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Cells send and receive signals through pathways that have been
defined in great detail biochemically, and it is often presumed that
the signals convey only level information. Cell signaling in the
presence of noise is extensively studied but only rarely is the speed
required to make a decision considered. However, in the immune
system, rapidly developing embryos, and cellular response to stress,
fast and accurate actions are required. Statistical theory under the
rubric of “exploit–explore” quantifies trade-offs between decision
speed and accuracy and supplies rigorous performance bounds and
algorithms that realize them. We show that common protein phos-
phorylation networks can implement optimal decision theory algo-
rithms and speculate that the ubiquitous chemical modifications
to receptors during signaling actually perform analog computa-
tions. We quantify performance trade-offs when the cellular sys-
tem has incomplete knowledge of the data model. For the problem
of sensing the time when the composition of a ligand mixture
changes, we find a nonanalytic dependence on relative concentra-
tions and specify the number of parameters needed for near-optimal
performance and how to adjust them. The algorithms specify the
minimal computation that has to take place on a single receptor
before the information is pooled across the cell.

signal transduction | sequential probability ratio test

The exigencies of operations research during the second world
war led to the following problem: Given a stream of data that

is drawn from one of two prescribed models M1 or M2, what is
the quickest way to decide between them subject to bounds on the
errors? The solution found by Wald (1, 2) computes the ratio of
two conditional probabilities using the data up to time t,

RðtÞ ¼ PðdatajM1Þ=PðdatajM2Þ; [1]

and calls M1 when R>H1 and M2 when R<H2 and waits for
more data otherwise. The thresholds H control the errors; e.g.,
larger H1 decreases the odds of deciding M1 when the data
come from M2. For the task of distinguishing two Gaussians with
different means, the average decision time for Wald’s algorithm
is a factor two times shorter than using a fixed averaging time for
the same error rate. This is a simple example of a general class of
problems termed “exploit–explore”; i.e., either decide or accumu-
late more data (3, 4). They are used in medical statistics to decide
when a clinical trial has generated enough data for a conclusion.
For the problems that concern us, the next step in complexity

was taken by Shiryaev (5–7), who considered the optimal detec-
tion of change points. A stream of data is presented and the model
changes from M1 to M2 at an unknown time θ. The algorithm
calls the change point at time t to minimize a linear combination
of the false positive rate (e.g., t≤ θ) and the decision time mean
ðt− θÞ when t> θ. Again the algorithm “knows” the models
M1, M2.
Another step in complexity, about which we have little to say,

corresponds to situations where the statistics of the hypotheses
to be discriminated are not available or too elaborate to be ex-
ploited. An example in case is when the statistics of the stream of
data are actively modified by the actions of the receiver; i.e., the
decision process feeds back onto the input statistics. Optimal
strategies are then difficult to prove but the “infotaxis” heuristic
may apply in very uncertain situations, e.g., for biological problems

such as searching for a source of molecules dispersed in a tur-
bulent environment (8).
Neurobiology presents many examples of optimal decision

problems as suggested by the title of a recent review, “Seeing at
a glance, smelling in a whiff: Rapid forms of perceptual decision
making” (9). These problems are amenable to experiment, typ-
ically posed in the Wald limit, and there are quantitative bounds
on performance that are independent of neural parameters (10).
The appeal is similar to that of investigating the performance
of the eye, subject to the physical constraints of optics. However,
when moving from mathematics to neural systems even theo-
retically, additional questions arise, such as, How well can neural
circuits compute the optimal algorithm? How much memory is
required? And is there some neuron whose firing level encodes
the likelihood ratio R (11)?
In contrast to the extensive neurobiology and psychology lit-

erature, optimal decision theory has largely been neglected at the
level of cell signaling, with the exceptions of refs. 12 and 13, in
contrast to information theory that readily passes between the
two domains (14–16). Rapid and accurate decisions seem as much
a part of the cellular world as of the neural one. T cells in the
immune system have to sample many protein fragments for
potential antigens (17). Greater speed at fixed accuracy allows
more extensive sampling. Bacteria have to sense DNA damage
and respond appropriately (18). Chemotaxis by bacteria or
eukaryotic cells such as neutrophils clearly is facilitated by rapid
detection of gradients (19, 20). There is a plausible fitness gain if
embryonic development is accelerated in species such as insects
and amphibians that develop outside of the mother.
However, the signaling context requires different models than

in neural systems. A natural model for a receptor, the signal
transduction layer in neural terms, assumes that only the ligand
binding times are available for downstream decisions. We show
how simple analog computation built from standard biochemical
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components can come close to the optimal performance. We
consider both the fixed-time origin (Wald) and change-point
problems. In each case we pose two computational tasks: sensing
the absolute level of a single protein and detecting when the
composition of a mixture changes at fixed total concentration.
The uncorrelated nature of protein binding events implies that
the accumulation of a single decision variable suffices for optimal
performance, and no additional memory is needed. Parameter
selection for the circuit doing the discrimination is clearly es-
sential for optimal performance. Thus, we address the number of
parameters needed for a good approximation and a plausible
mechanism for their selection in vivo. In the embryo it may be
reasonable to assume evolution has jointly optimized the signal
and receiver to ensure rapid information transmission.
The statistical theory of Wald and his successors is predicated

on the assumption that the data presented to the decision ma-
chinery are derived from one of the two models being compared.
Mathematics furnishes no guidance as to how Eq. 1 performs
otherwise. We show by example that counter to intuition, when
the data are “easier”, i.e., present a greater contrast than the
model assumes, the performance of Eq. 1 can actually degrade.
This problem can be “cured” by suitably generalizing the states
being compared. This complicates the calculations, but is re-
quired for biological realism.

Results
The typical vertebrate signaling pathway has over 10 genes that
operate from the presentation of a signal to its realization through
transcription (www.stanford.edu/group/nusselab/cgi-bin/wnt/; refs.
21, 22). This complexity seems in excess of what is needed to
transmit merely level information and the component overload is
attributed to the exigencies of biochemistry or evolutionary acci-
dent. We consider the alternative that natural signals are dynamic
and the pathway uses that temporal history to make decisions.
Because there are few single-cell experiments that present com-
plex signals, we suggest some problems the cell may need to solve
and compute the performance of simple biochemical systems.
We assume that the only information a single receptor has

about the extracellular environment is whether it is bound by a
ligand or not. Binding can of course elicit downstream changes in
receptor conformation, binding to other receptors, and phos-
phorylation cascades, all of which we consider as possible analog
“computations” performed on the time history of receptor oc-
cupancy. We consider two idealized tasks: (a) distinguishing two
concentrations of the same ligand and (b) detecting a new com-
ponent (or agonist in the immune context) added to a preexisting
“pure” or “self” state. We keep total concentration fixed when
the composition changes in b to distinguish the problem from a.
The temporal context can be either (i) data from one of the possible
states are presented at a defined time t ¼ 0 or (ii) the data change
from state i to state ii at an unknown time that is to be determined.
For all combinations of tasks and contexts, the cell has to decide
as rapidly as possible subject to an error bound. We first pose our
two computational tasks (a, b) in the Wald limit with a defined
initial time, i.e., a ratio test, Eq. 1, and then consider the more
realistic (time) change-point problem.

Ratio Test for Concentrations. Consider a single receptor that is
empty/occupied for a series of times ½s1; t1; s2; t2; ::�; then the
probability for observing the corresponding transitions is

Pðsi; tiÞ¼ ke−ks1ds1νe−νt1dt1ke−ks2ds2⋯; [2]

where k is the on rate and ν is the off rate and the string of events
is cut off by the current time t. Because we are interested in the
long time limit, we do not consider the initial state and assume t
falls just after one of the si; ti. With only one species of ligand, the
Wald sequential probability ratio test (SPRT) takes the ratio of

Eq. 2, evaluated for the two concentrations under consideration.
Then the factors νe−νti cancel because the dissociation events do
not distinguish between the hypotheses; the off rates are identical.
Setting k ¼ ϕL for the two ligand concentrations L1;2, one finds

ln
�
PðL2Þ
PðL1Þ

�
¼ −ϕðL2 −L1Þ

Z t

0

ð1− nðsÞÞdsþ JþðtÞln
�
L2

L1

�
; [3]

where nðtÞ ¼ 0; 1 is the receptor occupancy at time t and JþðtÞ is
the number of 0→1 transitions up to t.
For times much longer than the typical binding/unbinding

times, we expect that the log-likelihood ratio is well approxi-
mated by Gaussian diffusion with drift. In SI Appendix, we detail
the calculation of the receptor occupancy statistics that allows
us to obtain the mean and the diffusivity for the log-likelihood.
The expression for the drift reads

d
dt

�
ln
�
PðL2Þ
PðL1Þ

��
¼ νϕ

νþ ϕL

�
L1 −L2 þ L ln

�
L2

L1

��
: [4]

