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The efficient coding hypothesis posits that sensory systems maximize in-
formation transmitted to the brain about the environment. We develop a
precise and testable form of this hypothesis in the context of encoding a
sensory variable with a population of noisy neurons, each characterized
by a tuning curve. We parameterize the population with two continuous
functions that control the density and amplitude of the tuning curves, as-
suming that the tuning widths vary inversely with the cell density. This
parameterization allows us to solve, in closed form, for the information-
maximizing allocation of tuning curves as a function of the prior proba-
bility distribution of sensory variables. For the optimal population, the
cell density is proportional to the prior, such that more cells with narrower
tuning are allocated to encode higher-probability stimuli and that each
cell transmits an equal portion of the stimulus probability mass. We also
compute the stimulus discrimination capabilities of a perceptual system
that relies on this neural representation and find that the best achievable
discrimination thresholds are inversely proportional to the sensory prior.
We examine how the prior information that is implicitly encoded in the
tuning curves of the optimal population may be used for perceptual in-
ference and derive a novel decoder, the Bayesian population vector, that
closely approximates a Bayesian least-squares estimator that has explicit
access to the prior. Finally, we generalize these results to sigmoidal tun-
ing curves, correlated neural variability, and a broader class of objective
functions. These results provide a principled embedding of sensory prior
information in neural populations and yield predictions that are readily
testable with environmental, physiological, and perceptual data.

1 Introduction

Many bottom-up theories of neural encoding posit that sensory systems
are optimized to represent signals that occur in the natural environment
of an organism (Attneave, 1954; Barlow, 1961). A precise specification of
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the optimality of a sensory representation requires four components: (1) the
family of neural transformations (specifying the encoding of natural signals
in neural activity) over which the optimum is to be taken; (2) the noise intro-
duced by the neural transformations; (3) the types of signals to be encoded
and their prevalence in the natural environment; and (4) the metabolic
costs of building, operating, and maintaining the system (Simoncelli & Ol-
shausen, 2001). Although optimal solutions have been derived analytically
for some specific choices of these components (e.g., linear response models
and gaussian signal and noise distributions Atick & Redlich, 1990; Doi et al.,
2012) and numerical solutions have been examined for other cases (e.g., a
population of linear-nonlinear neurons: Bell & Sejnowski, 1997; Karklin &
Simoncelli, 2011; Tkačik, Prentice, Balasubramanian, & Schneidman, 2010),
the general problem is intractable.

A substantial literature has considered simple population coding models
in which each neuron’s mean response to a scalar variable is characterized
by a tuning curve (Jazayeri & Movshon, 2006; Ma, Beck, Latham, & Pouget,
2006; Pouget, Dayan, & Zemel, 2003; Salinas & Abbott, 1994; Sanger, 1996;
Seung & Sompolinsky, 1993; Snippe, 1996; Zemel, Dayan, & Pouget, 1998;
Zhang, Ginzburg, McNaughton, & Sejnowski, 1998). For these models, sev-
eral authors have examined the optimization of Fisher information, which
expresses a bound on the mean squared error of an unbiased estimator
(Brown & Bäcker, 2006; Montemurro & Panzeri, 2006; Pouget, Deneve,
Ducom, & Latham, 1999; Zhang & Sejnowski, 1999). In these results, the
distribution of sensory variables is assumed to be uniform, and the popu-
lations are assumed to be homogeneous with regard to tuning curve shape,
spacing, and amplitude.

The distribution of sensory variables encountered in the environment is
often nonuniform, and it is thus of interest to understand how these varia-
tions in probability affect the design of optimal populations. It would seem
natural that a neural system should devote more resources to regions of
sensory space that occur with higher probability, analogous to results in
coding theory (Gersho & Gray, 1991). At the single-neuron level, several
publications describe solutions in which monotonic neural response func-
tions allocate greater dynamic range to more frequently occurring stimuli
(Laughlin, 1981; McDonnell & Stocks, 2008; Nadal & Parga, 1994; von der
Twer & MacLeod, 2001; Wang, Stocker, & Lee, 2012). At the population level,
optimal nonuniform allocations of neurons with identical tuning curves
have been derived for nonuniform stimulus distributions (Brunel & Nadal,
1998; Harper & McAlpine, 2004).

Here, we examine the influence of a sensory prior on the optimal allo-
cation of neurons and spikes in a population, and the implications of this
optimal allocation for subsequent perception. Given a prior distribution
over a scalar stimulus parameter and a resource budget of N neurons with
an average of R spikes/sec for the entire population, we seek the optimal
shapes, positions, and amplitudes of the tuning curves. We parameterize the
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population in terms of two continuous functions expressing the density and
gain of the tuning curves. As a base case, we assume Poisson-distributed
spike counts and optimize a lower bound on mutual information based on
Fisher information. We use an approximation of the Fisher information that
allows us to obtain a closed-form solution for the optimally efficient pop-
ulation, as well as a bound on subsequent perceptual discriminability. In
particular, we find that the optimal density of tuning curves is directly pro-
portional to the prior and that the best achievable discrimination thresholds
are inversely proportional to the prior. We demonstrate how to test these
predictions with environmental, physiological, and perceptual data.

Our results are optimized for coding efficiency, which many have argued
is a reasonable task-independent objective for early stages of sensory pro-
cessing but seems unlikely to explain more specialized later stages that are
responsible for producing actions (Geisler, Najemnik, & Ing, 2009). Never-
theless, if we take seriously the interpretation of perception as a process of
statistical inference (Helmholtz, 2000), then these later stages must rely on
knowledge of the sensory prior. Although such prior information has been
widely used in formulating Bayesian explanations for perceptual phenom-
ena (Knill & Richards, 1996), the means by which it is represented within the
brain is currently unknown (Simoncelli, 2009; Stocker & Simoncelli, 2006).
Previous studies have either assumed that sensory priors are uniform (Jaza-
yeri & Movshon, 2006; Zemel et al., 1998) or explicitly represented in the
spiking activity of a separate population of neurons (Ma et al., 2006; Yang
et al., 2012), or implicitly represented in the gains (Simoncelli, 2003), the
sum (Simoncelli, 2009), or the distribution of preferred stimuli (Fischer &
Peña, 2011; Girshick, Landy, & Simoncelli, 2011; Shi & Griffiths, 2009) of the
tuning curves in the encoding population.

Our efficient coding population provides a generalization of these latter
proposals, embedding prior probability structure in the distribution and
shapes of tuning curves. We show how these embedded probabilities may
be used in inference problems and derive a novel decoder that extracts and
uses the implicit prior to produce approximate Bayesian perceptual esti-
mates that minimize mean squared error. We demonstrate (through simu-
lations) that this decoder outperforms the well-known population vector
decoder (Georgopoulos, Schwartz, & Kettner, 1986), which has been previ-
ously shown to approximate Bayesian estimation under strong assumptions
about the encoding population (Fischer & Peña, 2011; Girshick et al., 2011;
Shi & Griffiths, 2009; Wei & Stocker, 2012a). We also show that our decoder
performs nearly as well as a Bayesian decoder that has explicit access to
prior information. Finally, we generalize our formulation to consider a fam-
ily of alternative optimality principles (which includes Fisher bounds on
estimation error and discriminability as special cases), sigmoidal tuning
curves, and non–Poisson correlated spiking models. Portions of this work
were initially presented in Ganguli (2012) and Ganguli and Simoncelli (2010,
2012).
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2 Efficient Sensory Coding

2.1 Encoding Model. We begin with a conventional descriptive model
for a population of N neurons responding to a single scalar variable, denoted
s (e.g., Jazayeri & Movshon, 2006; Ma et al., 2006; Pouget et al., 2003; Salinas
& Abbott, 1994; Sanger, 1996; Seung & Sompolinsky, 1993; Snippe, 1996;
Zemel et al., 1998; Zhang et al., 1998). Assume the number of spikes emitted
in a given time interval by the nth neuron is a sample from an independent
Poisson process, with mean rate determined by its tuning function, hn(s)
(section 4.3 provides a generalization to non–Poisson correlated neuronal
variability). The probability distribution of the population response can be
written as

p(�r|s) =
N∏

n=1

hn(s)rn e−hn(s)

rn!
. (2.1)

We assume that the total expected spike rate, R, of the population is
limited, which imposes a constraint on the tuning curves,

∫
p(s)

N∑
n=1

hn(s) ds = R, (2.2)

where p(s) is the probability distribution of stimuli in the environment. We
refer to this as a sensory prior, in anticipation of its use in solving Bayesian
inference problems based on the population response (see section 3).

