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Independent component analysis or blind source separation is a new
technique of extracting independent signals from mixtures. It is appli-
cable even when the number of independent sources is unknown and
is larger or smaller than the number of observed mixture signals. This
article extends the natural gradient learning algorithm to be applicable to
these overcomplete and undercomplete cases. Here, the observed signals
are assumed to be whitened by preprocessing, so that we use the natural
Riemannian gradient in Stiefel manifolds.

1 Introduction

Let us consider m independent signals s1, . . . , sm summarized in a vector
s = (s1, . . . , sm)

T, where T denotes the transposition. The m independent
sources generate signals s(t) at discrete times t = 1, 2, . . . . Let us assume
that we can observe only their n linear mixtures, x = (x1, . . . , xn)

T,

x(t) = As(t) (1.1)

or in the component form,

xi(t) =
m∑

b=1

Aibsb(t). (1.2)

Given observed signals x(1), . . . , x(t), we would like to recover s(1), . . . ,
s(t)without knowing the mixing matrix A and probability distribution of s.
When n = m, the problem reduces to online estimation of A or its inverse,
W; there exists a lot of work on this subject (Jutten & Hérault, 1991; Bell
& Sejnowski, 1995; Comon, 1994; Amari, Chen, & Cichocki, 1997; Cardoso
& Laheld, 1996). The search space for W in this case of n = m is the space
of nonsingular matrices. The natural gradient learning algorithm (Amari,
Cichocki, & Yang, 1996; Amari, 1998) is the true steepest descent method in
the Riemannian parameter space of the nonsingular matrices. It is proved
to be Fisher efficient in general, having the equivariant property. Therefore,
it is desired to extend it to more general cases of n 6= m. This article reports
on natural gradient learning in the cases of n 6= m.
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In many cases, the number m of the sources is unknown. Lewicki and
Sejnowski (1998a, 1998b) treated the overcomplete case where n < m, and
proved that independent component analysis (ICA) provides a powerful
new technique in the area of brain imaging and signal processing. In this
case, the mixing matrix A is rectangular and is not invertible. The problem
is split into two phases: estimation of A and estimation of s(t) based on the
estimated Â.

Let us denote the m columns of A by n-dimensional vectors a1, . . . , am.
Then,

x =
m∑

b=1

sbab (1.3)

is a representation of x in terms of sources sb’s. This is an overcomplete
representation where {a1, . . . , am} is the overcomplete basis (Chen, Donoho,
& Saunders, 1996). This basis elucidates the mixing mechanism so that one
may analyze the locations of the independent sources by using the estimated
basis vectors. An algorithm for learning this type of basis was proposed by
Lewicki and Sejnowski (1998a, 1998b). Another problem is to reconstruct
s(t) by using an estimate Â. Since Â is rectangular, it is not invertible and
we do not have Â−1. One idea is to use the generalized inverse Â† and
estimate s(t) by

ŝ(t) = Â†x(t). (1.4)

This gives the minimum square-norm solution of the ill-posed (underdeter-
mined) equation,

x(t) = Âs(t). (1.5)

One interesting idea is to use the least L1-norm solution corresponding to the
Laplace prior on s (Chen, Donoho, & Saunders, 1996; Lewicki & Sejnowski,
1998a, 1998b). This gives a sparse solution (see also Girosi, 1998). Estimation
of A or basis {a, . . . , am} is one important problem to understand hidden
structures in observations x. Recovery of s is another important problem,
which is carried out based on a good estimate Â. This article does not treat
the latter interesting problem of recoverings, but focuses only on the natural
gradient learning algorithm to estimate A.