The concentration L corresponds to the real process generating
the data, which can possibly differ from the concentrations as-
sumed in computing the probability ratio, Eq. 3. Note that the
drift, Eq. 4, is defined as the rate of information production since
the left-hand side (for data generated by one of the two models)
is the rate of increase of the Kullback–Leibler relative entropy
between the two distributions to be discriminated, which controls
the error in hypotheses discrimination (Chernoff–Stein lemma;
see, e.g., p. 383 in ref. 23).
It is important to consider the behavior of the average drift,

Eq. 4, when the data presented to the ratio test, represented by
L, do not correspond to either of the two ligand concentrations,
L1;2 assumed in constructing the ratio. For L1 >L2 the drift is
a monotone decreasing function of L. Thus, if L>L1 or L2 >L,
i.e., the data are easier to discriminate than the model assumes,
the average drift will move the probability ratio more rapidly
toward the decision thresholds. (The analogous remarks hold if
L1 <L2.) More formally, if one desires to distinguish two states
of concentration that can lie above or below a band around L,
then the strategy that ensures that the most difficult case is done
as well as possible (Maxi-Min strategy in game theory) would
be to chose L1;2 in Eq. 4, as the concentrations defining the
excluded band.
The diffusion approximation to the SPRT log-likelihood maps

the decision process into the first passage time for two adsorbing
boundaries and permits the analytic calculation of the decision
time in terms of the imposed error rates (SI Appendix). The dif-
fusion approximation works well provided the decision is based on
several binding/unbinding events, as shown in Fig. 1. An important
consequence of the analytical formula that we derive in SI Ap-
pendix is that the average decision time behaves as 1=ðL1−L2Þ2
for small differences between the two levels to be discriminated. It
follows that the discrimination of a 1% difference requires times
of the order of 104 (in units set by the timescale of the elementary
events) (Fig. 1).
The scaling of the inverse decision time with the square of the

concentration difference is just a restatement of the law of large
numbers and was first used in chemo-sensory context by Berg
and Purcell (24) and refined as a maximum-likelihood calcula-
tion in ref. 25. The question being addressed in these papers is:
How accurately can the concentration be measured from binding
events occurring over a prescribed length of time? The SPRT
asks a different question and although the scaling with concen-
tration is the same, the average decision time must be faster and
Fig. 1 shows a speedup by two to three times for the same error
rate. Although the maximum-likelihood calculation is of course
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a valid bound, if one thinks mechanistically about a gene net-
work, it is more likely that a “decision” is made when sufficient
information accrues, rather than after a prescribed averaging
time encoded in the genome. Note also that the distribution of
completion times for a gene network, such as one would compute
by Laplace transforming the master equation, is logically distinct
from the SPRT that gives the optimal bound for the average
decision time for any algorithm.

Ratio Test for Mixtures. Consider a situation where a ligand with
off rate ν1 is presented to the receptor alone or mixed with a
second ligand with off rate ν2 < ν1. We assume the on rates per
molecule are the same and the total concentration is invariant so
now only the off rates survive when the ratio of Eq. 2 is formed.
The analog to Eq. 3 is constructed by taking the ratio of the
probability per time for a jump off the receptor under the mix-
ture assumption, ð1−wÞν1e−ν1t þ wν2e−ν2 t, to the same quantity
with w ¼ 0, which is the probability density in the pure ensemble,

Rðw; tiÞ ¼ 1−wþ w
ν2
ν1

eðν1−ν2Þti ; [5]

ln
�
PðwÞ
Pð0Þ

�
¼
Xn
i¼1

lnRðw; tiÞ; [6]

where w � 1 is the fraction of the second ligand in the mixture, ti
are the binding times, and the sum on n is constrained by the
total time t. If the ligand is bound at the current time t, the last
term in the sum is slightly different as it does not contain the
factor ν2=ν1; we neglect here this minor correction to simplify
notation (see SI Appendix for more details). Note that the optimal
function to discriminate between the two hypotheses, pure vs.
mixture, contains three parameters characterizing the data: w, ν1;2.
The immune system presents a typical example of the type of

discrimination task we are studying. Thus, one interesting limit is
ν1=ν2 > 2 and w � 1; there are a few agonists that bind to the T-
cell receptors for more than twice as long as self. Then the
leading terms in both the average and the variance of Eq. 5 (and
thus the decision time) are nonanalytic in the admixture and

scale as w
ν1

ν1−ν2 . To be explicit, the sum over the independently

sampled ti in Eq. 6 converges to the integral of ln(R) in Eq. 5
over either the pure ðρðtiÞ ¼ ν1e−ν1tiÞ or the mixture ðρðtiÞ ¼
wν2e−ν2 ti þ ð1−wÞν1e−ν1tiÞ distributions. The leading, and singular
term for small w can be derived explicitly by changing variables in
the integral average over the distributions and agrees with the
exact hypergeometric function in SI Appendix, Eqs. 24 and 25,

hlnRðw; tÞipure ’ −
�
ν2
ν1

�α wα

α− 1

Z∞
0

x1−α

ð1þ xÞ2 dx; [7]

hlnRðw; tÞimix ’
�
ν2
ν1

�α wα

α− 1

Z∞
0

x1−α

1þ x
dx; [8]

where α≡ ν1
ðν1 − ν2Þ and 1< α< 2. Numerically Eqs. 7 and 8 are

∼ð0:7; 0:92Þ times the exact values for w ¼ ð0:1; 0:01Þ, respec-
tively, and corrections scale as Oðw2Þ. For 1< ν1=ν2 < 2 all quan-
tities scale as w2 and Eqs. 7 and 8 do not apply.
The average decision time is shown in SI Appendix to be

∝1=drift × f ðdrift=varianceÞ, where f is a function computed
explicitly and drift and variance refer to the log-likelihood of
ln(R) in Eq. 5. The formula is derived using the diffusion ap-
proximation, which is justified as decision times are very long in
the limit w→ 0. Because the average and the variance of ln(R) in
Eq. 5 have the same scaling in the limit of small w, we conclude
that the decision time behaves as w−2 or w−α, depending on the
ratio ν1=ν2.
The fractional power of w in the decision time for α< 2 can be

derived in elementary terms by posing a suitable statistical test.
Given a total of N samples, define a cutoff time T such that
Ne−ν1T ∼ 1; i.e., we expect to see only one event longer than T in
the pure ensemble. Then the minority constituent of the mixture
is visible in the tail of the distribution if the expected number of
LONG events for the mixture, Nwe−ν2T � 1. Eliminating T from
the two equations gives N � w−α, which agrees with the exact
calculation. It is obviously easier to detect a minority constituent
with a longer rather than shorter off time than that of the host.
When 1< ν1=ν2 < 2, we can estimate how the decision time

varies with w by comparing the difference in mean receptor occu-
pancy times in the pure and mixed ensembles and comparing with
the standard deviation (SD). That is, wð1=ν2 − 1=ν1Þ exceeds the
variance, 1=ðν1

ffiffiffiffi
N

p Þ, provided N � 1
w2. This agrees with the pre-

vious estimate when ν1 ¼ 2ν2 and is less stringent, i.e., allows
smaller N, when ν1 < 2ν2.
Now in analogy with the discussion of Eq. 4 when the data L

differ from the concentrations L1;2 assumed in the model, we
inquire how the ratio test for mixtures performs when the off rate
for the majority component of the data νd is larger than the
analogous parameter, ν1, in Eq. 5. This should make it easier
to detect when the minority species with a smaller off rate
ν2 < ν1 < νd is present. However, for large enough νd the ratio test
will classify the mixture data as pure (Fig. 2). The long binding
events correctly favor the mixture, but the excess of short events
contributes a negative drift to lnRðw; tÞ that eventually over-
whelms the positive drift from the long events (SI Appendix, Fig.
S4). To fix this problem we need to include a realistic formula-
tion of the pure system, namely of the fact that it might be
composed of several types of ligands and that its exact compo-
sition is generally unknown.
Assume the pure system consists of a mixture of M species

with off rates νi and unknown weights wi that sum to one. Then
the probability of observing a string of times ti; i ¼ 1; . . . ;N is
computed from the probability of the times conditioned on the
weights followed by an integral over the wi with a prior we take
as flat,
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Fig. 1. Average decision time for the Wald SPRT (red +) and its diffusion
analytical approximation (aqua squares) derived in SI Appendix. The model
parameters are ν ¼ 1, ϕL2 ¼ 1, with variable ϕL1 on the abscissas. The data
for discrimination are sampled with an on rate ϕL ¼ 1. Precisions (false
positive and false negative fractions) are 1%. The blue Xs are the times that
would be required by standard maximum-likelihood decisions, using a fixed
sample size, the length of which is chosen to ensure the same 1% precision
(see SI Appendix for details). Note that Wald’s SPRT is more than twofold
faster than standard maximum likelihood even in the asymptotic regime of
small L1 − L2.
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pðtjwÞ ¼
XM
i¼1

wiνie−νi t; [9]