2.2 Objective Function. What is the best way to represent values drawn
from p(s) using these N neurons and limiting the total population response
to a mean of R spikes? Intuitively, one might expect that more resources
(spikes or neurons, or both) should be locally allocated to stimuli that are
more probable, thereby increasing the accuracy with which they are repre-
sented. But it is not obvious a priori exactly how the resources should be
distributed or whether the optimal solution is unique.

To formulate a specific objective function, we follow the efficient coding
hypothesis, which asserts that early sensory systems evolved to maximize
the information they convey about incoming signals, subject to metabolic
constraints (Attneave, 1954; Barlow, 1961). Quantitatively, we seek the set
of tuning curves that maximize the mutual information, I(�r; s), between the
stimuli and the population responses:

I(�r; s) = H(s) +
∫

p(s)
∑

�r

p(�r, s) log p(s|�r) ds. (2.3)
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The term H(s) is the entropy, or amount of information inherent in p(s),
and is independent of the neural population.

The mutual information is notoriously difficult to compute (or maximize)
as it requires summation or integration over the high-dimensional joint
probability distribution of all possible stimuli and population responses. For
analytical tractability, we instead choose to optimize a well-known lower
bound on mutual information (Brunel & Nadal, 1998; Cover & Thomas,
1991),

I(�r; s) ≥ H(s) + 1
2

∫
p(s) log

( I f (s)

2πe

)
ds, (2.4)

where I f (s) is the Fisher information, which can be expressed in terms of
a second-order expansion of the log-likelihood function (Cox & Hinkley,
1974):

I f (s) = −
∑

�r

p(�r|s) ∂2

∂s2 log p(�r|s).

The bound of equation 2.4 is tight in the limit of low noise, which occurs
as either N or R increases (Brunel & Nadal, 1998). The Fisher information
quantifies the accuracy with which the population responses represent dif-
ferent values of the stimulus. It can also be used to place lower bounds
on the mean squared error of an unbiased estimator (Cox & Hinkley, 1974)
or alternatively, the discrimination performance of a (possibly biased) per-
ceptual system (Seriès, Stocker, & Simoncelli, 2009). We later generalize our
analysis to handle a family of objective functions that includes these bounds
as special cases (see section 4.1).

For the independent Poisson noise model, the Fisher information can be
written as a function of the tuning curves (Seung & Sompolinsky, 1993),

I f (s) =
N∑

n=1

h′2
n (s)

hn(s)
, (2.5)

where h′
n(s) is the derivative of the nth tuning curve. Substituting this

expression into equation 2.4 and adding the resource constraint of equation
2.2, allows us to express the full efficient coding problem as

arg max
{hn(s)}

∫
p(s) log

(
N∑

n=1

h′2
n (s)

hn(s)

)
ds, s.t.

∫
p(s)

N∑
n=1

hn(s) ds = R.

(2.6)

Even with the substitution of the Fisher bound, the objective function
in equation 2.6 is nonconvex over the high-dimensional parameter space
(the full set of continuous tuning curves), making numerical optimization
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intractable. To proceed, we introduce a compact parameterization of the
tuning curves, which allows us to obtain an analytical solution.

2.3 Parameterization of a Heterogeneous Population. To develop a
parametric model of tuning curves, we take inspiration from theoretical
and experimental evidence that shows (1) for many sensory variables,
physiologically measured tuning curves exhibit significant heterogeneity in
their spacings, widths, and amplitudes, and (2) even if one assumes tuning
curves of fixed width and amplitude, heterogeneous spacings are optimal
for coding stimuli drawn from nonuniform prior distributions (Brunel &
Nadal, 1998; Harper & McAlpine, 2004). We add to these observations an
assumption that adjacent tuning curves in our idealized population should
overlap by some fixed amount, such that they uniformly tile the stimulus
space. The intuitive motivation is that if there is a degree of overlap that
is optimal for transmitting information, this should hold regardless of the
spacing between curves. In practice, constraining the tuning widths also
greatly simplifies the optimization problem, allowing (as shown below) a
closed-form solution. We enforce this assumption by parameterizing the
population as a warped and rescaled convolutional population (i.e., a pop-
ulation with identical tuning curves shifted to lie on a uniform lattice, such
that the population tiles), as specified by a cell density function, d(s), and
a gain function, g(s), as illustrated in Figure 1. The tuning widths in the re-
sulting heterogeneous population are proportional to the spacing between
tuning curves, maintaining the tiling properties of the initial homogeneous
population. Intuitively, d(s) and g(s) define the local allocation of the global
resources N and R, respectively.

To specify the parameterization, we first define a convolutional popu-
lation of tuning curves, identical in form and evenly spaced on the unit
lattice, such that they approximately tile the space:

N∑
n=1

h(s − n) ≈ 1. (2.7)

The tiling property has been assumed in previous work, where it enabled
the derivation of maximum likelihood decoders (Jazayeri & Movshon, 2006;
Ma et al., 2006; Zemel et al., 1998). Note that this form of tiling is inconsis-
tent with sigmoidal tuning curves, so we handle this case separately (see
section 4.2). We also assume that the Fisher information of this population,
equation 2.5, is approximately constant,

I(conv)

f (s) =
N∑

n=1

h′2(s − n)

h(s − n)

=
N∑

n=1

φ(s − n) ≈ Iconv, (2.8)
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Figure 1: Construction of a heterogeneous population of neurons. (a) Homo-
geneous population with gaussian tuning curves on the unit lattice. The tuning
width, σ = 0.55, is chosen so that the curves approximately tile the stimulus
space. (b) The Fisher information of the convolutional population (green) is
approximately constant. (c) The inset shows d(s), the tuning curve density. The
cumulative integral of this function, D(s), alters the positions and widths of
the tuning curves in the convolutional population. (d) The warped population,
with tuning curve peaks (aligned with tick marks, at locations sn = D−1(n)), is
scaled by the gain function, g(s) (blue). A single tuning curve is highlighted
(red) to illustrate the effect of the warping and scaling operations. (e) The Fisher
information of this heterogeneous population, which provides a bound on per-
ceptual discriminability, is approximately proportional to d2(s)g(s).

where φ(s − n) is the Fisher information of the nth neuron. The value of
the constant, Iconv, is dependent on the details of the tuning curve shape,
h(s), which we leave unspecified. As an example, Figures 1a and 1b show
through numerical simulation that a convolutional population of gaussian
tuning curves, with appropriate width, has approximately constant Fisher
information.
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Now consider adjusting the density and gain of the tuning curves in this
population as follows:

h(d,g)
n (s) = g h

(
d

(
s − n

d

))
. (2.9)

The gain, g, modulates the maximum average firing rate of each neuron in
the population. The density, d, controls both the spacing and width of the
tuning curves: as the density increases, the tuning curves become narrower
and are spaced closer together so as to maintain their tiling of stimulus
space. The effect of these two parameters on Fisher information is

I(d,g)

f (s) = d2g
N(d)∑
n=1

φ(ds − n)

≈ d2g Iconv.

