensory systems, one would like both to
understand the organization of the architecture and of the receptive fields, and to provide
models of self-organization which could account for the epigenetic developement. It is nat-
ural to consider that the function of the processing in the first stages of sensory processing
(e.g. in the case of the visual system, the retina and the very first layers behind), is to
realize some particular neural representation (or code) of the environment. One possible
approach is then to assume that the observed nervous systems, and the self-organization
process, result from the optimization of some cost function which characterizes the quality
of the code. This defines a whole program: choose a cost function - and possibly a set of
relevant constraints -; derive from it the (set of) optimal network(s) - and self-organization
algorithms in order to reach an optimal solution-; compare with biological data. The first
question is thus to define what could be a relevant (set of) cost function(s).

Already a long time ago[1, 2] it has been suggested that information theory[3, 4] could
provide appropriate tools. In particular the general ideas developped by Barlow have been
at the origin of many theoretical and experimental studies (see e.g. [9, 10]). Barlow[2, 8]
insists on the need of building a neural representation that could be easily used in subsequent
processing. This leads to the idea of factorial code: each output unit should be statistically
independent from each other unit. Hence the network decorrelates independent features that
are mixed in the input signal. This means that one should minimize the redundancy in the
neural code, a fact that can be quantified in terms of an information theoretic criterion. For
modeling the first layers of the visual system, this redundancy reduction principle has been
first studied by Barlow in the case of discrete and noiseless coding, and then by Atick et
al[11, 12] for continuous and noisy neural states. This approach has then been systematically
developped in order to account for color, scale invariant and stereo perception [13, 14, 15].

A less demanding requirement is that the system should simply maximize the amount
of information that the output conveys about the input signal. This suggests in particular
a way for modelling how the transfer function of a given sensory neuron is adapted to the
particular environment in which the animal lives. Some remarkable experimental tests have
been performed, in particular by Laughlin[5] and van Hateren[6], indicating the validity
of such hypothesis. The appropriate cost function is taken as the mutual information[4]
between the output and the input of the network. This idea of ”information preservation”
has been also developped by Linsker[7] under the name of ”infomax principle” in a model
of the first layers of the visual system. In Atick et al, Linsker and van Hateren studies, a
network of linear neurons is studied, and the maximization of the chosen cost function is
performed over the synaptic efficacies (receptive fields); the study is done with a Gaussian
input distribution, so that analytical results can be obtained. As it has been pointed out,
in particular in [20], the prediction of these two criteria can be very similar especially for
large signal to noise ratios (depending on the particular constraint which is chosen), and
can differ for large noise.

One should note that there are alternative approaches, not necessarily based on infor-
mation theoretic criteria. In particular, one may ask for the possibility of reconstructing the
signal from the neural representation. It has been experimentally shown that the detailed
statistics of observed spikes can indeed be used to reconstruct with little error the input
signal[16]. We note that reconstruction, which is a decoding task, can be viewed as a super-
vised learning task, dual of the coding task[19]. One may ask what would be the optimal
network if the criterion is to minimize a quadratic error between the reconstructed signal



and the true signal. It has been shown [17, 18] that optimization leads to different predic-
tions than those derived from the information theoretic criteria of Linsker and Barlow, in
particular for small signal to noise ratios[18].

In the present paper, we will only consider the maximization of information transfer (the
infomaz principle of Linsker), and its relationship with the redundancy reduction of Barlow.
Our main concern will be the study of a network with non linear transfer functions. Indeed,
most of the papers that we have quoted dealt with linear neurons. May be fewer, or at least
less systematic, studies have been devoted to non linear processing. Still, there are works
on the optimization of the transfer function[5], on the study of input distributions to which
a given transfer function is optimally adapted[21]; on the use of redundancy reduction for
binary, more generally discrete, coding[22, 23]; on networks of binary neurons studied with
the tools of statistical mechanics[24, 25]; on the effect of a weak non linearity[20], and on
neurons with non linear transfer functions in the limit of large output noise[26]. Although
this is not said in [26], it is easy to see that in this large noise limit the optimal transfer
function is the step function (so that the neuron is a McCulloch and Pitts neuron), with
a threshold chosen in such a way that statistically the neuron is equally often ”ON” and
"OFF”.