Pðt1; . . . ; tNÞ ¼
Z

dwδ

 XM
i¼1

wi − 1

!
e
PN

i¼1
lnðpðti jwÞÞ: [10]

For large N the integral over w can be evaluated by a saddle
point. The sum over the ti in the saddle equation for the wi
should self-average and can be replaced by the time ensemble
average. It is easy to check that the saddle equation for wi is
always solved by the wi used to generate the data if the νi of
data and model are the same; otherwise the solution is non-
trivial. The OðNÞ term from the saddle has calculable OðlogNÞ
corrections from fluctuations around the saddle (SI Appendix).
The choice of prior, provided it is smooth and nonzero around
the saddle, contributes only a constant. The same calculation
can be done for the mixture data, with of course an indepen-
dent integral over the relevant weights and a new saddle point
(SI Appendix).
Thus, the optimal decision method to distinguish the admixture

of a minority of long-lifetime species in a soup of shorter resi-
dence times implicitly determines the composition of the soup.
This would seem to make an analog biochemical calculation in-
surmountable. However, the existence of a saddle point approx-
imation does imply that the optimal algorithm can estimate the
ratio by two terms of the form in Eq. 9 with distinct and unknown
values of w. We develop below an approximation to Eq. 9 that can
be easily optimized and biochemically implemented. Thus, opti-
mizing the parameters in a biochemical model that locates the
time change point will implicitly incorporate information about
the saddle approximation, without requiring the intermediate so-
lution of Eq. 10. The existence of a saddle approximation suggests
that optimization of the complete problem could be simple, and
indeed it is, as shown below.

Change Point for Mixtures. We now shift from the problem of
distinguishing two states presented at a defined time to finding
the time when the state changes in a defined way. In the previous

case where the statistics of the log probability ratio were Gaussian
and easy to calculate with no further approximations, the change-
point problem is more overtly dynamic.
Shiryaev (5, 6) considered the process _x ¼ χðt− θÞ þ η, where

χ is the Heaviside step function, χðt≤ 0Þ ¼ 0; χðt> 0Þ ¼ 1, η is
δ-correlated noise, and the change-point θ has a Poisson distri-
bution defined by its rate. The task is to define an algorithm to
determine θ from a stream of data xðtÞ that minimizes a linear
combination of the false positive rate or precision and the de-
cision time [average of ðt− θÞχðt− θÞ]. We assume θ is Poisson
distributed, so ultimately the change happens, but one can equally
formulate a stationary problem with a limit on the false positive
rate per time (7).
As before the optimal solution computes the probability ratio

that the change at time θ happens before the current time,
normalized by the probability it has not yet happened, with all
probabilities conditioned on the history of xðtÞ; symbolically,
QðtÞ ¼ Pðt> θ j xð0 . . . tÞÞ=Pðt< θ j xð0 . . . tÞÞ. A decision is made
when Q≥H, where H is a numerical parameter related to the
assumed error function. When x derives from white noise, Q can
be computed incrementally in time with no auxiliary memory, and
explicit expressions are given in SI Appendix for several cases.
We can again time slice the continuous-time recursion for Q

after each off event n as was done in Eqs. 5 and 6. The discrete
iteration reads in the simplest case of only two off rates (see SI
Appendix for details),

Qn ¼ Rðw; tnÞ
1− λ

ðλþQn−1Þ; [11]

where Qn is the conditional probability ratio, just defined, after
the series of the t1; . . . ; tn unbinding events, Rðw; tnÞ is the prob-
ability ratio defined in Eq. 5, and λ is the probability per iteration
for the change of statistics; i.e., λð1−λÞn−1 is the probability that
the change point will occur for the nth binding event. To bridge
the reduction of Eq. 11 to an analog computation and deal with
extensions, e.g., Eqs. 9 and 10, it is expedient to introduce the
following iterative model for the mixture change-point problem
that can be solved analytically and is derived by taking the log of
Eq. 11:

yn ¼ − cþmaxðtn −T; 0Þ þmaxð yn−1; 0Þ: [12]

Its relation to Eq. 11 is apparent if we set Q ¼ λey, approximate
lnð1þ eyÞ∼maxð y; 0Þ and lnðRÞ ¼ ln

	
1−wþ w ν2

ν1
eðν1−ν2Þt



∼

− c1 þ c2maxðt−T; 0Þ, and finally rescale both c1 þ lnð1− λÞ
and y to eliminate c2. The true probability ratio directly trans-
lates to the error rate and the decision threshold, H, for Qn in
Eq. 11 is largely independent of the data. However, because
of rescalings, the threshold for Eq. 12 is contingent on the
data, as are c;T. The entire parameter space of the model is
thus 3D ðc;T;HÞ. The piecewise linear approximation to Eq. 5
is accurate in mean square to ∼ 1% for all w< 0:2; ν2 < 0:3ν1.
Eq. 12 makes it intuitive that the optimal decision algorithm

takes either a small downward step of c∼w=ðν1 − ν2Þ � 1 with
probability ∼ 1− e−ν1T or an occasional Oð1Þ step upward. The
floor on y encodes the prior expectation of a fixed probability per
time for a change in data to occur. Clearly an accurate decision
based on the criterion y ≥ H requires a positive drift vy ≡ h−cþ
maxðt−T; 0Þimix in the mixture ensemble and a near zero or
negative drift vy ≡ h−cþmaxðt−T; 0Þipure in the pure ensemble to
avoid reaching the threshold before the switch of the statistics,
i.e., typically ’ 1=λ iterations.
In the pure ensemble, y has a stationary distribution that can

be calculated along with the rate per iteration, γ, that y hits H.
The drift-diffusion approximation that we used for the proba-
bility ratio accumulated from a fixed time does not work for
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Fig. 2. The ratio test can fail when the data presented do not conform to
the model. The average of the log-likelihood ratio as defined in Eqs. 5 and 6
is plotted vs. the off rate of the majority component in the data, νd . The
model has w ¼ 0:01, ν1 ¼ 1, and ν2 ¼ 0:3. The upper curve (crosses) refers to
mixture data with the same w and off rates νd ,ν2 whereas the lower one
(squares) refers to data generated entirely with the off rate νd . The upper
curve is positive for νd ∼ ν1, but ultimately becomes negative, implying a
failure to detect the mixture.
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Eq. 12 but we can use the so-called Poisson clumping heuristics
(26) to obtain the corresponding error rate (see SI Appendix for
details). We work in the limit c � 1 and lump all instances of
y < 0 into δðyÞ,

β ¼ ν1 − e−ν1T
�
c> 0; [13]

PDFð yÞ ¼ β

ν1
δð yÞ þ βe−ν1T

ν1c
e−βy; [14]

γ ¼ e−βH−ν1T

ν1cþ ν21
�
β2
: [15]

The parameter γ is the intrinsic characterization of the false
positive rate, i.e., per iteration of Eq. 12. The false positive rate
per trial used for Eq. 11 is recovered by multiplying γ by the ex-
pected waiting time, i.e., the average of θ or 1=λ. Using Eq. 15,
the threshold H can be calculated from the false positive rate. To
find the average decision time one can then initialize y by sam-
pling from Eq. 14 to generate binding times from the mixture
ensemble and iterate until hitting H.
We can now quantify the errors inherent in the Eq. 12 model

by using the natural error metric of the average decision time at
a fixed false positive rate. If we take data generated with the
same parameters ν1 ¼ 1 and ν2 ¼ 0:3 as in Fig. 2, γ ∼ 10−5 − 10−4,
and w ¼ 0:1, then Eqs. 11 and 12 give decision times within 10%
(Fig. 3). In fact, simulating Eq. 12 over a grid of ðc;TÞ param-
eters shows a limited band where the drift velocity, vy, has the
appropriate sign for both the pure and the mixed data. The shape
of the decision-time landscape in Fig. 4 shows that the optimum is
easy to reach by any gradient-descent evolution. This observation
is relevant for the biochemical implementation of Eq. 12 that is
described below.
When multiple frequencies are included in the pure ensemble,

the situation is as follows. If the weights of the various fre-
quencies composing the data are known to the model, then Eq.
11 still applies with the probability ratio Eq. 5 replaced by

R′ðw; tÞ ¼ 1−wþ w
νae−νatPM
j¼1wjνje−νj t

; [16]

where the denominator coincides with the likelihood previously
defined in Eq. 9 and νa is the frequency of the new molecular
species (antigen) added into the mixture at a random time.
If the weights wj in Eq. 16 are not a priori known, then

Bayesian integrals as in Eq. 10 are required. When a new binding
event tNþ1 is added to the sum in the exponential of the inte-
grand in Eq. 10, the value of the resulting integral Pðt1; . . . ; tN ; tNþ1Þ
is not obviously related to Pðt1; . . . ; tNÞ and tNþ1 (except in the limit
of large N when a saddle approximation is justified) (SI Appendix).
Determining the Bayesian optimal decision becomes then quite in-
volved even from a purely computational perspective, let alone
implementing it biochemically.
However, as shown in Fig. 3, the three-parameter Eq. 12

model cuts this Gordian knot, ensuring sensible speed and ac-
curacy. Comparing its performance to that of Eq. 11 for a ran-
dom ensemble of mixtures, we see indeed that speed is slower by
20–30% only, over a broad range of precisions. It is worth
remarking that in Eq. 16 we are using the information on the
weights in the mixture for each realization of the data. We have
checked on a few realizations that discarding this information
and calculating the optimal decision with Bayesian integrals as in
Eq. 10 yields, as expected, a decision-time intermediate between
Eq. 11 and Eq. 12.