The second line follows from the assumption of equation 2.8.
We generalize density and gain parameters to continuous functions of

the stimulus, d(s) and g(s), which define the local allocation of the resources
of neurons and spikes:

hn(s) = g(sn) h(D(s) − n). (2.10)

Here, D(s) = ∫ s
−∞ d(t)dt, the cumulative integral of d(s), warps the shape of

the prototype tuning curve. The value sn = D−1(n) represents the preferred
stimulus value of the (warped) nth tuning curve (see Figures 1a, 1c, and 1d).
Note that the warped population retains the tiling properties of the original
convolutional population. As in the uniform case, the density controls both
the spacing and width of the tuning curves. This can be seen by rewriting
equation 2.10 with a first-order Taylor expansion of D(s) around sn,

hn(s) ≈ g(sn) h(d(sn)(s − sn)),

which is a natural generalization of equation 2.9.
We can now write the Fisher information of the heterogeneous popula-

tion of neurons by substituting equation 2.10 into equation 2.5:

I f (s)=
N∑

n=1

d2(s) g(sn) φ(D(s) − n) (2.11)

≈ d2(s) g(s) Iconv. (2.12)
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In addition to assuming that the Fisher information is approximately con-
stant (see equation 2.8), we have also assumed that g(s) is smooth relative to
the width of φ(D(s) − n) for all n, so that we can approximate g(sn) as g(s)
and remove it from the sum. The end result is an approximation of Fisher
information in terms of the two continuously variable local resources of cell
density and gain (see Figure 1e). As earlier, the constant Iconv is determined
by the precise shape of the tuning curves.

The global resource values N and R naturally place constraints on d(s)
and g(s), respectively. In particular, we require that D(·) map the entire input
space onto the range [0, N]. Thus, for an input space covering the real line,
we require D(−∞) = 0 and D(∞) = N (or, equivalently,

∫
d(s) ds = N). The

average total firing rate R places a constraint on the tuning curves (see equa-
tion 2.2). Substituting equation 2.10, assuming g(s) is sufficiently smooth
relative to the width of h(D(s) − n), and including the assumption of equa-
tion 2.7 (the warped tuning curves sum to unity before multiplication by
the gain function), yields a simple constraint on the gain:

∫
p(s)g(s) ds = R.

2.4 Objective Function and Solution for a Heterogeneous Population.
Approximating Fisher information as proportional to squared density and
gain (see equation 2.12) allows us to rewrite the objective function and
resource constraints of equation 2.6 as

arg max
d(s),g(s)

∫
p(s) log

(
d2(s) g(s)

)
ds, s.t.

∫
d(s) ds = N, and

∫
p(s)g(s) ds = R. (2.13)

The optima of this objective function may be determined using calculus
of variations and the method of Lagrange multipliers. Specifically, the La-
grangian is expressed as

L(d(s), g(s), λ1, λ2) =
∫

p(s) log
(
d2(s)g(s)

)
ds + λ1

(∫
d(s) ds − N

)

+ λ2

(∫
p(s)g(s) ds − R

)
.

The optimal cell density and gain that satisfy the resource constraints are
determined by setting the gradient of the Lagrangian to zero and solving
the resulting system of equations:

∂L
∂d(s)

= 2p(s)d−1(s) + λ1 = 0,

∂L
∂g(s)

= p(s)g−1(s) + λ2 p(s) = 0,
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∂L
∂λ1

=
∫

d(s) ds − N = 0,

∂L
∂λ2

=
∫

p(s)g(s) − R = 0.

Solving yields the optimal solution:

d(s) = Np(s), g(s) = R. (2.14)

The optimal cell density is proportional to the sensory prior, ensuring
that frequently occurring stimuli are encoded with greater precision, us-
ing a larger number of cells with correspondingly narrower tuning (see
Figures 2a and 2b). The optimal population has constant gain, and as a
result, it allocates an approximately equal amount of stimulus probability
mass to each neuron, analogous to results from coding theory (Gersho &
Gray, 1991). This implies that the mean firing rate (in fact, the full distribu-
tion of firing rates) of all neurons in the population is identical. Note that the
global resource values, N and R, enter only as scale factors. As a result, if one
or both of these factors are unknown, the solution still provides a unique
specification of the shapes of d(s) and g(s), which can be readily compared
with experimental data (see Figures 2c–2e). Finally, note that the optimal
warping function D(s) is proportional to the cumulative prior distribution
and thus serves to remap the stimulus to a space in which it is uniformly
distributed, as suggested in earlier work (Stocker & Simoncelli, 2006; Wei
& Stocker, 2012a). This is intuitively sensible and is a consequence of the
invariance of mutual information under invertible transformations (Cover
& Thomas, 1991): warping the stimulus axis (and associated prior) should
result in a concomitant warping of the optimal solution. In section 4.1, we
derive a family of solutions that optimize alternative functionals of the
Fisher information, for which this property does not hold.

2.5 Implications for Perceptual Discrimination. The optimal solution
limits the best achievable discrimination performance of a perceptual sys-
tem that bases its responses on the output of the population. Specifically,
the Fisher information may be used to provide a lower bound on discrim-
inability, even when the observer is biased (Seriès et al., 2009):

δ(s) ≥ �/
√

I f (s). (2.15)

The constant � is determined by the threshold performance level in a
discrimination task. Substituting the optimal solutions for d(s) and g(s)
into equation 2.12, and substituting the resulting Fisher information into
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Figure 2: Experimental predictions for efficient coding with a heterogeneous
population of unimodal tuning curves. (a) Hypothetical example of a probabil-
ity distribution over a sensory attribute, p(s). (b) Five tuning curves of a neural
population arranged to maximize the amount of information transmitted about
stimuli drawn from this distribution. (c–e) Predicted shapes of experimentally
accessible attributes of the neural population, derived from the prior distri-
bution using equation 2.14. (c) Histogram of the observed preferred stimuli
(stimuli associated with the peaks of the tuning curves) provides an estimate of
local cell density, d(s), which should be proportional to the prior distribution
(black line). (d) Tuning widths of the neurons (measured as the full width at
half maximum of the tuning curves) should be inversely proportional to the
prior (points correspond to example neurons from panel b). (e) The gain, g(s),
measured as the maximum average firing rate of each of the neurons, should
be constant (points correspond to example neurons from panel b). (f) Mini-
mum achievable discrimination thresholds of a perceptual system that relies
on this efficient population are inversely proportional to the prior distribution,
equation 2.16.

equation 2.15 gives the minimum achievable discrimination thresholds:

δmin(s) = �

N
√

RIconv

p−1(s). (2.16)

This predicts that perceptual sensitivity (inverse discriminability) is pro-
portional to the prior, such that more frequently occurring stimuli are eas-
ier to discriminate. The proportionality depends on the available resources
{N, R}, the experimental conditions under which the thresholds were mea-
sured (�), and knowledge of the tuning curve shapes and tiling properties
(Iconv). Even when these are not known, the shape of δmin(s) can be read-
ily compared to experimental data (see Figure 2f). As a special case, note
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that variables with distributions that fall approximately as 1/s (a pseudo-
prior, since it is not integrable) lead to discriminability δmin(s) ∝ s, which
corresponds to the perceptual behavior commonly known as Weber’s law.

