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1. Optimization of the decoding layer: supervised learning scheme

For the numerical simulations, we made used of a supervised learning scheme

which we present here, proving that, in the asymptotic limit of a very large train-

ing set, the chosen cost function gives the cost C considered in the theoretical

analysis.

During learning, stimuli are presented sequentially, along with their category

label. For a given stimulus x, the output g(µ|r,w) is compared with the desired

binary output given by indicator function tµ(x) (for teacher), defined as follows:

tµ(x) =

 1 if x ∈ µ

0 otherwise
(S.1)

where x ∈ µ means that stimulus x belongs to the category labeled µ. The

distance between the output g(µ|r,w) and the teacher value tµ(x), is measured

by the following training cost function:

Ct(x, r) ≡
M∑
µ=1

tµ(x) ln
tµ(x)

g(µ|r,w)
(S.2)
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Its average over all the realizations of the neural activity r is given by:

Ct(x) =

∫
dNrP (r|x)

M∑
µ=1

tµ(x) ln
tµ(x)

g(µ|r,w)
(S.3)

Let us now show that a large number of stimulus presentations during the

learning phase leads to estimate posterior probabilities (in a way similar to the

one presented in Duda et al., 2001).

After n stimulus presentations, the mean cost function becomes:

1

n

∑
x

Ct(x) =
1

n

∫
dNr

∑
x

P (r|x)
∑
µ

tµ(x) ln
tµ(x)

g(µ|r,w)
(S.4)

= − 1

n

∫
dNr

∑
µ

∑
x∈µ

P (r|x) ln g(µ|r,w) (S.5)

= −
∑
µ

∫
dNr

nµ
n

1

nµ

∑
x∈µ

P (r|x) ln g(µ|r,w) (S.6)

where nµ is the number of stimuli labeled µ among the n stimuli that were

presented to the network.

For a very large number of stimuli, the mean cost Ct then writes:

Ct ≡ lim
n→∞

1

n

∑
x

Ct(x) = −
∑
µ

∫
dNr qµ

∫
dxP (x|µ)P (r|x) ln g(µ|r,w) (S.7)

hence, given that
∫
dxP (x|µ)P (r|x) = P (r|µ), and that, according to Bayes

rules qµP (r|µ) = P (r)P (µ|r), we get

Ct = −
∫
dNrP (r)

∑
µ

P (µ|r) ln g(µ|r,w) (S.8)

This is the same as C except for a constant additive term (the entropy H(µ|x)),

implying that minimization of the cost leads to estimate the posterior probabil-

ities, as desired.

In the numerical illustrations, learning is done through a gradient descent

algorithm (Rumelhart et al., 1986) aiming at minimizing the cost function (S.2),

with the presentation to the network of 30000 stimuli along with their category

label.
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2. Test on two categories: numerical details

In the numerical test of the ability of the decoding layer to achieve efficient

decoding, Section 3.1.2, we assume the two categories to be equiprobable, and

each one characterized by a Gaussian distribution, centered at xµ1 = −2 and

xµ2 = 2, with a width aµ1 = aµ2 = 1.5 . These numbers are arbitrary and chosen

for illustrative purpose only. We consider a neuronal population with N = 14

coding cells. The activity ri of each neuron is given by a Poisson statistics with

mean firing rate fi(x), corresponding to a bell-shaped tuning curve:

fi(x) = fmin + (fmax − fmin) exp

(
− (x− xi)2

2a2i

)
(S.9)

The preferred stimuli of the cells are equidistributed over the domain [−6, 6].

The width and the minimal and maximal values of the tuning curves are the

same for all the neurons ai = 1.38, fmin = 0.001 and fmax = 5).

3. Temporal evolution of the output of the network

This section presents a qualitative comparison of the temporal evolution of

the decision in our model and as found in the experimental data of McMurray

and Spivey (2000). In this experiment, subjects are presented with a continuum

of 9 stimuli, ranging from category /ba/ to category /pa/, and whose voice

onset time (VOT) values vary from x1 = −50 ms to x9 = 60 ms. The task is to

identify the category by clicking the corresponding button on a screen. Using an

eye-tracking method, this behavioral study measures the time spent by subjects

looking at the two buttons after hearing a given stimulus. Here we can consider

the VOT as the relevant x-space.

This simulation makes use of the two category model of the previous sec-

tion, with a rescaling of the parameters chosen to corresponds to this specific

experiment. Here one unit of the x space in the simulation corresponds to a

difference in VOT of 13.75ms (the spacing between two consecutive stimuli),

with the categories centered at xµ1 = −22.5ms and xµ2 = 32.5ms, and a width

aµ1 = aµ2 ∼ 20.6ms. The stimulus domain corresponds to VOTs in the range
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[−77.5ms, 87.5ms].

The temporal evolution of the output of the network reflects the accumula-

tion of the categorical information extracted from the neuronal activity. The

learning phase was performed on a time window [0, τa] so that τafmax represents

the mean number of spikes emitted by cell i during this time interval when the

stimulus corresponds to its preferred stimulus. One can then look at the output

g(µ|r,w) for different values of τ ∈ [0, τa]. Averaging over different realizations

of this activity (1000 realizations in this numerical example), we finally get an es-

timate of the average value taken by the output g(µ|r,w) for each interval [0, τ ].