The histogram of decision times for both the ratio test and the
change-point problems is contained in SI Appendix, Fig. S2. Both
distributions have an exponential tail that is ∼ 1:5− 1:6 times
narrower than a Poisson distribution, when normalized by the
mean time.

Biochemical Networks to Implement the Ratio Test for Concentrations.
We now show that the calculation of the log-likelihood ratio Eq. 3
can be realized with standard biochemical reactions. This is par-
ticularly simple because we just have to simulate by analog means
an initial value problem: The ratio test presumes an origin of
time, i.e., when the receptor is first exposed to ligands of either
concentration.
A simple procedure that gives a good approximation is to have

two chemical species E1 and E2. We assume L2 >L1 (the opposite
case is treated similarly). The first enzyme decays exponentially
when the receptor is unbound as dE1ðtÞ

dt ¼ −ϕðL2 −L1ÞE1ðtÞwhereas
the second decays when the receptor is bound as dE2ðtÞ

dt ¼ − αE2ðtÞ,
where α is a constant. The two species represent, respectively,
the exponential of the first and the second term (with the sign
inverted) in the expression Eq. 3. The E1 equation is exact,
whereas the one for E2 is just an approximation because the decay
in Eq. 3 is proportional to the binding time and not fixed.
As for the choice for the constant α, when many binding events

accumulate, the average binding time will be 1=ν. If we want to
reproduce at least on average the correct result that upon
binding there should be a factor L2=L1 in the likelihood ratio,
then we should choose α ¼ ν logðL2=L1Þ. Validity of the choice is
confirmed numerically in SI Appendix.
The next biochemical layer computes E1=E2, which approx-

imates the likelihood ratio and switches when it reaches an ap-
propriate threshold. A biochemical switch that produces such an
output is the Goldbeter–Koshland module (27). The two species
E1 and E2 act enzymatically in opposite directions on the con-
version between two forms A and A*. The detailed scheme is

Aþ E1↔AE1→E1 þ A*;A* þ E2 ↔A*E2→E2 þ A: [17]

The association/dissociation rates in the bidirectional reactions
are denoted a1, d1 and a2, d2, respectively. The two subsequent
dissociation reactions proceed at rates k1 and k2. In the limit
when the total amount of the two enzymes E1T ;E2T � AT , the
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Fig. 3. Decision time for the optimal strategy, Eq. 11 (circles), compared
with the three-parameter model, Eq. 12 (squares), for a range of pre-
cisions. (In addition, Eq. 11 uses the actual composition of the data.) The
mixture is generated with three frequencies ν1 ¼ 1, ν2 ¼ 1:5, and ν3 ¼ 2
and its composition is random. The agonist species with νa ¼ 0:3, w ¼ 0:1 is
added to the mixture at a Poisson-distributed time with mean 1=λ ¼ 100 in
iteration units.
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steady-state normalized concentrations A ¼ ½A�=AT and A* ¼
½A*�=AT depend on the ratio E1T=E2T only,

E1T

E2T
¼ k2

k1

A*
�
1−A* þ K1


�
1−A*

�
A* þ K2

; [18]

where K1 ¼ ðd1 þ k1Þ=ða1ATÞ and K2 ¼ ðd2 þ k2Þ=ða2ATÞ. In-
spection of [18] shows that for K1;K2 � 1, a sharp switch occurs
around k1E1T ¼ k2E2T and the output A* features a jump from
values very small to close to unity. This is the regime that is of
interest to us. We can then use two Goldbeter–Koshland mod-
ules with rates ki adjusted so that they switch to signal a decision at
the high or low threshold values of the probability (enzyme) ratio.
The response time of the Goldbeter–Koshland (GK) system does
slow down at the transition point, but this is not a serious issue
for us, because either the forward or the backward rate is mono-
tone increasing and thus moves through the transition region,
and the decision becomes rapid. Our simulations of course in-
clude proper dynamics at the transition point in the GK system.
Results of numerical simulations for the previous model are

shown in Fig. 5. The main source of error is due to the fact that
E2 decays at an average rate for the whole period of measurement
rather than separately and discretely registering each binding as in
Eq. 3. The quality of the approximation can therefore be im-
proved by assuming adaptation mechanisms for the receptors. In
refs. 12 and 13 it was for example assumed that receptor in-
activation is the most rapid time. We have verified that fast ad-
aptation permits the system to approach the optimal behavior
when measuring on rates but obviously sacrifices all sensitivity
for off rates and thus is not a strategy we could use to detect
a small admixture of agonist. It is also not clear for all classes of
receptors that the requisite speed is molecularly achievable. We
thus present data without any receptor adaptation to show that
results are still very good and deviate by a factor two times that
of optimal over a broad range of precisions.
An alternative to regulated decay that computes an exponential

is autophosphorylation, analogous to simple noncooperative
feedback of a transcriptional activator on itself. If receptors
that dimerize and transactivate were able to rapidly exchange
partners, then the number of activated receptors would grow
exponentially. We are not aware whether this possibility has
been considered experimentally.

Biochemical Networks to Detect a Mixture Change Point.A true ratio
test, in the sense of the previous section, would occur in a cell if
there was an initial signal to start the process and a second
system that did the comparison as an initial value problem. More
likely is a single receptor that continuously monitors the envi-
ronment and needs to detect when the composition changes, i.e.,
the Shiryaev problem.
The near optimal computation of a change point with the model

of Eq. 12 simplifies its realization in biochemical terms. Consider
a typical system with slow on, fast off dynamics; e.g., the ligand-
bound receptor complex has a sequence of phosphorylation states,
Ci; i ¼ 0; . . . ;N. There is a forward rate ω for Ci →Ciþ1, a ligand
unbinding rate ν, and a rapid reversion of any Ci to the unphos-
phorylated receptor when the ligand falls off. Only CN can acti-
vate downstream events. If C0 is initialized at 1, then CiðtÞ ¼
ðtωÞi
i! e−ðνþωÞt; i ¼ 0; . . . ;N − 1 and CN ¼ R t0 ωCN−1ðt′Þe−νðt−t′Þdt′.
If instead we ask for the probability of CN conditioned on the

receptor being continuously bound for a time span t, then we can
remove the unbinding event ν from the rate equations and find

PðCNðtÞjboundÞ ¼
Z t

0

t′N−1ωN

ðN − 1Þ! e
−ωt′dt′: [19]

For large t, Eq. 19 tends to 1 as it should, and it is � 1 for
t< 1=ω∼T. To reproduce maxðt−T; 0Þ in Eq. 12 it is then
sufficient to let CN act enzymatically on some substrate pres-
ent in excess. The small constitutive negative drift in Eq. 12
could be replicated by an enzymatic degradation in a saturated
regime (see ref. 28 for a biological instance of such a mecha-
nism). In summary, the proposed chemical equivalent to Eq.
12 in differential form reads

_z ¼ CNðtÞ− c1
z

zþ e
: [20]

The positivity of y in Eq. 12 is naturally encoded by a concentra-
tion, z. The decision is made when z hits some value H and any
scale factor multiplying CN can be adsorbed into H. Provided
e � H, precisely how the degradation saturates does not matter,

Fig. 4. The landscape of the average number of iterations required for
decision vs. c,T for the Eq. 12model. The precision of the decisions is 1% and
averages are obtained over 107 realizations. The parabolic shape makes
parameters easy to optimize by evolutionary gradient descent.