3 Inference and Decoding with Efficient Neural Populations

The structure of the efficient population has direct implications for Bayesian
theories of perceptual inference, in which human observers are hypothe-
sized to combine their noisy sensory measurements and prior knowledge of
the environment to infer properties of the physical world (Knill & Richards,
1996; Simoncelli, 1993). A critical but often overlooked issue in such models
is the means by which the brain obtains and represents prior knowledge
(Simoncelli, 2009). The optimally efficient population developed in this arti-
cle provides a potential substrate for answering this question, since the prior
is implicitly represented in the arrangement of the tuning curves. In this
section, we show that this implicit prior encoding provides a natural means
of approximating posterior densities in a form that is readily integrated to
compute expected values. Specifically, we derive a novel decoder, which
we call the Bayesian population vector, that properly extracts and uses the
implicit prior information to approximate the Bayes least squares (BLS) es-
timate (i.e., the mean of the posterior). We demonstrate through simulations
that the Bayesian population vector outperforms the standard population
vector, converging to the true Bayesian estimator as N increases.

3.1 Posterior and Bayesian Population Vector. Probabilistic inference
generally relies on the posterior distribution, p(s|�r), which may be written
using Bayes’ rule as

p(s|�r) = p(�r|s)p(s)∫
p(�r|s)p(s) ds

.

The likelihood, p(�r|s), is interpreted as a function of s evaluated for a single
observation of �r, and the denominator is a normalizing constant.

In solving perceptual problems, the posterior is typically used in one
of two ways. First, posterior distributions of a common variable that arise
from independent measurements are combined multiplicatively (generally
referred to as cue combination; Knill & Richards, 1996). Products of likelihood
functions are readily achieved with populations of neurons with Poisson
spiking: the log likelihoods are linearly encoded in the spike counts of
two neural populations, and the product of likelihoods is computed by
pairwise addition of the spikes arising from corresponding neurons in the
two populations (Ma et al., 2006). The optimal populations derived here can
exploit the same computation to obtain a posterior distribution conditioned
on both cues. Suppose the posterior of each cue individually is represented
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in a heterogeneous population and the tuning curves of the two populations
are arranged identically to reflect the prior. The posterior conditioned on
both cues (assuming the cues provide independent information) may be
computed using a third heterogeneous population with the same tuning
curve arrangement that simply adds spikes from corresponding neurons
in the two single-cue populations. The summed spikes represent the log of
the product of likelihoods. But note that the priors of the two single-cue
populations are not multiplied: the prior in the combined population is
again encoded (implicitly) in the sampling of the tuning curves.

A second operation commonly performed on a posterior density is to
integrate it for purposes of computing expected values or of marginalization
(partially integrating over some variables). The latter does not present any
fundamental obstacle for the current framework but is not relevant in the
case of a one-dimensional (scalar) stimulus. For the former, we first consider
the particular case of the mean of the posterior, which corresponds to the
BLS estimator (also known as the minimum mean squared error estimator)
of the variable s, given the noisy population response. The BLS estimate
may be expressed as

ŝBLS (�r) =
∫

sp(s|�r) ds =
∫

sp(�r|s)p(s) ds∫
p(�r|s)p(s) ds

. (3.1)

The continuous integrals in equation 3.1 can be approximated with discrete
sums,

ŝBLS (�r) ≈
∑N

n=1 sn p(�r|sn)p(sn)δn∑N
n=1 p(�r|sn)p(sn)δn

,

for any discrete set of stimulus values, sn, where δn is the spacing between
adjacent values. The sums converge to their corresponding integrals in the
limit as δn → 0. Assuming an efficient encoding population with sn the
preferred stimuli of the tuning curves, the separation between curves is
inversely proportional to the prior, δn ∝ 1

p(sn )
.

Substituting this discretization into the expression above yields an ap-
proximation of the BLS estimator that correctly uses the prior information
embedded in the population:

ŝBLS (�r) ≈
∑N

n=1 sn p(�r|sn)∑N
n=1 p(�r|sn)

. (3.2)

This approximation of the integral may be seen as a deterministic form of
importance sampling (deterministic, because it uses the fixed values sn as
the samples rather than drawing them stochastically from the prior). Note
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that in this simple form, the prior is implicitly captured in the spacing or
sampling of the tuning curves and that the posterior expectation of any
function f (·) can be approximated by replacing the sn in the numerator
by f (sn). The use of nonuniform population sampling to embed priors for
Bayesian decoding was first proposed in Shi and Griffiths (2009) and has
been used to explain the relationship between the distribution of tuning
preferences in neural populations and perceptual discrimination perfor-
mance (Fischer & Peña, 2011; Girshick et al., 2011). More recently, it has
been proposed as an explanation of perceptual biases that can arise in low
signal-to-noise conditions (Wei & Stocker, 2012a).

It is worth noting that this discrete approximation exhibits a striking
similarity to the population vector (PV) decoder (Georgopoulos et al., 1986),
which computes a response-weighted average of the preferred stimuli of
the cells:

ŝPV (�r) =
∑N

n=1 snrn∑N
n=1 rn

. (3.3)

By inspection, if one assumes rn ∝ p(�r|sn), then the population vector can be
seen to approximate the BLS estimate (Fischer & Peña, 2011; Shi & Griffiths,
2009). However, this assumption is clearly violated by the Poisson response
model of equation 2.1.

To derive a version of the BLS estimator that does not rely on this in-
correct assumption, we expand the likelihood weights, p(�r|sn) according to
equation 2.1, and substitute them into equation 3.2 to obtain

ŝBLS (�r)

≈
∑N

n=1 sn exp
(∑N

m=1 rm log hm(sn) −∑N
m=1 hm(sn) −∑N

m=1 log(rm!)
)

∑N
n=1 exp

(∑N
m=1 rm log hm(sn) −∑N

m=1 hm(sn) −∑N
m=1 log(rm!)

)

=
∑N

n=1 sn exp
(∑N

m=1 rm log hm(sn)
)

∑N
n=1 exp

(∑N
m=1 rm log hm(sn)

) . (3.4)

In the second step, we use the tiling property of the efficient population,∑N
m=1 hm(sn) = R, to cancel these common terms in the numerator and de-

nominator. The term
∑N

m=1 log(rm!) does not depend on n and therefore also
cancels in the numerator and denominator.

The term hm(sn) represents the mean response of the mth neuron to the
stimulus preference of the nth neuron. Using equation 2.10, and the fact
that the gain is constant for the optimal population, we see that hm(sn) ∝
h(D(sn) − m) = h(n − m). As a result, the term

∑N
m=1 rm log hm(sn) can be

expressed as a convolution of the neural responses with a fixed discrete
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linear filter, wm = log h(m) (to avoid a log of zero, we can assume h(m)

includes an additive constant representing the spontaneous firing rate of
the neurons). Incorporating this into equation 3.4, we obtain an expression
for the discrete approximation to the BLS estimator, which we call the
Bayesian population vector (BPV):

ŝBPV (�r) ≡
∑N

n=1 sn exp
(∑N

m=1 rmwn−m

)
∑N

n=1 exp
(∑N

m=1 rmwn−m

) . (3.5)

Note that this has the form of the standard population vector (see equa-
tion 3.3) except that the responses are filtered and exponentiated. These
operations convert the spike counts in �r, which are linearly related to the
log likelihood (Jazayeri & Movshon, 2006; Ma et al., 2006), back into a form
that is effectively proportional to the posterior probability.