In the following we will consider the opposite limit, that of a small output noise. Al-
though we will not discuss a specific realistic case, we note that this small noise situation
has been considered in theoretical studies applied to the modelling of the first layers of the
visual pathway [11]. In a previous work[25], we studied the case of a noiseless perceptron
with binary (McCulloch and Pitts) neurons. We showed in particular that for such a net-
work the infomaz and redundancy reduction principles are equivalent. In the present paper
we consider the case of neurons with arbitrary invertible transfer functions, in the presence
of a small output noise. We will ask what is the consequence of maximizing information
transfer, the optimization being both over the synaptic efficacies and over the transfer func-
tions. One outcome of our work is precisely to partly elucidate the origin of the similarity
of results obtained with the infomax and the redundancy reduction principles.

The paper is organized as follows. In the following section 2 we formalize the information
processing problem in the case of a single neuron with a non linear, bounded, transfer
function. We rederive a standard result giving, in the low noise limit, the optimal transfer
function for a given signal distribution. Then in section 3 we generalize the derivation to
the case of a network with several outputs, each neuron having its own non linear bounded
transfer function. We obtain the main result of this paper, showing that, in the limit of a
vanishing additive output noise, optimal information transfer is obtained with a factorial
code. In the next section, 4, we extend the approach to unbounded (in particular linear)
transfer functions, showing that the result for bounded transfer functions remains only
under certain conditions. Finally, we show in section 5 how these results subsist in the
presence of a small input noise. We discuss the results on the particular case of Gaussian
signal distributions, and we also compute the information capacity of the network in this
particular small noise limit. Perspectives are given in the last section, 6.

2 Transfer of information by a single neuron

In this section we review basic properties of the information transfer by a single neuron with
a non linear, e.g. sigmoidal, transfer function f. At each instant of time some signal activates
the sensory units, leading to a total postsynaptic potential A at the neuron connected to



these input units. The output V of the neuron is given by
V=Ff(h)+= (1)

Here f is any nonlinear transfer function which, for simplicity, we will assume to be bounded
between 0 and 1, and invertible, as on figure la (we will comment shortly later on non
invertible cases). We have assumed no input noise, but the presence of some additive output
noise z, with a (not necessarily Gaussian) probability distribution v. The noise strength is
measured by, say, the noise variance 1"

<ZZ>—<z>*=T (2)

where the brackets means averaging with the v distribution.

Of interest here is the amount of information conveyed by V about the signal, and we
would like to choose the transfer function f in order to maximize information transfer. A
basic result is that the information transfer will be maximum, in the vanishing noise limit,
if the output distribution is uniform (maximum entropy distribution). This is achieved if
what is known in image processing as sampling (or histogram) equalization[27] is performed,
that is if (fig. 1):

d
!
where W(h) is the probability distribution of A induced by the input distribution.

h) = U(h) (3)
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Figure 1: Optimal transfer function f(h) (1la) adapted to the particular input probability
distribution shown on 1b, ¥ = .58/ cosh?(3h), with 1/8 = .3.

An elegant derivation of what we have just said is given in [5] (see also [11]). The
physical meaning is easily understood: a large amount of information is obtained if one can
discriminate finely the input signal. If the potential distribution is known through a sample



of p values h',h?,...,hP, more values are observed nearby the h values for which W(h) is
large; to discriminate between these, the slope of the transfer function has to be large, in
such a way that the outputs are as far apart as possible. This argument is correct because
the noise, infinitely small but non zero, provides a resolution scale on the output. There are
experimental evidence for adaptations of sensory systems leading to (3) [5].

In order to deal in the next section with several output neurons - and also because
this is instructive -, we now formalize a little more this information transfer problem. We
thus consider a neuron of output activity V' = f(h). In the absence of input noise, the
postsynaptic potential h is assumed to be a deterministic function of the input signal (figure
2a), which, for illustrative purpose, one can think of being of the type shown on figure 2b:
the neuron is receiving N inputs and, ¢; denoting the activation of the jth input unit and

i].ﬂpm 4>‘ postsynaptic potential h|— V = f(h) (a)
signal
J=1 ;
1
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3

Figure 2: (a) Generic model: the output activity is obtained by applying a non linear transfer
function f on the postsynaptic potential h. (b) The simplest neuron model: the potential h
is a linear combination of the input components.