Fig. 5. The behavior of the biochemical Goldbeter–Koshland (GK) module
for concentration discrimination (with a constant decay rate for E2) com-
pared with the optimal solution. The two ensembles that are compared have
ϕL2 ¼ 1:5 vs. ϕL1 ¼ 1(the unbinding rate ν ¼ 1). For the leftmost points in the
graphs ðF ¼ 1Þ, the ratio of the kinetic parameters k1 and k2 appearing in Eq.
18was fixed to have the critical values (where the GK module switches states
and “decides”) ðE1=E2Þup ¼ 1,999 and ðE1=E2Þlow ¼ 1:6×10−3, which ensure
1% false positive and false negative errors. For the other points in the
graphs, the upper/lower critical value was divided/multiplied by the factor F
shown on the x axis. (Left) The classification error for data with ϕL ¼ 1:5
(upper curve) and ϕL ¼ 1 (lower curve) vs. F. (Right) The average decision
times for the GK module (two upper curves) compared with the optimal
solutions (two lower curves) vs. F. The thresholds for the Wald optimal sol-
utions were adjusted to give the same error rate as the GK module with
corresponding data. The slower/faster curves for each algorithm refer to
data with ϕL ¼ 1:5=1, respectively; e.g., red squares show GK presented
with ϕL ¼ 1.
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because it influences the distribution of z only when it is small.
(In the derivation of Eqs. 14 and 15 we observed that a δ-func-
tion approximation for the weight around 0 was adequate in a
continuum limit.) A more serious issue is molecular noise in the
phosphorylation cascade leading to CN . However, for N-Poisson
events in series the SD in the sum scales as

ffiffiffiffi
N

p
, so the time to

activate CN becomes sharper with N. To simulate Eq. 20, one
would sample the binding time ti to the receptor and then com-
pare it with the (random) time for transitioning from state N − 1
to N, which is distributed according to the time derivative of Eq.
19. The end result for Δz is manifestly a smoothed version of
maxðti −T; 0Þ.
Biochemical Networks to Detect a Concentration Change Point. The
optimal decision algorithm to detect a change in concentration,
e.g., from L1 to L2, in a stream of data is governed by the same
Eq. 11 derived previously but the probability ratio RðtÞ in Eq. 5
is replaced by L2=L1e−ϕðL2−L1Þt. This form simplifies the equation
corresponding to Eq. 12, which becomes

yn ¼ log
�

L2

L1ð1− λÞ
�
−ϕðL2 −L1Þtn þmaxð yn−1; 0Þ: [21]

Here, we have used again the approximation logð1þ eyÞ ’maxðy; 0Þ
but the rest is now exact. Eq. 21 can be simulated biochemically
by the same scheme as above, i.e., Eq. 20.

Pooling the Output of Many Receptors.Having multiple receptors is
clearly a bonus as it allows the cell to sample the ligand-binding
statistics more rapidly and accelerates the decision process. Pro-
cessing of information from receptor occupancy and calculating
the optimal decision can be complicated, however, by coupling
among receptors. This occurs when ligand sequestration effects
are important, so that the likelihood of binding histories involves
the configuration of the entire pool of receptors. Although these
situations are possible, we show in Fig. 6 for the case of discrimi-
nating concentrations that a few-fold excess of ligands over the
corresponding number of receptors is already sufficient to make an
effective description with uncoupled receptors quite accurate.
Data are generated by Gillespie simulations of the binding/

unbinding process for R ¼ 100 receptors and a variable number
of ligands L, Fig. 6. The number of nonoccupied receptors is
denoted by R∅. We compare the log-likelihood ratio between the
actual model generating the data [that depends on the in-
stantaneous value of free ligands L−RoðtÞ] and an effective
model where free ligands are fixed at Leff . Note that receptors
are uncoupled for the latter model. Proceeding as for Eq. 3, we

obtain for the log-likelihood ratio of a trajectory extending up
to time t,

log PdataðtÞ
Peff ðtÞ ¼ −ϕ

"Z t

o

ðL−Rþ R∅ðsÞÞR∅ðsÞds−
Z t

0

Leff R∅ðsÞds
#

þ
XJþ
i¼1

log
L−Rþ R∅ðsiÞ

Leff
; [22]

where si are the times when binding events occur and their total
number up to time t is Jþ. The graph of the log-likelihood ratio
(for the best choice of Leff at any given L) vs. the number of
ligands L clearly shows that an effective description is accurate
even for a twofold excess of ligands. Furthermore, the graph of
the log-likelihoods vs. Leff shows simple concave curves, the max-
imum of which is easy to find. Note that the best Leff correspond-
ing to the maximum is, as expected, close to the average number
of free ligands L−Rþ R∅, where R∅≤R is the solution to the
quadratic stationary equation ϕðL−Rþ R∅ÞR∅ ¼ νðR−R∅Þ.
The biochemical models that we have developed above for

a single receptor immediately generalize to many receptors if we
decouple the receptors by using a fixed Leff . For the discrimi-
nation of concentrations, it is for example sufficient that un-
bound/bound receptors additively contribute to the instantaneous
decay rate of the two enzymes E1=E2. For the detection of a
change in composition, the sequence of successive phosphor-
ylations takes place on each individual receptor and then the end-
point, CN , activities for all receptors are pooled to determine
downstream events. Because receptors are independent for ef-
fective models, the rate of information acquisition is proportional
to their number R and the average decision time will therefore
reduce as 1=R.

Discussion
The wealth of genetic and biochemical information about sig-
naling pathways contrasts with the paucity of data on pathway
dynamics. At the population level most data are interpreted
around the paradigm that a ligand elicits a proportional response.
The widespread realization that the same pathway is used in many
different contexts, such as NFκB in inflammation and TGFβ in
development, cancer, and immunology, does raise the question of
whether pathways are more than passive transmission lines and in
fact “compute” or act as dynamically reprogrammable filters (29).
Posttranscriptional modifications of proteins are a natural sub-
strate in which to implement analog chemical computation, and
Jacob’s old adage of bricolage suggests that signal transduction
in cells might exploit this freedom to temporarily process signals.
The canonical receptor systems as well as ion channels (30)
possess a rich repertoire of interactions and modifications that
could implement computation (31). One should note also a dis-
tinction between embryonic signaling where both the emitter and
the receiver can be jointly tuned by evolution to process infor-
mation and true environmental sensing where the signal has a
more autonomous origin. Thus, in development, and even yeast
mating, extracellular ligand processing may be as important as
receptor interactions and posttranslational modifications in reg-
ulating pathway behavior (32, 33).
In the hope of stimulating experiments, and to explore the po-

tential of analog biochemical computation in a concrete and non-
trivial context, we have posed the problem of optimal decision
theory for cells, in the context of detecting a change in concen-
tration or composition. The problem is inherently dynamic, in that
a stream of data is presented and a decision has to be made on the
basis of the entire history. Thus, it is noteworthy, although simple to
show, that optimal performance can be realized by accumulating
a single variable in time. In a gene network context, it would seem

Fig. 6. The comparison between the full dynamics with receptors coupled
and the dynamics with decoupled receptors and a fixed effective number
Leff of free ligands. For both panels the number of receptors is 100, ϕ ¼
ν ¼ 1. (Left) The log-likelihood ratio between the actual (coupled) model
generating the data and the effective model vs. the total number of ligands
L. (Leff is optimized separately for each L.) The ratio is computed in the as-
ymptotic regime at time 10. (Right) The behavior of the log-likelihood ratio
vs. the effective number of free ligands Leff around its maximum. The total
number L of ligands is 200.
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that decisions on the fly are muchmore natural than the alternative
of averaging for a predefined time and then deciding, which has
become the calculational default.
We have reduced the biochemical complexity of real systems

to a ligand-binding step governed by equilibrium thermodynamics
followed by downstream enzymology. More complexity is unnec-
essary because we have shown that ubiquitous small enzymatic
systems suffice for near optimal performance. For the Wald
problem, the ratio of two quantities, probabilities in our case,
is naturally computed by the push–pull mechanism of Goldbeter
and Koshland (27). The probabilities themselves are the expo-
nential of a function of the input signal. Exponentials can be
simulated with regulated decay and more speculatively by cata-
lytic amplification. The most common amplification cascade as
exemplified by phototransduction does not compute an expo-
nential. What we require is the positive feedback of a transcrip-
tional activator on itself with signal-dependent modulation, so
that the factor grows exponentially in time. Using receptors that
dimerize to signal, the same function could be realized if the
dimers exchanged partners so that the fraction of active receptors
grows exponentially (34).
The computation of change points can naturally be implemented