The computation of the posterior density and the expectation of any func-
tion over this posterior, can be implemented in a compact neural circuit (see
Figure 3). Each downstream neuron linearly combines the spiking responses
of neurons in the efficient population that have similar stimulus preferences,
and the result is then exponentiated and normalized. These responses rep-
resent a sampled version of the posterior density. This set of operations—
linear filtering, a rectifying nonlinearity, divisive normalization—has been
implicated as canonical neural computations for hierarchical sensory pro-
cessing (Carandini & Heeger, 2012; Kouh & Poggio, 2008). The expectation
over the posterior distribution can then be computed as a sum of these
responses, weighted by the function whose expectation is being computed:

E
(

f (s)|�r) ≈
∑N

n=1 f (sn) exp
(∑N

m=1 rmwn−m

)
∑N

n=1 exp
(∑N

m=1 rmwn−m

) . (3.6)

As an example, consider a signal classification problem in which one
must decide from which of two classes a stimulus was drawn by compar-
ing probabilities p(c1|�r) and p(c2|�r). These two probabilities can each be
written as an expectation over the posterior: p(ci|�r) = ∫

p(ci|s)p(s|�r) ds. As
such, they can be approximated using the weighted sum in equation 3.6,
with f (sn) = p(ci|sn). Note that the latter implicitly contain the class prior
probabilities, since p(ci|sn) = p(sn|ci)p(ci)/p(sn).

3.2 Simulations. We find that the Bayesian population vector provides
a good approximation to the true BLS estimator over a wide range of N
and R values and converges as either N or R increases. In contrast, we
find that the standard population vector operating on the responses of an
efficient population poorly approximates the BLS estimator for most values
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Figure 3: Computation of the posterior distribution, and the Bayesian popula-
tion vector (BPV), from responses of an optimally efficient encoding population.
(a) Hypothetical prior distribution over the stimulus variable. (b) Optimal en-
coding population. Colored tick marks denote the preferred stimuli, sn, of each
neuron. Points represent (noisy) responses of each neuron to a particular stim-
ulus value, with color indicating the preferred stimulus of the corresponding
neuron. (c) The decoder convolves these responses with a linear filter (triplets
of thin gray lines) with weights log h(m). The convolution output is exponenti-
ated (boxes) and normalized by the sum over the decoder population, yielding
an encoding of the posterior distribution, p(s|�r), whose integral against any
function may then be approximated. As an example, the BPV is computed by
summing these responses, weighted by their associated preferred stimulus val-
ues, to approximate the mean of the posterior, which is the Bayes least square
estimate of the stimulus.

of N and R and fails to converge. Furthermore, optimizing the weights
of the standard population vector results in a significant improvement in
performance, but the resulting estimator still fails to converge.

To compute the mean squared errors for the three estimators, we first
drew 10, 000 samples from an exponential prior distribution with mean
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Figure 4: Relative estimation errors of three different decoders, computed
on responses of an optimized heterogeneous population. All results are pre-
sented relative to the true BLS decoder (e.g., a value of 1 indicates performance
equal to the BLS). (a) The Bayesian population vector accurately approximates
the true BLS estimator (in terms of mean squared error) over a wide range
of resource constraints and converges as the number of neurons increases.
(b) The standard population vector has substantially larger error (note scale)
and fails to converge to BLS performance levels. (c) Optimizing the weights
of a population vector leads to a significant performance increase, but the re-
sulting estimator is still substantially worse than the BPV and again fails to
converge.

value 20, clipped to a maximum value of 60 (see Figure 3a). Next, we sim-
ulated the responses of neural populations, of size N with mean total spike
rate R, designed to maximize information about stimuli drawn from this
prior (see Figure 3b). The response of each neuron to a single stimulus value
corresponds to a sample from a Poisson distribution, with the rate param-
eter determined by the neuron’s tuning curve evaluated at that stimulus
value. From these neural responses, we computed stimulus estimates using
the true BLS estimator (see equation 3.1), the Bayesian population vector
(see equation 3.5), the standard population vector (see equation 3.3), and a
standard population vector with stimulus values sn optimized to minimize
the squared error of the estimates. We approximated the mean squared error
of each of these estimators as the sample average of the square differences
between the estimates and true stimulus values.

The mean squared error of the Bayesian population vector converges to
that of the BLS estimator as the number of neurons increases, independent
of the total mean firing rate (see Figure 4a). In a low firing rate regime (0.1
maximum average spikes per neuron) the approximation is within 1% of
the true error with as few as 10 neurons. In this regime, the estimation error
of the BLS estimator is significant, and the BPV is only slightly worse. Note,
however, that for 10 neurons firing a maximum of 10 spikes each, the mean
squared error of the BPV is 25% larger than that of the BLS estimator. In
this regime, the likelihood is very narrow due to the abundance of spikes
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relative to the spacing of the preferred stimuli (which is inversely propor-
tional to N). As a result, the discretized likelihood weights, p(�r|sn), become
concentrated on the preferred stimulus value with the highest likelihood,
and the BPV essentially behaves as a winner-take-all estimator, which is
generally inferior to the true BLS estimator operating in the same resource
regime.

The population vector (PV) defined in equation 3.3 has been previously
proposed as a means of computing approximate BLS estimates, but the
approximation relies on strong assumptions about the encoding popula-
tion (Fischer & Peña, 2011; Girshick et al., 2011; Shi & Griffiths, 2009; Wei
& Stocker, 2012a). We find that the PV provides a reasonably accurate ap-
proximation to the BLS estimator in a low firing rate regime (0.1 maximum
average spikes per neuron) but becomes increasingly suboptimal (by or-
ders of magnitude) as the number of neurons increases (see Figure 4b).
This is due to the fact that the population vector does not take likelihood
width into account correctly and is therefore biased by the asymmetries in
the preferred stimuli (the implicitly encoded prior) even when the sensory
evidence is strong.

The standard population vector can be improved by optimizing the
weights, sn, in equation 3.3, so as to minimize the squared error. We simu-
lated this optimal population vector (OPV) using weights optimized over
the sampled data for each value of N. We find that this OPV exhibits sig-
nificant improvements in performance compared to the ordinary PV (see
Figure 4c) but is still substantially worse than the BPV. And as with the PV,
the OPV fails to converge to the true BLS estimator as N increases.

4 Extensions and Generalizations

The efficient encoding framework developed in section 2 may be extended
in a number of ways. Here, we explore the optimization of alternative ob-
jective functions, generalize our results to handle sigmoidal tuning curves,
and examine the influence of non–Poisson firing rate models on our optimal
solutions. We also discuss how these modifications to the encoding model
affect the Bayesian decoding results developed in section 3.

4.1 Alternative Objective Functions. Although information maximiza-
tion is a commonly assumed form of coding optimality for sensory systems,
alternative objective functions have been proposed. Some authors have sug-
gested that sensory representations might be directly optimized for mini-
mizing estimation error (Brown & Bäcker, 2006; McDonnell & Stocks, 2008;
Montemurro & Panzeri, 2006; Pouget et al., 1999; Zhang & Sejnowski, 1999)
and others for minimizing perceptual discriminability (von der Twer &
MacLeod, 2001; Wang et al., 2012). Our formulation, with a population
parameterized by density and gain, is readily extended to these cases.
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Table 1: Closed-Form Solution for Optimal Neural Populations with Unimodal
Tuning Curves for Objective Functions Specified by Equation 4.1.

Infomax Discrimax General
Optimized function: f (x) = log x f (x) = −x−1 f (x) = −xα , α < 1

3

Density (tuning width)−1 d(s) Np(s) ∝ Np
1
2 (s) ∝ Np

α−1
3α−1 (s)

Gain g(s) R ∝ Rp− 1
2 (s) ∝ Rp

2α
1−3α (s)

Fisher information I f (s) ∝ RN2 p2(s) ∝ RN2 p
1
2 (s) ∝ RN2 p

2
1−3α (s)

Discriminability bound δmin(s) ∝ p−1(s) ∝ p− 1
4 (s) ∝ p

1
3α−1 (s)

Consider a generalized objective function that aims to maximize the
expected value of a function of the Fisher information:

arg max
d(s),g(s)

∫
p(s) f

(
d2(s)g(s)Iconv

)
ds, s.t.