J; the associated synaptic efficacy, the total postsynaptic potential 4 is
N —_
h=> Jitj=J¢ (4)
=1

However, we emphazise that what follows (as well as in all this paper except partly in section
5), is independent of the particular model considered: the transformation from signal to
potential could include non linearities, delays in synaptic transmission, and so on.

The general goal is to choose the synaptic efficacies J (and/or any other parameters on
which the potantial h depend), and the transfer function f in order to maximize information
transfer. In this section we only consider the optimization of the transfer function. Given a
set of couplings, the input (signal) distribution induces a probability distribution ¥(h) for
the postsynaptic potential h. The quantity of interest is the mutual information between
the random variables V' and E In the absence of input noise, this is equal to the mutual
information I(V, h) between V and h:

vV 1h)

I(V,h) = / dhdV U(h) Q(V | h)In & o 5)



where Q(V | h) is the conditional probability of observing V' knowing the input h, and g(V)
the resulting output distribution:

(V\h =v(V — f(h))
/dh\lf Qv | ) (6)

Because the noise is additive, the mutual information I can be rewritten as
I'=H(q)—H(v) (7)

The first term in (7) is the differential entropy of the probability distribution g:

H(g) =~ [ aVq(V)Ing(V) ®

The second term depends only on the noise distribution:

—_ / dov(2) In(v(2)) 9)

At this point, one should notice that, whatever the additive noise level (and in the absence of
input noise), the maximization of the mutual information is equivalent to the maximization
of the entropy of the output distribution. In the case of a Gaussian noise, H(v) is equal to
%ln(27reT ); since the Gaussian distribution has the largest entropy among all distributions
of a given variance,

H(v) < - In(27eT) (10)

[\le—\

Hence, as T goes to zero, the second term in (7) goes to infinity. What matters is the
correction to this infinite constant, that is H(g) which has a finite limit in the zero noise
limit, obtained by taking q as

/dh\Il 5V — f(R) (11)

In H(q) one can make the change of variable V' — h, using:

dVq(V) = dh¥(h) (12)
together with
dv = f'(h)dh (13)
The result can be written as
H(q)=—-D(¥ | f) (14)
where
D | ) / A (h ; (15)

Since we have 0 < f < 1, one can consider the derivative of f, f’, as a probability distribu-
tion. Then one recognizes D(¥ | f') as the Kullback distance [4] (or relative entropy) of the
probability distribution ¥(h) to the probability distribution f’. This quantity is positive
or null, and is zero if and only if the two probability distributions are identical (except
possibly on a zero measure set). Hence, mazimizing the mutual information is equivalent,



in this low noise limit, to minimizing the Kullback distance between the input distribution
and the one defined from the derivative of the transfer function - in particular one gets the
result announced in (3).

One remark: if we had not chosen f to be with a positive derivative, one would have to
replace f by its absolute value in (14), and the result (3) would read

2 f(ny 1= w(n) (16)

As an alternative solution to (3), one has then the possibility to chose f' = —W. For a signal
distribution with a single bump (as it is the case for a Gaussian), one obtains an ”OFF”
cell: its activity is shut down for large inputs.

3 Several output neurons

Now we consider the generalization of the above result, (14), to a network with a number p of
outputs. The ith output neuron has the postsynaptic potential h;, on which acts a transfer
function f; (possibly different from the others). As noted by Atick [11], if one realizes a
factorial code, that is if it is possible to find couplings such that

)4

U(h) = [ i(ha), (17)

=1

then one can apply the preceeding reasoning to each output neuron. As a result, the optimal
set of transfer functions is given simply by

What we show now is that, with the same conditions as above (no input noise and small
additive output noise), a factorial code (17) together with the individual adaptations (18),
gives precisely the maximum information transfer.