with any system that encodes a time lag, such as a phosphorylation
cascade. The computation is easiest for the log probability ratio,
because the decision is one sided: When the indicator is large,
decide; otherwise, continue. Thus, we do not have to take the ratio
of two quantities and threshold separately on very small or very
large values. A phosphorylation cascade is indeed observed in early
T-cell activation yet the kinetic proofreading scheme is supple-
mented by the negative feedback by the phosphatase SH2 domain-
containing tyrosine phosphatase (SHP-1) (35, 36). The functional
reasons for this feedback are interesting.
T cells have to discriminate agonists from a far larger con-

centration of self antigens on the basis of only a three- to fivefold
difference in off rates and plausibly do so quickly. This is anal-
ogous to our formulation of the mixture discrimination problem.
However, in the immune system the total number of ligands can
fluctuate, whereas we kept it fixed. Comparing the two schemes,
the role of the negative feedback by SHP-1 appears then to
buffer variations in the total concentration of ligands (36). The T
cell also has to respond when a few agonists bind, whereas we
have posed the mixture change-point problem with concen-
trations, so many receptors can be bound by agonist and yet not
contribute to the decision. The optimal discrimination time T in
Eq. 12 may be large enough to exclude most agonist binding
events (recall in this context the heuristic argument for the
nonanalytic decision time ∼w−α after Eq. 8).
We have focused on the decision process for a single receptor

and it may be objected that cells are never challenged by the
bounds we have placed on the decision time because they can
always use many receptors in parallel and decide after a few on/off
times. Even in this limit performance is improved by setting the

receptor kinetic parameters as we have derived. Furthermore, we
noted throughout the paper that decision times can easily become
very long, e.g., 104 elementary events for a 1% discrimination in
concentration. The cell may optimize subsets of receptors for
various tasks by tuning cofactors or controlling access, and thus
the number of receptors available in any one context may be less
than the whole. Sheer increase of the number of receptors might
therefore not be sufficient and evolving decision strategies as
discussed here would be relevant to increase fitness.
How can one determine whether a cell is implementing a de-

cision on the fly as opposed to computing for a fixed time? First,
one would expect the decision time to scale with the strength of
the signal. The high signal–short time limit would furnish a
bound on the biochemical cascades induced by the receptor. Then
for lower stimulation, does the decision time increase while the
error rate remains fixed or does the opposite occur? Measuring
a fractional power of w for the scaling of the decision time for the
mixture change point when ν1=ν2 > 2 would be a good indication of
optimality. Comparing the actual decision time with theory would
be difficult due to uncertainties surrounding cellular parameters
and variation among cells. The histogram of decision times is not
Poisson and if well fitted by the data would suggest an optimal
decision. More loosely, if one measured the distribution of several
parameters that plausibly impact the signaling cascade and found
their distribution individually is much broader than the distribution
of decision times, it would be circumstantial evidence that the de-
cision time is acting as a constraint on cell parameters.
Another class of tests uses microfluidics to flip the environ-

ment between the two states being compared. It would be pos-
sible to find conditions where a probability ratio test yielded a
decision only after an immense time. The ability to control the
environment dynamics and predict the consequences would be
a strong check on the theory, but the details are very dependent
on the experimental setup.
These considerations all apply to independent cells. Its an in-

teresting and related question as to how a collection of interacting
cells subject to a common external signal makes a rapid decision to
respond, but as a collective with 100% participation. It is not
obvious that the most rapid individual response followed by sig-
naling to neighbors outperforms a more deliberate response at the
cellular level with lower variance. Cell sorting is another response
to signals that can contribute to the optimization problem. Thus,
bounds on dynamics through statistical optimization may be
a richer field of study in the cellular context than the physical limits
to performance.
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1 Occupation statistics for a receptor

The aim of this Section is the derivation of the occupancy statistics for the
Poisson process of binding/unbinding of a ligand to its receptor. Results will
allow us to obtain analytical expressions for the Wald decision time in the
approximation when the log-likelihood is well approximated by a diffusive
process with drift (see below).

We denote the total number of jumps by J = J+ + J− where J+ and
J− indicate number of jumps upward (binding) and downward (unbinding),
respectively. The Boolean receptor occupancy variable n(t) is related to the
jumps as n(t) = n(0)+J+(t)−J−(t). We shall use n and J as our independent
variables, with J+ and J− obtained via the previous expressions.

The master equations for the probability P (n, J, t) are

∂P (1, J, t)

∂t
= φLP (0, J − 1, t)− ν P (1, J, t) ;

∂P (0, J, t)

∂t
= ν P (1, J − 1, t)− φLP (0, J, t) . (1)

Since 〈n〉(t) =
∑

J P (1, J, t), we obtain the two equations

d〈n〉
dt

= φL (1− 〈n〉)− ν 〈n〉 ;

d〈J〉
dt

= φL (1− 〈n〉) + ν 〈n〉 . (2)
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After the initial transient relaxation (taking place at the rate ν + φL), the
averages converge to their steady-state expressions

〈n〉 ' φL

φL+ ν
;

d〈J〉
dt
' 2νφL

φL+ ν
;

d〈J+〉
dt

' d〈J−〉
dt

' 1

2

d〈J〉
dt

. (3)

As for second-order correlations, algebraic manipulations of the Eqs. 1
yield

dCnn(t, s)

dt
= − (ν + φL)Cnn(t, s) ;

dCnJ(t, s)

dt
= − (ν + φL)CnJ(t, s) ;

dCJn(t, s)

dt
= (ν − φL)Cnn(t, s) ;

dCJJ(t, s)

dt
= (ν − φL)CnJ(t, s) , (4)

for the connected correlations, e.g. CnJ(t, s) ≡ 〈n(t) J(s)〉 − 〈n(t)〉〈J(s)〉,
etc., where t 6= s. Equal-time correlations are obtained similarly :

Cnn(t, t) = 〈n(t)〉 (1− 〈n(t)〉) ;

dCnJ(t, t)

dt
= φL (1− 〈n(t)〉)2 − (ν + φL)CnJ(t, t)− ν〈n(t)〉2 ;

dCJJ(t, t)

dt
= 2 (ν − φL)CnJ(t, t) + ν〈n(t)〉+ φL (1− 〈n(t)〉) . (5)

The solution of the Eqs. 4 is lengthy but straightforward. The expressions
needed to compute drift and diffusivity of the log-likelihood are the following :

Cnn(t− s) =
φLν

(φL+ ν)2
e−(φL+ν)|t−s| ; (6)

CnJ(t− s) =
φLν

(φL+ ν)3
(ν − φL) e−(φL+ν)(t−s) t ≥ s ; (7)

CJn(t− s) =
φLν

(φL+ ν)3
(ν − φL)

[
2− e−(φL+ν)(t−s)

]
t ≥ s ; (8)

CJJ(t, t) ' 4
φLν

(φL+ ν)3
(
ν2 + φ2L2

)
t for t large . (9)

The expressions are valid after the relaxation of the initial transients.
For the discrimination of concentration levels, the log-likelihood ratio for

the two hypotheses reads :

ln

(
P (L2)

P (L1)

)
= −φ(L2 − L1)

∫ t

0

(1− n (s)) ds+ J+(t) ln

(
L2

L1

)
. (10)
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The current time is denoted by t, the number of jumps upward by J+(t)
and the occupancy Boolean variable (1 and 0 corresponding to the receptor
being occupied/unoccupied, respectively) by n(t). Drift and diffusivity are
obtained via the receptor occupancy statistics presented above. The expres-
sion for the drift reads :

d

dt
〈ln
(
P (L2)

P (L1)

)
〉 =

νφ

ν + φL

[
L1 − L2 + L ln

(
L2

L1

)]
, (11)

where we have used Eq. 3. The concentration L corresponds to the real
process generating the data (the value of which can possibly differ from L1

and/or L2 in the case when the two tested models are not exact). The square
of Eq. 10 gives for the diffusivity

D =
1

2

[
d

dt
〈ln
(
P (L2)

P (L1)

)2

〉 − d

dt
〈ln
(
P (L2)

P (L1)

)
〉2
]

=

νφL

(ν + φL)3

[
(φ (L2 − L1))

2 +
1

2
ln2

(
L2

L1

)(
ν2 + φ2L2

)
+φ(L2 − L1) ln

(
L2

L1

)
(ν − φL)

]
. (12)

The comparison between Eqs. 11 and 12 and average and variance of the
log-likelihood obtained by Monte-Carlo numerical data is shown in Fig. S1.
The excellent comparison between the Wald average decision time and its
diffusion approximation, given by the upcoming Eq. 15, is shown in the main
text.