∫
d(s) ds = N, and

∫
p(s)g(s) ds = R. (4.1)

The efficient coding case considered in the previous section corresponds to
f (x) = log(x); we refer to this as the infomax case. Choosing f (x) = −x−1

corresponds to maximizing the Fisher bound on squared discriminability
(see equations 2.12 and 2.15); we refer to this as the discrimax case. The
more conventional interpretation of this objective function is as a bound
on the mean squared error of an unbiased estimator (Cox & Hinkley, 1974).
However, the discriminability bound is independent of estimation bias
and thus requires fewer assumptions about the form of the estimator.
More generally, we can consider a power function, f (x) = xα , for some
exponent α.

The solution for any exponent α is readily obtained using calculus of
variations and is given in Table 1. The infomax solution is included for
comparison. In all cases, the solution specifies a power-law relationship be-
tween the prior, the density and gain of the tuning curves, and perceptual
discrimination thresholds. In general, all solutions allocate more neurons,
with correspondingly narrower tuning curves, resulting in smaller discrim-
ination thresholds, for more probable stimuli. But the exponents vary de-
pending on the choice of α. The shape of the optimal gain function depends
on the objective function: for α < 0, neurons with lower firing rates are
used to represent stimuli with higher probabilities, and for α > 0, neurons
with higher firing rates are used for stimuli with higher probabilities. As
in the infomax case, the resource constraints, N and R, enter the solution as
multiplicative scale factors, facilitating a comparison to data. As a result,
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the theory offers a framework within which existing data may be used to
determine the optimality principles that best characterize different brain
areas. It is worth noting that only the infomax solution leads to a neural
encoding of prior information that can be extracted and used to produce
Bayesian perceptual estimates using the logic developed in section 3 (see
section 5).

4.2 Sigmoidal Response Functions. To derive the efficient population
code in section 2, we assumed that the tuning curves tile the space (see
equation 2.7). This assumption is incompatible with monotonically increas-
ing sigmoidal response functions, as are observed for encoding intensity
variables such as visual contrast or auditory sound pressure level. Never-
theless, we can use the continuous parameterization of cell density and gain
to obtain an optimal solution for a population of neurons with sigmoidal
responses.

To see this, we start by noting that the Fisher information of a homoge-
neous population of sigmoidal tuning curves is the same as in the unimodal
case (see equation 2.12), again assuming that the Fisher information curves
of the homogeneous population tile the space. The constraint on N is also
unchanged from the unimodal case. However, the constraint on R is fun-
damentally different. For neurons with sigmoidal tuning curves, the entire
population will be active for large stimulus values, which incurs a large
metabolic cost for encoding these values. Intuitively, we might imagine
that this metabolic penalty can be reduced by lowering the gains of neu-
rons tuned to the low end of the stimulus range or by adjusting the cell
density such that there are more tuning curves selective for the high end of
the stimulus range. But it is not obvious how the reductions in metabolic
cost for these coding strategies should trade off with the optimal coding of
sensory information.

To derive the optimal solution, we first parameterize a heterogeneous
population of sigmoidal response curves by warping and scaling the deriva-
tives of a homogeneous population:

hn(s) =
∫ s

−∞
h′

n(t) dt =
∫ s

−∞
g(sn)d(t)h′(D(t) − n) dt. (4.2)

Here, h(·) is a prototype sigmoidal response curve, and we assume that the
derivative of this response curve is a unimodal function that tiles the stim-
ulus space when sampled at unit spacing:

∑N
n=1 h′(s − n) ≈ 1. The warp-

ing function is again the cumulative integral of a cell density function,
D(s) = ∫ s

−∞ d(t) dt, so that d(·) controls both the density of tuning curves
and their slopes.
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The total spike count can be obtained by combining equations 2.2 and
4.2:

R =
∫ ∞

−∞
p(s)

∫ s

−∞
d(t)

N∑
n=1

g(sn)h′(D(t) − n) dt ds.

We define a continuous version of the gain as g(t) ≡ ∑N
n=1 g(sn)h′(D(t) − n)

and integrate by parts to approximate the total number of spikes as

R =
∫ ∞

−∞
p(s)

∫ s

−∞
d(t)g(t) dt ds

=
∫ ∞

−∞
(1 − P(s)) d(s)g(s) ds,

where P(s) = ∫ s
−∞ p(t) dt is the cumulative density function of the sensory

prior. This constraint on the total number of spikes is very different from
that of equation 2.13, and will thus affect the optimal solutions for cell
density and gain.

The optimization problem now becomes

arg max
d(s),g(s)

∫
p(s) f

(
d2(s) g(s)

)
ds, s.t.

∫
d(s) ds = N, (4.3)

and
∫

(1 − P(s)) d(s)g(s) ds = R.

A closed-form optimum of this objective function may again be found
by using calculus of variations and the method of Lagrange multipliers.
Solutions are provided in Table 2 for the infomax, discrimax, and general
power cases.

For all objective functions, the solutions for the optimal density, gain,
and discriminability are products of power law functions of the sensory
prior and its cumulative distribution. In general, all solutions allocate more
neurons with greater dynamic range to more frequently occurring stimuli.
Note that unlike the solutions for unimodal tuning curves (see Table 1), the
optimal gain is the same for all objective functions: for each neuron, the
optimal gain is inversely proportional to the probability that a randomly
chosen stimulus will be larger than its preferred stimulus. Intuitively this
solution allocates lower gains to neurons tuned to the low end of the stim-
ulus range, which is metabolically less costly. The global resource values N
and R again appear only as scale factors in the overall solution, allowing
us to easily compare the predicted relationships to experimental data even
when N and R are not known (see Figure 5).
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Table 2: Closed-Form Solution for Optimal Neural Populations with Sigmoidal
Tuning Curves, for Objective Functions Specified by Equation 4.3.

Infomax Discrimax General
Optimized: f (x) = log x f (x) = −x−1 f (x) = −xα , α < 1

3

Density d(s) Np(s) ∝ Np(s)
1
3 [1 −

P(s)]
1
3

∝ Np(s)
1

1−2α [1 −
P(s)]

α
2α−1

Gain g(s) RN−1[1 − P(s)]−1 RN−1[1 − P(s)]−1 RN−1[1 − P(s)]−1

Fisher I f (s) ∝ RNp2(s)[1 −
P(s)]−1

∝ RNp
2
3 (s)[1 −

P(s)]−
1
3

∝ RNp
2

1−2α (s)[1 −
P(s)]

1
2α−1

Discriminability δmin(s) ∝ p−1(s)[1 −
P(s)]

1
2

∝ p− 1
3 (s)[1 −

P(s)]
1
6

∝ p
1

2α−1 (s)[1 −
P(s)]

1
2−4α

c d e

fba

Figure 5: Experimental predictions for efficient coding with sigmoidal tuning
curves. Panels are analogous to Figure 2 but illustrate the solution given in the
infomax column of Table 2.

As in the unimodal case, the infomax solution yields a neural represen-
tation of prior information that can be easily extracted and used to produce
Bayesian perceptual estimates. The estimator is similar in form to the BPV
developed in section 3 with a single key difference: the sum of discretized
tuning curves (the middle terms in the numerator and denominator of
equation 3.4) is no longer a constant. Hence, this set of weights must be
subtracted from the filtered neural responses before the result is passed
through the exponential.

4.3 Generalization to Poisson-Like Noise Distributions. Our results
depend on the assumption that the spike counts of neurons are Poisson
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distributed and independent of each other. In a Poisson model, the variance
of the spike counts is equal to their mean, which has been observed in some
experimental situations (Britten, Shadlen, Newsome, & Movshon, 1993; Tol-
hurst, Movshon, & Dean, 1983) but not all (e.g., Shadlen & Newsome, 1998;
Werner & Mountcastle, 1963). In addition, the assumption that neuronal
responses are statistically independent conditioned on the stimulus value
is often violated (Kohn & Smith, 2005; Zohary, Shadlen, & Newsome, 1994).