Our working hypothesis is thus that the output activities are given by

V= fz(hz) +2z, 1=1,...,p (19)

with an arbitrary noise distribution v(2) (the z;’s need not to be independent random
variables). We we will define the noise strength from the total variance:

Z(< 22> — <2z >%) =pT (20)

2

Again because the noise is additive, the mutual information can be written as
I=H(q) - H(v) (21)

where now ¢ = ¢(V) and v = v(Z). In the limit 7' — 0, one can make the change of variable
V — h, with

[T via(?) = [T anv (i (22)

and



This gives

p
H(q)=-D(¥ | [] ) (24)
=1
with » (_.)
N— [ T U(h
D(¥ | z':l_Ilfi) _/dh\I/(h)l . 770 (25)

Hence, one finds the direct generalization of (15), giving that the mutual information is,
up to a constant, equal to minus the Kullback distance of the potential distribution to the
probability defined by the product of the f;.

This fact has several important consequences. The main consequence, as announced
above, is that the mutual information will be maximized with synaptic efficacies realizing
a factorial code (17), together with the individual adaptations of the transfer functions
according to (18). Hence, we obtain in particular the remarkable fact that the infomaz
principle of Linsker [7] and the redundancy reduction principle of Barlow [28, 11], which
precisely requires to build a factorial code, lead to identical predictions for the receptive fields
(within our working hypotheses of zero input noise and low output noise). Note however
that it is only the maximization of mutual information which predicts both the receptive
fields and the transfer functions.

One should notice that any factorial code will optimize the information transfer. For
example, if one has a Gaussian input distribution and a given number of p < N output
units, any choice of p different principal components will give the same optimal information
transfer. This degeneracy comes from the absence of input noise: there is no scale with
which to compare the different directions. We thus expect that, when taking into account a
small amount of input noise, only the p largest principal components will be selected. What
is less obvious is whether the factorial code will remain the optimal choice. We have thus
considered the effect of a small input noise, and we present our analysis in section 5.

Another consequence, from the algorithmic point of view, is that the optimization with
respect to the couplings, and the adaptation of the transfer functions, may be considered
separately: one can first deal with the linear part of the processing (that is the transforma-
tion input — l_i, asking for a factorial code for the potential distribution), and then compute
the transfer functions from (18). It is remarkable that receptive fields can be predicted
from the analysis of a purely linear system, even when non linear processing is taken into
account. The application to linear processing of the principle of redundancy reduction d la
Barlow, as done by Atick et al [12, 11], precisely in the low noise limit, can be understood
as just a practical way of finding a code which will maximize information transfer. One
should point out, however, that dealing separately with the linear and the non linear parts
of the processing leads to the optimal solution only if it is indeed possible to find a factorial
code for the potential distribution. If this is not the case, it is not obvious whether such
strategy will be the most efficient. It would thus be very interesting to study non Gaussian
distributions.

The main result of the present section seems to be specific to the case of non linear,
bounded, transfer functions. Hence we would like to know what happens for purely linear,
and more generally unbounded, transfer functions. This is what we consider in the next
section.



4 Unbounded transfer functions

We now assume that the transfer functions are restricted to a class of unbounded functions.
Then the optimization of the mutual information I given by (24) has no solution: one must
introduce some constraint in order to have a well defined problem. This is well known for
linear processing: in such case, the mutual information is equal to the logarithm of the
signal to noise ratio, and no upper bound exists unless one restrict the optimization to, say,
a given value of the signal variance. In our case, the constraint can be on the couplings,
on the potentials distribution, or on the outputs distribution. As one would expect, the
optimum will strongly depend on the choice of the constraint. We will study below the
effect of different kind of constraints.