2 Absorption time for a diffusive process

We consider here a stochastic process diffusing and drifting with a constant
velocity. Two absorbing boundaries are present on the two sides of the start-
ing position so that the particle is eventually absorbed. By using standard
first-passage methods (see, e.g., [1]), we derive here the expression for the
average time of absorption. The two absorbing boundaries are taken at ±K
(this entails no limitation as symmetric boundaries can always be achieved
by an appropriate choice of the origin). The starting position in the corre-
sponding system of coordinates is denoted x. The average time of absorption

3
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Figure 1: The behavior of log-likelihood average (lower red curve) and vari-
ance (upper green curve) as a function of time for φL = φL2 = 2, φL1 = 1.8
and ν = 1. The fitting straight lines correspond to the values of drift and
diffusivity in Eqs. 11 and 12.

〈Tabs〉(x) satisfies the backward Kolmogorov equation(
D
d2

dx2
+ V

d

dx

)
〈Tabs〉(x) = −1 . (13)

The general solution of Eq. 13 reads

〈Tabs〉(x) = − x
V

+ C1 + C2e
−x V

D . (14)

The two arbitrary constants C1 and C2 are fixed by the boundary conditions
〈Tabs〉(x = ±K) = 0 and we obtain the final expression

〈Tabs〉(K, x) = − x
V

+
K

2V sinh (V K/D)

[
e
KV
D + e−

KV
D − 2e−x

V
D

]
. (15)

One can also easily compute the Laplace transform Q(s, x) of the absorp-
tion time, which obeys(

D
d2

dx2
+ V

d

dx

)
Q(s, x) = sQ(s, x) . (16)

Solving Eq. 16 and noting that for x = ±K the absorption time distribution
is a Dirac-δ at the origin, we obtain

Q(s, x) =
e−

V
2D

(x+K) sinh (∆ (K − x)) + e−
V
2D

(x−K) sinh (∆ (K + x))

sinh (2K∆)
, (17)
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Figure 2: The PDFs (multiplied by their respective means) of the decision
time (rescaled by its mean) for the Ratio Test for concentrations (blue and
purple curves) and the Change Point for mixtures (green and red curves).
Parameters for the former, as defined in the body of the paper, are : ν = 1,
φL2 = 1, φL1 = 1.1 (blue) and φL1 = 1.5 (purple), data are sampled with
an on-rate φL = 1 and precisions (false positive and false negative fractions)
are 1%. Parameters for the mixture problem, as defined in the body of the
paper, see Eqs. 11 and 16, are as follows. The mixture is generated with
three frequencies ν1 = 1, ν2 = 1.5 and ν3 = 2 and its composition is uniform.
The agonist species with νa = 0.3, w = 0.1 is added to the mixture at a
Poisson distributed time with mean 1/λ = 100 in iteration units. The red
curve is for a precision (false positive detections, prior to the adding of the
agonist species) of 1% whilst the green one is for 5%.

where ∆ ≡
√
V 2+4Ds
2D

. Moments of the absorption time can be obtained by
taking derivatives of Eq. 17 with respect to s at s = 0.

The Probability Distribution Function (PDF) of decision times for the
Ratio Test for Concentrations and the Change Point for Mixtures are shown
in Fig. S2 and feature the expected exponential behavior for values larger
than the mean.
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3 Probabilities of absorption

We consider the same problem as in the previous Section but derive here the
expression for the probability of being absorbed on one specific boundary.
The probability of absorption at the boundary in K satisfies(

D
d2

dx2
+ V

d

dx

)
P(x,K) = 0 . (18)

Here, x is the initial value of the process and the boundary conditions are
P(K,K) = 1 and P(−K,K) = 0. The solution of the Eq. 18 reads

P(x,K) =
e
VK
D − e−V xD

e
VK
D − e−VKD

. (19)

The probability P(x,−K) = 1− P(x,K).

4 Absorption time for Wald decisions

The Sequential Probability Ratio Test (SPRT) introduced by A. Wald [2],
is meant to discriminate between two different statistical hypotheses. The
method involves the calculation of the log-likelihood ratio between the two
alternatives and prescribes continuation of data acquisition as long as the
likelihood ratio K− < P2/P1 < K+, where K− < K+ are two fixed boundary
levels. Decision is made when one of the two boundaries is passed, the first
(second) hypothesis being called if P2/P1 ≤ K− (P2/P1 ≥ K+).

Let us define by ei|j the probability that generating data with the model
j the (wrong) decision is made for the alternative model i. We fix the two
boundaries K− and K+ in such a way that the errors for SPRT are e∗1|2
and e∗2|1 (see Section 5). SPRT is optimal in the following sense: any other
decision procedure that ensures e1|2 ≤ e∗1|2 and e2|1 ≤ e∗2|1 will have a longer
average time for decision.

For long enough times, the dynamics of the decision process simplifies
as we expect that the log-likelihood ratio between two hypotheses will be
well approximated by its approximation as a Gaussian diffusion with drift.
The starting value of the log-likelihood is at zero (for a flat prior) and the
two boundaries are located at logK− (negative) and logK+ (positive) –
the relation of the boundaries to the errors is discussed below. It is easily
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checked that this problem is mapped into symmetric absorbing boundaries
(as in the two previous Sections) by taking the initial starting position at
x = − logK++logK−

2
and setting the threshold K = logK+−logK−

2
. The average

decision time and the Laplace transform for the absorption time are then
read directly with the previous substitutions.

5 Absorbing boundaries in Wald decisions

The goal of this Section is to discuss how the boundaries K− (negative) and
K+ (positive) for the likelihood ratio P2/P1, are related to the false positive
and false negative errors.

Let us start by considering the case where the desired errors are low
enough that the log-likelihoods at the typical absorption times are well de-
scribed by the corresponding diffusive approximations. We can then use the
formulas derived in Section 3 to choose appropriately K so as to have the de-
sired errors. We remind that the formulas in Section 3 are related to the Wald
decision problem by having the initial starting position at x = − logK++logK−

2

and the threshold K = logK+−logK−
2

.
If the diffusive approximation does not apply, it is still possible to derive

explicit expressions in the case where the log-likelihood process is contin-
uous and does not feature strong jumps (on the scale of the boundaries).
Proceeding as in the original paper by Wald, we consider a trajectory that
reaches the lower boundary K− (without having touched beforehand the two
boundaries). Continuity implies that at the passage time P2/P1 ' K−. We
now integrate over all possible trajectories {x} of the log-likelihood, weight-
ing them with the probability of the first statistical hypothesis, i.e. P1. It
follows that

∫
− P2({x})D{x} = K−

∫
− P1({x})D{x}, where

∫
− indicates that

the integrals are restricted to those trajectories {x} that hit first the lower
boundary. We conclude that e1|2 = K−

(
1− e2|1

)
where ei|j is the proba-

bility that generating trajectories with the model j the (wrong) decision is
made for the alternative model i. Considering the reciprocal case of the first
passage at the upper boundary P1/P2 ' 1/K+ and integrating over the tra-
jectories with the P2 weights, we obtain K+. The final expressions of the two
boundaries read

K+ =
1− e1|2
e2|1

, K− =
e1|2

1− e2|1
. (20)
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Finally, if the process features strong jumps and continuity is not ensured,
then the choice of the two decision boundaries must generally proceed on an
empirical basis, varying the two thresholds and looking for the desired error
levels.

6 Fixed sample size Maximum Likelihood de-

cisions

The goal of this Section is to briefly recall how Maximum Likelihood decisions
are made in the standard case when a fixed sample size is considered. The
length of the sample is determined so as to ensure the desired level of accuracy
and, contrary to the Wald case discussed in previous Sections, is fixed. We
shall briefly present the case of discriminating concentration levels as an
example and refer to [2] for more details. The specific purpose is to provide
details as to how the Maximum Likelihood curve in Fig. 1 of the paper is
obtained.

As shown in previous Sections, the variable v = 1
t

logP (L2)/P (L1) is
approximately Gaussian at long enough times. When data are generated
with concentrations L = L1 or L = L2, the corresponding mean value V1,2
and variances 2D1,2/t at time t are given by the expressions (11) and (12)
with L = L1 or L = L2, respectively. It follows from Neyman-Pearson lemma
(see, e.g., [3]) that we should impose a threshold v∗ on the log-likelihood ratio
and call L2 if v > v∗ and L1 vice versa. The corresponding errors for long
enough t (and for fluctuations that do not involve large deviations from the
mean) read

eML
2|1 =

∫ ∞
√

t
4D1

(v∗−V1)

e−z
2

√
π

; eML
1|2 =

∫ ∞
√

t
4D2

(V2−v∗)

e−z
2

√
π
. (21)

If the two desired errors are equal eML
2|1 = eML

1|2 = ε, then v∗ = V1
√
D2+V2

√
D1√

D1+
√
D2

and it follows from (21) that the fixed sample size t∗ML is defined by the
equation

erfc

(√
t∗ML

4

V2 − V1√
D1 +

√
D2

)
= 2ε , (22)

where erfc is the complementary error function. For the precision ε = 0.01,
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we have t∗ML ' 4×1.6452
(√

D1+
√
D2

V2−V1

)2
, which is the curve appearing in Fig. 1

of the paper.