Here, we show that our results can be generalized to a family of Poisson-
like response models introduced by Beck, Ma, Latham, and Pouget (2007)
and Ma et al. (2006), that allow for stimulus dependent correlations and
a more general linear relationship between the mean and variance of the
population response:

p(�r|s) = f (�r) exp
[
η(s)T�r − a(η(s))

]
. (4.4)

This distribution belongs to the exponential family with linear sufficient
statistics where the parameter η(s) is a vector of the natural parameters of
the distribution with the nth element equal to ηn(s), a(η(s)) is a (log) normal-
izing constant that ensures the distribution integrates to one, and f (�r) is an
arbitrary function of the firing rates. The independent Poisson noise model
considered in equation 2.1 is a member of this family of distributions with
parameters: η(s) = log h(s), where h(s) is a vector of tuning curve func-
tions, with the nth element equal to hn(s), a(η(s)) = ∑N

n=1 exp(ηn(s)), and
f (�r) = ∏N

n=1
1

rn! .
Our objective functions depend on an analytical form for the Fisher infor-

mation in terms of tuning curves. The Fisher information for the response
model in equation 4.4 may be expressed in terms of the Fisher information
matrix of the natural parameters using the chain rule:

I f (s) = ∂η(s)
∂s

T

I f [η(s)]
∂η(s)

∂s
. (4.5)

The Fisher information matrix about the natural parameters may be written
as (Cox & Hinkley, 1974)

I f [η(s)] = �(s), (4.6)

where �(s) = ER|S
[
�r �rT

]
is the stimulus-conditioned covariance matrix of

the population responses.
Finally, the derivative of the natural parameters may be written in terms

of the derivatives of the tuning curves (Beck et al., 2007; Ma et al., 2006),

∂η

∂s
= �−1(s)

∂h(s)
∂s

, (4.7)
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where �−1(s) is the inverse of the covariance matrix, also known as the
precision matrix. Substituting equations 4.7 and 4.6 into equation 4.5 yields
the final expression for the local Fisher information:

I f (s) = ∂h(s)
∂s

T

�−1(s)
∂h(s)

∂s
. (4.8)

The influence of Fisher information on coding accuracy is now directly
dependent on knowledge of the precision matrix, which is difficult to esti-
mate from experimental data (although see Kohn & Smith, 2005). Here, we
assume a precision matrix that is consistent with neuronal variability that is
proportional to the mean firing rate, as well as correlation of nearby neural
responses (Abbott & Dayan, 1999). Specifically, for a homogeneous neu-
ral population, hn(s) = h(s − n), we express each element in the precision
matrix as

�−1
n,m(s) = αδn,m + β(δn,m+1 + δn+1,m)√

h(s − n)h(s − m)
, (4.9)

where δn,m is the Kronecker delta (zero, unless n = m, for which it is one).
The parameter α controls a linear relationship between the mean response
and the variance of the response for all the neurons. The parameter β

controls the correlation between adjacent neurons. The Fisher information
of a homogeneous population may now be expressed from equations 4.8
and 4.9 as

I f (s)= α

N∑
n=1

h2(s − n)

h(s − n)
+ β

∑
n,m=n±1

h(s − n)h(s − m)√
h(s − n)h(s − m)

= α

N∑
n=1

φ(s − n) + β
∑

n,m=n±1

ψ(s − n, s − m)

≈ αIconv + βIcorr.

In the last step, we assume (as for the independent Poisson case) the Fisher
information curves of the homogeneous population, φ(s − n) sum to a con-
stant. We also assume that the cross terms, ψ(s − n, s − m), sum to the
constant, Icorr.

The Fisher information for a heterogeneous population, obtained by
warping and scaling the homogeneous population by the density and gain,
is

I f (s)= d2(s) α

N∑
n=1

g(sn)φ(D(s) − n) (4.10)
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+ d2(s) β
∑

n,m=n±1

g(sn)g(sm)√
g(sn)g(sm)

ψ(D(s) − n)ψ(D(s) − m)

≈ d2(s)g(s)
[
αIconv + βIcorr

]
. (4.11)

In the second step, we make three assumptions. First (as for the independent
Poisson case), we assume g(s) is smooth relative to the width of φ(D(s) − n)

for all n, so that we can approximate g(sn) as g(s). Second, we assume

that the neurons are sufficiently dense such that
g(sn )g(sn+1 )√

g(sn )g(sn+1 )
≈ g(sn). Finally,

we assume g(s) is also smooth relative to the width of the cross terms,
ψ(D(s) − n)ψ(D(s) − m). As a result, the gain factors can be approximated
by the same continuous gain function, g(s), and can be pulled out of both
sums.

The Fisher information expressed in equation 4.11 has the same depen-
dency on s as that of the original Poisson population but now depends on
three parameters, α, β, and Icorr, that characterize the correlated variability
of the population code. We conclude that the optimal solutions for the den-
sity and gain are the same as those expressed in Tables 1 and 2, which were
derived for an independent Poisson noise model (α = 1, β = 0).

Because the solution for the infomax tuning curve density is the same
as in the Poisson case (proportional to the prior), we can use the same
logic developed in section 3 to derive a BLS estimator for the generalized
response model that exploits the embedded prior. Specifically, we use the
response model in equation 4.4 to expand out the likelihood weights in
equation 3.2 to obtain:

ŝBLS (�r)≈
f (�r)

∑N
n=1 sn exp

(∑N
m=1 rmηm(sn) − a(η(sn))

)
f (�r)

∑N
n=1 exp

(∑N
m=1 rmηm(sn) − a(η(sn))

)

=
∑N

n=1 sn exp
(∑N

m=1 rmwm−n − a(η(sn))
)

∑N
n=1 exp

(∑N
m=1 rmwm−n − a(η(sn))

) .

In the second step, in addition to canceling out the terms f (�r) in the numer-
ator and denominator, we again use the fact that the optimal population is
obtained by warping a convolutional population. As a result, ηm(sn) corre-
sponds to a set of weights that is the same for all m neurons. Therefore, the
operation

∑N
m=1 rmηm(sn) can be expressed as a convolution of the neural

responses with a fixed linear filter �w. The filter weights will be different
from those in the Poisson case, where the natural parameters are simply
the log-tuning curves. The above expression is equivalent to the BPV for
all response models, where a(η(sn)) is constant for all sn. Otherwise the
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above expression yields a BPV with an additional offset term, similar to the
sigmoidal case.

5 Discussion

We have developed a formulation of the efficient coding hypothesis for a
neural population encoding a scalar stimulus variable drawn from a known
prior distribution. The information-maximizing solution provides precise
and yet intuitive predictions of the relationship between sensory priors,
physiology, and perception. Specifically, more frequently occurring stimuli
should be encoded with a proportionally higher number of cells (with cor-
respondingly narrower tuning widths), which results in a proportionally
higher perceptual sensitivity for these stimulus values. Preliminary evi-
dence indicates that these predictions are consistent with environmental,
physiological, and perceptual data collected for a variety of visual and au-
ditory sensory attributes (Ganguli & Simoncelli, 2010; Ganguli, 2012). We
have also shown that the efficient population encodes prior information in a
form that may be naturally incorporated into subsequent processing. Specif-
ically, we have defined a neurally plausible computation of the posterior
distribution from the population responses, thus providing a hypothetical
framework by which the brain might implement probabilistic inference. Fi-
nally, we developed extensions of the framework to consider alternative ob-
jective functions, sigmoidal response functions, and non-Poisson response
noise.