Another situation is the undercomplete case where m < n and one wants
to extract p independent signals from mixtures of an unknown number
m < n of original signals. Cichocki, Thawonmas, and Amari (1997) proposed
a method of sequential extraction. We give the natural gradient learning
algorithm in this case too.
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2 Orthogonal Matrices and Stiefel Manifolds

It is a useful technique to whiten x by preprocessing (Cardoso & Laheld,
1996). We assume that observed vector x has already been whitened by
preprocessing so that the covariances of xi and xj are 0. This does not imply
that xi and xj are independent. Principal component analysis can be used
for this preprocessing. This gives

E
[
xxT

]
= In, (2.1)

where In denotes the n×n unit matrix and E denotes the expectation. Since
the scales of the source signals are unidentifiable, we assume that source
signals s are normalized,

E
[
ssT

]
= Im, (2.2)

without loss of generality.
By substituting equation 1.1 in 2.1, we have

E
[
AssTAT

]
= AImAT = AAT = In. (2.3)

In the overcomplete case where n < m, this implies that n row vectors of
A are mutually orthogonal m-dimensional unit vectors. Let Sm,n be the set
of all such matrices. This set forms a manifold known as a Stiefel manifold.
When n = m, such a matrix is an orthogonal matrix, and Sm,n reduces to the
orthogonal group On. The search space of matrices A in the overcomplete
case is, hence, the Stiefel manifold Sm,n. Algebraically, it is represented by
the quotient set

Sm,n = Om/Om−n. (2.4)

Since On is a Lie group, we can introduce the Riemannian metric in it in the
same manner as we did in the case of the set Gl(n) of all the nonsingular
matrices (Yang & Amari, 1997; Amari, 1998). Since Sm,n is the quotient space
of two orthogonal groups, the natural Riemannian structure is given to Sm,n.
(See Edelman, Arias, & Smith, 1998, for the explicit form of the metric and
mathematical details of derivation.)

In the undercomplete case, prewhitening may eliminate the redundant
components from x, so that the observed signals span only m dimensions
in the larger n-dimensional space of observed signals x. In this case, A can
be regarded as an orthogonal matrix, mapping m-dimensional s to a m-
dimensional subspace of x. However, it often happens because of noise that
x’s span the whole n dimensions, where n is not equal to the number m of
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the source signals, which we do not know. In such a case, we try to extract
p independent signals (p ≤ n) by

y =Wx, (2.5)

where W is an p×n matrix. When W is chosen adequately, y gives p compo-
nents of s. The recovered signals by an unmixing matrix W can be written
as

y =WAs. (2.6)

Therefore, p signals among m sources are extracted when WA is an p × m
matrix whose p rows are different and each has only one nonzero entry with
value 1 or −1. This shows that

Ip = E
[
yyT

]
= WE

[
xxT

]
WT

= WWT. (2.7)

Hence, p rows of W are mutually orthogonal n-dimensional unit vectors.
The set of all such matricesW is the Stiefel manifold Sn,p.

3 Minimizing Cost Function

Let us first consider a candidate A of the mixing matrix in the overcomplete
case and put

y = ATx. (3.1)

Since the true A satisfies equation 2.3, we have

x = Ay, (3.2)

so that y is an estimate of original s. However, there are infinitely many y
satisfying equation 3.2 and equation 3.1 does not give original s even when
A is the true mixing matrix. We do not touch on the problem of extracting s
by the technique of sparse representation (see Lewicki & Sejnowski, 1998a,
1998b). We focus only on the problem of estimation of A.

Let us consider the probability density function p(y,A) of y determined
by A ∈ Sm,n. Here, A is not a random variable but a parameter to specify a
distribution of y. The probability density p(y,A) is degenerate in the sense
that nonzero probabilities are concentrated on the n-dimensional subspace
determined by A.
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Our target is to make the components of y as independent as possible.
To this end, let us choose an adequate independent distribution of y,

q(y) =
m∏

a=1

qa(ya). (3.3)

One idea is to define a cost function to be minimized by the Kullback diver-
gence between two distributions p(y,A) and q(y),

C(A) = KL
[
p(y,A) : q(y)

]
=
∫

p(y,A) log
p(y,A)

q(y)
dy. (3.4)

This shows how far the current p(y,A) is from the prescribed independent
distribution q(y) and is minimized when y = ATx are independent under a
certain condition (Amari et al., 1997). Note that p(y,A) is singular, but C(A)
has a finite value, whereas KL[q(y) : p(y,A)] diverges. The entropy term

−H =
∫

p(y,A) log p(y,A)dy (3.5)

does not depend on A because log |AAT| = log |In| = 0. Hence, this is
equivalent to the following cost function,

C(A) = −E

[
m∑

a=1

log qa(ya)

]
− c, (3.6)

where c is the entropy ofy. Such a cost function has been derived by various
considerations (Amari et al., 1997; Bell & Sejnowski, 1995; and many oth-
ers). We apply the stochastic gradient descent method to obtain a learning
algorithm.