Figure 1 (Left) shows the temporal evolution of the mean values of the output

g(µ|r,w) for different stimuli along the continuum x1 = −50ms, . . . , x9 = 60ms

(the curves getting redder and darker as τ increases). For comparison, Fig-

ure 1 (Right) shows the results from the above-mentioned experimental study

of McMurray and Spivey (2000): one sees a gradual increase of categorical in-

formation, characterized by a sigmoid that expands over time, in qualitative

compliance with our model.

4. Reaction times: numerical illustration

This numerical example involves two equiprobable Gaussian categories, cen-

tered in xµ1 = −3 and xµ1 = 3, with standard deviation aµ1 = aµ2 = 1.5. The

neuronal population (coding layer) is made of N = 10 cells, with bell-shaped

tuning curves (Eq. (S.9)). The preferred stimuli xi of the neurons are initially

equidistributed along the domain [−6, 6]. Before learning, each tuning curve

has the same width (ai = 2). Minimal and maximal values of the firing rates

are respectively set to fmin = 0.001 and fmax = 5.

During the learning phase, 100000 stimuli are presented to the network, and

both the weights w and the parameters of tuning curves (width and location)

are optimized. The time window τa used during learning is equal to 1.

After learning, we look at the response of the network following the presenta-
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Figure 1: Qualitative comparison of the temporal evolution of the decision between

the model and as found in experimental data. (Left) Averaged temporal evolution of

g(µ = 2|r,w) along the continuum x1, . . . , x9. The increase in the length of the time

window [0, τ ] is indicated by a color gradient ranging from orange to dark red. (Right)

Evolution of the proportion of looking time to the category /pa/ vs the category /ba/

for different stimuli whose voice onset time (VOT) values vary from x1 = −50 ms to

x9 = 60 ms (data extracted from McMurray and Spivey, 2000)

tion of a stimulus, according to the diffusion model presented in section 2.2.3.

The simulation of this diffusion process is done as follows. We first generate

a Poisson process by dividing the time interval [0, 3τa] into 3000 bins. For a

neuron i, each interval, of width dτ = τa/1000, receives a spike according to

a Bernoulli law of parameter f0i (x) dτ (dτ being small, we thus get a Poisson

process associated with each neuron). We then compute the temporal evolution

of the output ατ as well as the time τd for which this quantity reaches one of

the two bounds for the first time. In this numerical example, the bound γ is set

equal to 0.3. For each stimulus x, this process is run 10000 times, which makes

it possible to have an estimate of the mean reaction time τd(x). In the end, this

operation is done for 20 stimuli equidistributed along a continuum ranging from

−4 to 4.

Following learning, the behavior of the neural population, with respect to
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discrimination sensitivity and reaction times, qualitatively reproduces a classic

situation of categorical perception, as summarized in Figure 2. Identification

curves are characterized by an S-shape; mean reaction times are longer at the

boundary between categories than within category (see e.g. Pisoni and Tash,

1974; Studdert-Kennedy et al., 1963); discrimination accuracy (as quantified

by Fisher information F 0
code(x)) is higher at the boundary between categories

than within (e.g. Liberman et al., 1957; Repp, 1984; Bornstein and Korda,

1984; Goldstone, 1994; Kuhl and Padden, 1983), which captures the so-called

categorical perception phenomenon.

Figure 3 (Left) compares the mean reaction times obtained in the numerical

simulation with the ones predicted from formula (3.28) and (B.3).We can first

emphasize the remarkable correspondence (up to a scaling factor) between the

simulated data and the data predicted by our equation, despite the fact that

there is only 10 cells in the coding layer. Using parameters of the linear re-

gression extracted from Fig. 3, we can then reconstruct the mean reaction time

for the whole continuum. This reconstructed mean reaction time is shown on

Figure 3 (Right, red line), together with the values obtained in the simulation

(open circles). Here again, one can note the remarkable correspondence between

the simulated and predicted values. Note though that the values given by our

formula (see the x-axis in Fig. 3 (Left)) are smaller than the true values, hence

the need in each case of rescaling the data in order to reconstruct the simulated

reaction times. We attribute this bias to finite size and discretization effects.
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Figure 2: Perceptual consequences of category learning: results of the numerical sim-

ulation. (A) Mean identification function. (B) Mean reaction times. (C) Fisher in-

formation rate of the neuronal population (measure of perceptual sensitivity). These

results qualitatively reproduce a classic situation of category learning, in particular in

the case of phonemic perception (see e.g. Pisoni and Tash, 1974, Fig. 3). Identification

curves are characterized by an S-shape; mean reaction times are longer at the bound-

ary between categories than within category; discrimination accuracy (as quantified

by Fisher information F 0
code(x)) is higher at the boundary between categories than

within, ie the neural population exhibits categorical perception.

7



τd
th/τa

τ d
em

p /
τ a

0.02 0.04 0.06 0.08 0.1
0.05

0.1

0.15

0.2

Stimulus

τ d
/
τ a

-4 -2 0 2 4
0.05

0.1

0.15

0.2

0.25

Figure 3: Reaction times: comparison between simulated data and theoret-

ical prediction. (Left) Mean reaction times τ emp
d obtained by numerical simulation

for the 20 stimuli spanning the considered continuum, as a function of the mean re-

action times given by Eq. (3.28). The red line corresponds to the linear regression

(correlation coefficient r=0.9986, p=1.7e-24). (Right) Mean reaction times as a func-

tion of the stimulus presented. The open circles indicates the mean reaction times

obtained by numerical stimulation, whereas the red line corresponds to the results

derived from Eqs. (3.28), (B.3).
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