Our framework naturally generalizes previous results on optimal coding
with single neurons (Fairhall, Lewen, Bialek, & de Ruyter van Steveninck,
2001; Laughlin, 1981; McDonnell & Stocks, 2008; von der Twer & MacLeod,
2001; Wang et al., 2012), homogeneous population codes (Brown & Bäcker,
2006; Montemurro & Panzeri, 2006; Pouget et al., 1999; Zhang & Sejnowski,
1999), and heterogeneous populations with identical tuning curve widths
(Brunel & Nadal, 1998; Harper & McAlpine, 2004) by explicitly taking into
account heterogeneities in the environment and the tuning properties of
sensory neurons and by considering a family of optimality principles. Fur-
thermore, our results are complementary to recent theories of how the brain
performs probabilistic computations (Jazayeri & Movshon, 2006; Ma et al.,
2006), providing an alternative framework for the encoding and use of
prior information that extends and refines several recent proposals (Fis-
cher & Peña, 2011; Ganguli & Simoncelli, 2012; Girshick et al., 2011; Shi &
Griffiths, 2009; Simoncelli, 2009; Wei & Stocker, 2012a).

Our analysis requires several approximations and assumptions in order
to arrive at an analytical solution for the optimal encoding population. First,
we rely on lower bounds on mutual information and discriminability, each
based on Fisher information. Note that we do not require the bounds on
either information or discriminability to be tight, but rather that their op-
tima be close to those of their corresponding true objective functions. It is
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known that Fisher information can provide a poor bound on mutual infor-
mation for small numbers of neurons, low spike counts (or short decoding
times), or nonsmooth tuning curves (Bethge, Rotermund, & Pawelzik, 2002;
Brunel & Nadal, 1998). It is also known that it can provide a poor bound on
suprathreshold discriminability (Berens, Gerwinn, Ecker, & Bethge, 2009;
Shamir & Sompolinsky, 2006). Nevertheless, we have found that at least for
typical experimental settings and physiological data sets, the Fisher infor-
mation provides a reasonably tight bound on mutual information (Ganguli,
2012).

We made several assumptions in parameterizing the heterogeneous pop-
ulation: (1) the tuning curves, h(D(s) − n) (or, in the sigmoidal case, their
derivatives) evenly tile the stimulus space; (2) the single-neuron Fisher
information kernels, φ(D(s) − n), evenly tile the stimulus space; and (3)
the gain function, g(s), varies slowly and smoothly over the width of
h(D(s) − n) and φ(D(s) − n). These assumptions allow us to approximate
Fisher information in terms of cell density and gain (see Figure 1e), to
express the resource constraints in simple form and obtain a closed-form
solution to the optimization problem.

Our framework is limited by the primary simplification used through-
out the population coding literature: the tuning curve response model is
restricted to a single (one-dimensional) stimulus attribute. Real sensory
neurons exhibit selectivity for multiple attributes. If the prior distribution
for those attributes is separable (i.e., if the values of those attributes are sta-
tistically independent), then an efficient code can be constructed separably.
That is, each neuron could have joint tuning arising from the product of
a tuning curve for each attribute. Extending the theory to handle multiple
attributes with statistical dependencies is not straightforward and seems
likely to require additional constraints to obtain a unique solution, since
there are many ways of carving a multidimensional input distribution
into equal-size portions of probability mass. Furthermore, physiological
and perceptual experiments are commonly restricted to only measuring
responses to one-dimensional stimulus attributes. As such, a richer theory
that incorporates a multidimensional encoding model will not be easily
tested with existing data.

The Bayesian population vector offers an example of how the optimal
population may be properly incorporated into inferential computations that
can be used to describe perception and action. The defining characteristic of
this solution is the implicit embedding of the prior in the distribution and
shapes of tuning curves within the encoding population, eliminating the
need for a separate prior-encoding neural population (Ma et al., 2006; Yang,
Lee, & Lisberger, 2012), and generalizing previous proposals for represent-
ing priors solely with neural gains (Simoncelli, 2003), the sum of tuning
curves (Simoncelli, 2009), or the distribution of tuning preferences (Fischer
& Peña, 2011; Girshick et al., 2011; Shi & Griffiths, 2009). Furthermore, if
one assumes tuning curves that include a baseline response level (i.e., a
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background firing rate), the efficient population will also exhibit sponta-
neous responses reflecting the environmental prevalence of stimuli, which
is consistent with recent predictions that that spontaneous population ac-
tivity provides an observable signature of embedded prior probabilities
(Berkes, Orbán, Lengyel, & Fiser, 2011; Tkačik et al., 2010).

Nevertheless, it seems unlikely that the brain would implement a de-
coder that explicitly transforms the distributed population activity into
a single-response value. A more likely scenario arises from retaining the
population representation of the posterior (see Figure 3, with the final sum-
mation omitted) and performing subsequent computations such as multi-
plication by other sensory posteriors (Ma et al., 2006) or marginalization
(Beck, Latham, & Pouget, 2011) only when necessary for action (Simoncelli,
2009). One final caveat is that the decoder considered here (both the pos-
terior computation, as well as the full BPV) is deterministic, and a realistic
solution for neural inference will need to incorporate the effects of neural
noise introduced at each stage of processing (Sahani & Dayan, 2003; Stocker
& Simoncelli, 2006).

At a more abstract level, the efficient population solution has two coun-
terintuitive implications regarding the implementation of Bayesian infer-
ence in a biological system. First, we note that of the family of encoding
solutions derived in Tables 1 and 2, only the infomax solution leads to a
neural encoding of prior information that can be extracted and used to
produce Bayesian perceptual estimates using the logic developed in sec-
tion 3. The discrimax solution, which is optimized for minimizing squared
error (assuming an unbiased estimator), does not lend itself to an encod-
ing of prior information that is amenable to a simple implementation of
Bayesian decoding. Despite the inconsistency of the infomax and MSE ob-
jective functions, we find it intuitively appealing that early-stage sensory
encoding should be optimized bottom-up for a general (task-free) objective
like information transmission, while later-stage decoding is more likely op-
timized for solving particular problems, such as least-squares estimation
or comparison of stimulus attributes. Second, Bayesian estimators are tra-
ditionally derived from prespecified likelihood, prior, and loss functions,
each of which parameterizes distinct and unrelated aspects of the estima-
tion problem: the measurement noise, the environment, and the estimation
task or goal. But in the efficient population, the likelihood is adaptively
determined by the prior, and thus the estimator is entirely determined by
the loss function and the prior. As a result, in addition to the predictions
of physiological attributes and perceptual discriminability that we derived
from our encoding framework, it should also be possible to predict the form
of perceptual biases (see Wei & Stocker, 2012b, for an example).

Finally, if the efficient population we have described is implemented in
the brain, it must be learned from experience. It seems implausible that this
would be achieved by direct optimization of information, as was done in
our derivation. Rather, a simple set of rules could provide a sufficient proxy
to achieve the same solution (e.g., Doi et al., 2012). For example, if each
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neuron in a population adjusted its tuning curve so as to achieve response
distributions with mean and variance values that are the same across the
population, ensure that the input domain is tiled (leaving no gaps), and
allow only modest levels of redundancy with respect to responses of other
cells in the population, then we conjecture that the resulting population
would mimic the efficient coding solution. Moreover, allowing the first
adjustment to occur on a more rapid timescale than the others could poten-
tially account for widely observed adaptation effects, in which the gain of
individual neurons is adjusted so as to maintain a roughly constant level of
activity (Benucci, Saleem, & Carandini, 2013; Fairhall et al., 2001). If such
adaptive behaviors could be derived from our efficient coding framework
and reconciled with the underlying circuitry and cellular biophysics, the
resulting framework would provide a canonical explanation for the re-
markable ability of sensory systems to adapt to and exploit the statistical
properties of the environment.
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