For simplicity we first consider a unique output neuron, and we define a cost function
by adding to the Kullback distance in (14) a term which enforces a constraint:

D,=D(|f)~pT (26)
The constraint may be on the potential, with for example

I —T(T) = / AU (h)G(h) 27)

for some given function G (e.g. G(h) = h?), or on the output,

P=T(,f) = [Ve(V)GV) = [ dboH)G(f (1) (28)
For such constraints, one can rewrite the cost function (26) as
_ V(h)
D, = / AR () 55— In 7 (29)
with the distribution ® defined by
®(h) = f'(h)e /7, (30)

Z being the normalization factor which ensures that

/ dhd(h) = 1. (31)

In the particular case of a constraint on the output distribution as (28), Z does not depend
on f:

Z= / dve PEV) (32)
In any case, one sees that the optimization task is equivalent to the one with an effective
bounded transfer function whose derivative is ®. One can easily check that, for G = h? and

f(h) = h, one recovers the standard formula for the mutual information of a linear channel.
The generalization to several outputs is straightforward. For constraints such as

P(T) = / dRU(R)G(R) or: T(U, f) = / AV q(V)G(V), (33)



one gets an expression analogous to (29) with now

®(h) = [] fithi)e /2 (34)
=1

This shows that, in the general case, ® is not a factorial distribution, hence the optimal code
is not factorial. However, if the constraint can be written as a sum of individual constraints,
e.g. with

G=> Gi(hi) or: G=>_ Gi(V;) (35)

then
p

®(h) = [ @i(h) (36)
i=1

(with ®;(h;) = f!(hi)e ?Y /Z;), and the optimal solution is a factorial code. This result al-
lows to understand the similarities and differences between several works based on different
criteria. In a forthcoming paper[29], we will compare the model discussed by van Hateren [6]
using an information maximization criterion, with the one proposed by Atick et al [12, 11]
with an approach based on the reduction of redundancy. To conclude this section, maxi-
mizing mutual information with linear, and more generally unbounded transfer functions,
leads to a factorial code only if the constraint is additive. We note, however, that additive
constraints are what is usually considered.

5 Taking into account input noise

5.1 First order correction

We want to see the effect of a non zero input noise of strength A. To do so, one has to pay
attention to the fact that the limits 7" — 0 and A — 0 do not commute. Indeed, I is finite
whenever any noise is present, whether it is on the inputs or on the outputs. Consider the
case of zero output noise and finite input noise: then going from the (noisy) postsynaptic
potential to the output is nothing but a (reversible) change of variable, so that the mutual
information is equal to the one given by the linear system 54— noise — h. In that case,
considerations of the preceeding section apply. In the present section we are interested in
the opposite limit: what we want is the perturbation of the calculation of section 3 at first
order in A - and we should still have that I goes to infinity as 7' — 0. This is obtained by
computing first the A expansion at a finite value of T', and then taking the limit 7" — 0.
We will see that the relevant small parameter is in fact %.

5.1.1 One output

Let us first consider the case of one output neuron:
V=Ffh+y) +z (37)
where z is the output noise as before, and y the input noise of variance A:

<> -—<y>?=A (38)
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We assume Gaussian input and output noise. Using the small A expansion of the Gaussian:

—h2/2A A
‘ = 6(h) + 567 (h) + O(A?) (39)
V21 A 2
one can write the conditional probability (6) as
A 62
Q(VIh) = Qu(VIh) + - o5 Qo(VIR) (40)
2 Oh
" v - fp2
1 V—f(h
_ _ 41
Then one gets, after some algebra, that the mutual information / can be written as
I=1[T]+A L[T] (42)

where Iy[T] is the mutual information in the absence of input noise, at a finite value of T,
and the correction I; is given by

12
Il[T]:—%/dVlnq /dh — ") 0o (VIR /dh\IJ fT(h), (43)

qo being the output distribution in the absence of input noise as given in (6). When T goes
to zero, the first term I takes its asymptotic expression obtained in section 2:

I = —% In(2reT) — D(T | f). (44)

In I, the first term in (43) has a finite limit, so that, for A << T << 1, the only relevant
term is the second one in (43). Hence, one can write, at first order in A/T"

I=1,— —/dh\If (45)
Optimization with respect fo the transfer function f gives
£/(h) = (k) + 2 [0 (H) — (b)) (46)
where
T = / Al (h)>. (47)

For this optimal transfer function, one has
1 A —
I=——In(2neT) — =03 4
3 n(2meT) — o (18)

Hence, as expected, not all ¥ distributions are equivalent. In the particular case of a Gaus-
sian input,

e—h2/2w
U(h) = —F—— 49
W= )
one gets
— 1
U3 = 50
2\/§7rw ( )

Hence, the optimal solution is the one which maximizes the potential variance, a result
identical to what would be obtained from the optimization of a linear neuron in the limit
of small noise.