In the underdetermined case, we also use the cost function

C(W ) = −E
[∑

log qa(ya)
]
, (3.7)

where y =Wx.

4 Gradient and Natural Gradient

The gradient of

l(y,A) = −
∑

log qa(ya) (4.1)
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is calculated easily by

dl = ϕ(y)Tdy = ϕ(y)TdATx, (4.2)

where ϕ(y) is a vector composed of ϕa(ya), ϕ(y) = [ϕ1(y1), . . . , ϕn(yn)]T,

ϕi(yi) = − d
dyi

log qi(yi), (4.3)

and

dy = dATx (4.4)

is used. We then have the ordinary gradient

∇l =
(
∂l
∂Aib

)
= xϕ(y)T = Ayϕ(y)T. (4.5)

SinceA belongs to the Stiefel manifold, the steepest descent direction of
the cost function C is given by the natural gradient ∇̃l, which takes the Rie-
mannian structure of the parameter space. When we know the explicit form
of p(y,A), we can use the Fisher information matrix to define a Riemannian
metric in this manifold. However, we do not know the probability density
functions of the source signals in the case of blind source separation. In
such cases, we cannot calculate the Fisher information. However, when the
parameter space has a Lie group structure, we can introduce an invariant
Riemannian metric, as has been done in the case of n = m (Amari et al.,
1996). Note that the Fisher information metric is also Lie group invariant.

In the present case, an invariant metric is derived from the Lie group
structure of the two orthogonal groups into account. Edelman et al. (1998)
showed an explicit form of the natural gradient in a general Stiefel manifold.
In the present case, it is given by

∇̃l = ∇l−A (∇l
)T
A

= A
{
yϕ(y)T − ϕ(y)yTATA

}
. (4.6)

Therefore, the increment 1At = At+1 −At by natural gradient learning is
given by

1At = ηtAt

{
ϕ(yt)y

T
t A

T
t At − ytϕ(yt)

T
}
, (4.7)

where η is a learning constant. Since

AAT = In (4.8)
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should hold throughout the learning processes, 1A should satisfy

1AAT +A1AT = 0. (4.9)

Equation 4.7 satisfies this constraint.
In the underdetermined case,

dl(y) = ϕ(y)TdWx. (4.10)

Hence, the gradient is

∇l = ϕ(y)xT. (4.11)

The natural Riemannian gradient in a Stiefel manifold is ∇̃l = ∇l −
W {∇l}TW . We use their result and apply it to our case. Then the natural
gradient is given by

∇̃l = ϕ(y)xT − yϕ(y)TW . (4.12)

The learning rule is

∇W t = −ηt∇̃l = −ηt

{
ϕ(yt)x

T
t − ytϕ(yt)

TW t

}
. (4.13)

When n = m, A or W is orthogonal, and our result reduces to the known
formula (Cardoso & Laheld, 1996) of the natural gradient in the space of
orthogonal matrices,

∇̃l =
{
ϕ(y)yT − yϕ(y)T

}
W. (4.14)

This is the natural gradient in the prewhitened case where the parameter
space is the set of orthogonal matrices.

When n = m and no prewhitening preprocessing takes place, the natural
gradient is given by

∇̃l =
(
I −ϕ(y)yT

)
W (4.15)

(Amari, Cichocki & Yang, 1996; Amari, 1998; Yang & Amari, 1997). When
prewhitening takes place, the set ofW (orA) reduces from the general linear
group to the orthogonal group. In the orthogonal group, 1X = 1WW T

is skew symmetric so that ∇̃lW T is skew symmetric. The natural gradient
automatically satisfies this condition. This is the reason that the natural
gradient in the Lie group of orthogonal matrices takes the skew-symmetric
form of equation 4.14.
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We may consider the natural gradient without prewhitening. In this case,
a generalA can be decomposed into

A = UΛV (4.16)

by the singular value decomposition, where Λ is a diagonal matrix. We
may derive the natural gradient in the general nonprewhitened case by
considering this decomposition of matrices.
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