11
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Figure 3: For a small input noise, the optimal transfer function is f(h) = ¥(h)+ % fi1(h) (see
text). a) fi for the input distribution ¥(h) shown on figure 1b. b) Full line: the resulting
transfer function f; because fi is very small, the correction has been artificially enhanced
by taking % = 50. The dashed line is the optimal transfer function in the absence of noise.

5.1.2 Several outputs

Let us consider now the case of several output neurons. Again we will assume Gaussian
input and output noise: the output of the ith neuron is given by

Vi=f(hi+tyi) +z (51)
where z; is the output noise as before, and y; the input noise of correlation matrix A C":
<yiyy > — <yi ><yy >= A Cyy, (52)
C being O(A®). We assume uncorrelated output noise:
< zizp > — < 2 >< zyp >=T 0; 4. (53)

The conditional probability, at any given value of 7', is now given by

8 8 -
One gets the expression for I;[T]:
__L1r = o 0 o1 i
I = —E/dVlnqo /dh\If Cit g g Qo7 IB) - i;CZZ/dh,\PZ(hz)?
(55)

12



Taking the limit 7" — 0, one gets the generalization of (45):
AL 9
g A C,Z/dh\I/ D2+ o) (56)
2T 4 =

where I is the value at A = 0. One sees that non diagonal terms, introducing correlations
between the 7’s, appear only at order A. Hence, at leading order in A /T, the optimal solution
is still a factorial code. For a given choice of input distribution \Il(i_i), for each output neuron
i the optimal transfer function is given by equation (46) replacing ¥(h) by the marginal
distribution ¥;(h;), and % by CZ-Z-%. For this set of optimal transfer functions, the mutual
information is then

I=1I)— — Z Cii[ Wi (57)

with
TP = [ dniwih)P (58)
The consequence of this expression (57) is that, in order to maximize the mutual information,
one has to find couplings realizing a factorial code such that the [¥;]3 are minimized.
One should note, however, that the above result is valid only for uncorrelated output
noise: generalization of the calculation to correlated noise is straightforward, and one finds
that the term of order % introduces correlations between output units. This is to contrast

with the zero input noise case, for which the correlations in the output noise does not
matter.

5.2 Discussion and comparison with the linear case

5.2.1 Gaussian input distribution

To illustrate the result (56), we consider the particular case of neurons of the type shown on
figure 2b, with synaptic efficacies {j;,z =1,...,p}. We assume a Gaussian input distribution
with correlation matrix R:

< &k >c= Ry (59)

with a Gaussian noise ¢ on the inputs, so that:
N
vi = Jijvj
j=1
< VjVg >c= A 5]"}9 (60)

Then the correlation matrix C is given by

Civr = 61 Y Jiy = 8t [T Nias (61)
J
and one gets after optimization over the transfer functions (equ. (57)):
1 T A
I= 1n(27reT) + In detJ 1] Z 77 )i (62)

IL [JRJT)y 2T 27r\/_ [JRJT;;

For p < N, maximization of I over the couplings J leads to taking, for the directions of the
p vectors J;, the p largest eigenvectors of the correlation matrix R. Note that the solution

13



is independent of the scale [JJT]; of the couplings: this is because for any given scale there
exists an adaptated transfer function. Fixing the norm of the couplings is here equivalent
to fixing the range of the potentials on which the transfer function goes from 0 to 1.

This expression (62) of the mutual information (obtained after optimizing the transfer
function) should be compared with the redundancy reduction cost function for a set of
linear neurons, under the same condltlons of weak noise. More precisely, consider the linear
network f + noise = output = h+ output noise. The particular limit we have considered
corresponds to taking a large output noise as compared to the coupling strength. If we set
to J the global scale of the couplings:

Ji = Ju; (63)

where 4; has a norm of order 1 (one may choose, e.g., either 72 =1or > a2 = p), then
T should be defined as
= [output noise variance]/J>. (64)

The cost function defined in [11] as a measure of redundancy is

P

R=>"1—1 (65)
=1

where I; is the amount of information conveyed by the ith ouptut neuron alone. The re-
dundancy R, which is zero only if one has a factorial code, has to be minimized[11] under
some appropriate constraint'. With the above notations,  can be written as

det[1 + LuRuT + 2uuT
L L - +§UUT] (66)
2 [LI+ pluRuly; + Fluu®]i)

At first order in A/T, and in the limit of small output noise, one finds that the term of
order A/T disappears, being equal to

{TT uu” Z[uu it =0. (67)

Hence, one has simply, at this order:

T
2 — 1 I detuRu (68)
2 HZ[URUT]”
which is minus the second term in (62). However, one has to take into account some con-
straint. The one which will leads to an expression closely related to the one of (62) is the
choice of a constraint on the output variances. Defining p as the Lagrange multiplyer needed
to enforce a global constraint, one has then to maximize

1 detuRu”

1 . [uRuT pZ[uRu (69)

!We note that this criterion should be used with care, since it is not always true that R is positive. To give
a simple example, consider an input signal which can be in two states, A and B. This signal is redundantly
encoded with two binary units, (V1,V2), in a ?XOR” representation: A is coded with equal probability as
(0,1) or (1,0), and B with equal probabilities as (0,0) or (1,1). Then no information is obtained by looking
at a single unit, so that I; = I> = 0, whereas there is no loss of information at all, I = 1 bit.
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Comparing this expression with (62), one sees that p plays a role similar to the one of the
parameter A/T'. Hence, it appears that, in this low noise limit, maximization of the mutual
information, in a network with non linear transfer functions, leads to essentially the same
predictions for the receptive fields as the redundancy reduction criterion of Barlow-Atick
applied to a network of linear neurons under some constraint on the output variances.

5.2.2 Information capacity

Finally we address the question of the information capacity of the network. We have dis-
cussed the adaptation of the network to a given environment, that is a given input distribu-
tion. The problem of the information capacity[25] is then to determine the environment for
which the network will be the most efficient - the most able to extract information from the
signal after optimization of the parameters (synaptic efficacies and transfer functions). This
problem is analogous to the one of the channel capacity in information theory[4], except
that here we consider a family of channels: because the system we consider is allowed to
adapt to the environment, the relevant information capacity is the largest channel capacity
within the accessible family of networks, each one being characterized by a choice of synaptic
efficacies and transfer functions. Knowing the information capacity C, we will know that,
whatever the environment, a network even after optimization will not be able to extract
more information than C.

We consider the family of networks having p output neurons, with bounded, invertible,
transfer functions, as in section 3. Because the optimization requires a factorial code, the
information capacity C, will be equal to p times the capacity C; of a single neuron. We
can then consider the case of a single output neuron. If the transfer function was fixed,
then in the vanishing noise limit the information capacity C; would be equal to the mutual
information obtained when the relation (3) is fulfilled: the optimal input distribution equals
the derivative of the transfer function, and C; = —1 In(27eT). A discussion of this relation
(3) for some standard transfer functions is given in [21]. Now we allow for the optimization
over the tranfer function as well, and we take into account the input noise. Then, according
to (48), the optimal environment is the one for which ¥3 is minimal. This optimization
problem is ill defined without adding a constraint on the input distribution. We will search
the optimal input distribution among those with a given differential entropy:

S—— / AU (h) In U(h) (70)

Minimization of ¥3 imposes a flat distribution, hence the optimum is ¥ = 1 /2a on the
interval [—a, a], where a is obtained from (70):

2a = €°. (71)

Then one has the capacity

Ci = 5 In(27eT’) 57 € - (72)

For this particular input distribution, the term of order %, in the equation (46) for the

transfer function, is zero. The associated optimal transfer function is then a ramp (that is
f goes linearly from 0 to 1 on the interval [—a, a]). It is interesting to compare C; with the
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mutual information for the Gaussian input distribution (49) with a variance w giving the
same entropy S:

S = % In(2mew) (73)

We have seen that ¥3 = 1 /27r\/§w, so that we can write the mutual information Iggqyss
after optimization of the network as:

A e s
2T 3¢
The dependence of C; and Igeyss on S is the same, with a prefactor larger in Iggyss
(% ~ 1.57).

Remark: if we had chosen the optimal distribution among those having a given variance
w, we would have the same solution, except that in this case a would be given by

1
Igauss = ~3 In(27eT) — (74)

—“3 =w, (75)
leading to
1 A1
— —~In(2reT) — =~ —
Cr = =3 (2rel) = o7 o0 (76)

to be compared with the mutal information for the Gaussian distribution with the same

variance:
A 1

2T 2\/§7rw'
12

In that case the relative prefactor of 1/w is svar ~ 1L

1
TGauss = —3 In(27eT) (77)

It is not surprising to find a flat distribution as the optimal one: in the vanishing noise
limit, the optimal output distribution is flat on the interval [0, 1]; hence the optimal input
distribution is nothing but a rescaled version of that distribution. Still, this is to con-
trast with the case of a linear channel, in which case the optimal input is the Gaussian
distribution[4].

6 Conclusion

In this paper we considered the problem of maximizing information transfer with a network
of neurons made of N inputs and p outputs, focussing on the case of non linear transfer
functions. We assumed that both the transfer functions and the synaptic efficacies could be
adapted to the environment.

The main consequence of our analysis is that, in the limit of small additive output noise
(and an even smaller input noise), the infomaz principle of Linsker, and the redundancy re-
duction criterion of Barlow, are equivalent when non linear processing is taken into account.
Moreover, this result subsists for linear processing whenever optimization is performed un-
der some constraint which can be written as a sum of terms, each one depending on one
output unit only. This explains why the results obtained by Atick et al[30] and by Linsker[20]
are so similar. We will detail this comparison also for finite noise in a forthcoming paper
[29].

A practical consequence is that optimization of receptive fields, that is of the synaptic
efficacies, and of transfer functions can be done separately: one may first look for a linear
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transformation which realizes a factorial code, and then adapt the transfer functions inde-
pendently for each output neuron. Of course, this is true only if a factorial code does exists.
However, this two step strategy is still valid if one considers that it is sufficient to act as if
the input distribution was a Gaussian, paying attention only to the mean and covariance of
the input distribution (see also [20, 11] for more detailed discussions on the motivation for
such an approximation).

In the absence of input noise, any factorial code will maximize information transfer.
Provided such codes exist (and then, if the number of output units is smaller than the
number of inputs, many such codes will exist), one may say that an optimized network is
extracting qualitative information, looking at statistically independent features. It is only
in the presence of a small input noise, which provide a scale for measuring the input signal,
that the network can extract quantitative information, looking at the most relevant features
only.

Although our main results are valid for any input distribution, we mainly discussed
their consequences assuming that a factorial code could be found, and in particular we
have considered the case of a Gaussian distribution. Clearly, it would be very interesting
to study the case of non Gaussian distributions - in particular the empirical distributions
derived from the analysis of natural scenes [31, 32].

Finally, we note that the same analysis can be done in the time domain. In such case,
maximizing information will lead to, again, decorrelation, which in this case has the meaning
of source separation [33, 34]. Recently an algorithm has been proposed for source separation,
based on an ad hoc cost function related to the statistical correlations of a set of neuron
like units[35]. It would be interesting to see whether similar algorithms could be defined
from gradient descent on an information theoretic criterion (mutual information with non
linear output units and/or redundancy reduction cost function as in [11] with linear units).
Conversely, it would be interesting to see whether the efficient empirical algorithms devel-
opped for source separation[33, 35] could be adapted to decorrelation in the spatial domain
(known algorithms for spatial inputs assume a Gaussian distribution[36, 37]). Source sepa-
ration algorithms have also been proposed as odor coding algorithms in the olfactory system
of insects [38], hence an approach very similar to the one of Barlow and Atick et al for the
visual system. It seems thus quite plausible that a unique framework - say, maximization of
mutual information - could be used to study encoding of spatio-temporal signals, leading
to a joined decorrelation in space and time.
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