7 A (oversimplified) model for discrimination

of mixtures

A possible formulation of the mixture problem runs parallel to the case of
discriminating concentrations but we show here that it needs improvement.
Let us assume that the smallest dissociation time of foreign ligands that we
want to detect is ν−12 and that the longest dissociation time of self ligands
is ν−11 . We can then try discriminating the two simple hypotheses: (I) pure
ligands, i.e. L ligands with unbinding rate ν1 vs (II) L − δL ligands with
unbinding rate ν1 and δL with unbinding rate ν2. The corresponding ratio
of the two likelihoods reads

ln

(
P2

P1

)
=
∑
b

log

[
(1− w) + we−(ν2−ν1)tb U

(
ν2
ν1

)]
, (23)

where tb are the intervals of time that the receptor was (or is being) occupied,
the sum runs over them, w ≡ δL/L and the factor U = ν2/ν1 for all of
the terms in the sum but (possibly) the last one. If the binding is still
ongoing at the current time t, no factor should indeed be included and U =
1. The unoccupied periods do not contribute to the discrimination as the
concentrations and the binding rates are the same for the two hypotheses to
discriminate.

In the body of the paper we derived the asymptotic behavior for average
of Eq. 23 in the limit of small w. Here, we note that the integrals for the
average have an exact closed form in terms of hypergeometric functions.
Using Formula 3.194.2 of [4] it is for example possible to compute the average
for a pure state

〈R〉p = ν1

∫
e−ν1tb log

(
(1− w) + we(ν1−ν2)tb

ν2
ν1

)
dtb , (24)

as

〈R〉p = log

(
1− w + w

ν2
ν1

)
+

(
1− ν2

ν1

)
2F1

(
1,

ν1
ν1 − ν2

,
2ν1 − ν2
ν1 − ν2

;−ν1 (1− w)

wν2

)
. (25)
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Figure 3: The average of the log likelihood ratio between pure and mixture
models. The models have δL/L = 0.01, ν1 = 1 and ν2 = 0.3. Data are
generated with the self unbinding rate ν indicated on the abscissae; the red
curve refers to data generated with 99% self (rate ν) and 1% foreign (rate
ν2) whilst the green one refers to data generated with 100% self (rate ν).
Note that the red curve starts with a positive value, i.e. the mixture model
is favored, as it should, yet it becomes negative as ν increases.

Similar formulas can be obtained for the average of the mixture.
The pitfall of the simple model Eq. 23 is illustrated in Fig. S3. If data are

generated with a mixture but self has unbinding rate ν ≥ ν1, the comparison
between the pure and mixture models with the self unbinding rate set at ν1
will favor the pure model.

This effect, which seems counter intuitive at first, is in fact readily ex-
plained in Fig. S4 where we plot the integral

I(T ) =

∫ T

0

[
w ν2 e

−ν2t + (1− w) νe−νt
]
×

log

[
(1− w) +

ν2w

ν1
e(ν1−ν2)t

]
dt . (26)

Note that for T → ∞ the integral gives the expected value of the log like-
lihood ratio plotted in Fig. S3, i.e. we are plotting how different binding
times contribute to the average. It is clear then that long-binding events are
favoring the mixture as expected, yet the contribution is counterbalanced
by the contribution coming from short-binding events, which are even more
frequent than expected under the pure model. Since short-binding events
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Figure 4: The integral defined in Eq. 26, indicating how different binding
times contribute to the average of the log likelihood ratio between pure and
mixture models having δL/L = 0.01, ν1 = 1 and ν2 = 0.3. Data for the green
curve are generated with the same parameters whilst those for the red one
are generated with ν = 1.75.

are more numerous than long ones, they end up contributing more than the
latter and the final sign is negative.

8 Long-time approximation for discriminat-

ing mixtures

As discussed in the body of the paper, an appropriate formulation of the
discrimination problem is between the following two hypotheses: (I) pure
self, i.e. any distribution of ligands having rates ≥ νs (total concentration
L); (II) a fraction wf = δL/L having unbinding rate ≤ νf and the rest of
the mixture composed of any distribution of ligands having rates ≥ νs (total
concentration L− δL). The log-likelihood ratio of the two hypotheses reads

ln

(
P2

P1

)
= log

[∫
dw
∏

bL(tb |wf ,w)δ(wf +
∑

j wj − 1)∫
dw
∏

bL(tb |w)δ(
∑

j wj − 1)

]
, (27)
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where the likelihoods for a given binding time tb are

L(tb |wf ,w) = wfe
−νf tbνf +

M∑
j=1

wje
−νjtbνj ,

L(tb |w) =
M∑
j=1

wje
−νjtbνj . (28)

The sums run over the M self types having dissociation rates ν1, . . . , νM . All
self dissociation rates obey νj ≥ νs and the limit of a continuum might of
course be taken as M → ∞. Eqs. 28 are valid for all binding events but
possibly the last one. Indeed, if the binding is still ongoing at the current
time t, then tb = t− ton, where ton is the time of the last binding event, and
there are no factors νf and νj in Eq. 28 since the eventual unbinding has not
occurred yet. We have assumed that no prior information is available, i.e. a
flat distribution on the weights w.

For times much longer than the typical times of binding and unbinding,
the number of binding events B is very large and the sequence of bind-
ing times in a given realization will be distributed according to large devi-
ation theory. The so-called empirical distribution P (tb) is the relative oc-
currence of a certain binding time tb in the sequence. From the method
of types, see, e.g. [3], it follows that empirical distributions for a long se-
quence of binding times will be peaked around the most probable distribution
Q(tb) that generates data. The probability for deviations of the empiri-
cal P (tb) from Q(tb) decays exponentially in B as exp[−BH(Q||P )], where
H(Q||P ) =

∫
dtbQ(tb) log (Q/P ) (tb) is the Kullback-Leibler entropy. More-

over, the Bayesian integrals in Eq. 27 are expected to be dominated by their
saddle contributions and their logarithms should thus be proportional to B
(logarithmic corrections will be discussed momentarily). It follows that mo-
ments of log-likelihood ratios will be dominated by Q(τb) and we conclude
that

〈log

∫
dw e

∑
b lnL(tb |w)δ(

∑
j

wj − 1)〉 ' B〈lnL〉(w∗)− β lnB + . . . , (29)

where w∗ are the weights that maximize the term at the exponential 〈lnL(w)〉
and averages are computed with respect to the distribution Q(tb) generating
the data. Other averages of log-likelihoods are estimated similarly.

12
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Figure 5: The behavior of the average log-likelihood defined in Eq. 31 with
binding times generated by the distribution Q(tb) = wfe

−νf tbνf + (1 −
wf )e

−ν3tb . The model has three components M = 3, with wf = 0.1, νf = 0.3,
ν1 = νs = 1, ν2 = 2, ν3 = 3. The two-dimensional Bayesian integrals are
computed by Simpson method. The green line is the power-law in Eq. 29
(and an adjusted constant). The blue line (which coincides with Monte-Carlo
data) includes a logarithmic correction with β = 1.5 since a single component
of the gradient at the extremum is non-zero.

Logarithmic corrections in Eq. 29 will depend on the nature of the ex-
tremum w∗. For data generated by a probability distribution which features
only unbinding rates included in the model, it is easy to show that w∗ cor-
respond to the generating weights. Specifically, if Q(tb) =

∑M
j=1Wje

−νjtbνj
(with

∑
jWj = 1), then the extremum of

∫
Q(tb) log

[∑
j wje

−νjtbνj

Q(tb)

]
dtb + λ

(∑
j

wj − 1

)
, (30)

is w∗j = Wj. If the expression at the exponential behaves quadratically
around its maximum, the constant in Eq. 29 asymptotically approaches β =
(M − 1)/2.

When data and models do not correspond, i.e. there is no choice of the
model weights w such that Q(tb) =

∑
j wje

−νjtbνj, the saddle point is not
obvious and numerics is needed. The maximum might be a true extremum
or be at the boundary of the interval of definition (0 ≤ wj ≤ 1 and

∑
j wj

fixed) with a non-vanishing gradient. The constant β will then depend on
the number of non-zero components in the gradient. For example, β = M−1

13
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Figure 6: The behavior of the average log-likelihood defined in Eq. 31 with
binding times generated by the distribution Q(tb) = wfe

−νf tbνf + (1 −
wf )ν2e

−ν2tb . The model has three components M = 3, with wf = 0.1,
νf = 0.3, ν1 = 1, ν2 = 2, ν3 = 3. The two-dimensional Bayesian integrals
are computed by Simpson method. The blue line is the power-law in Eq. 29
(and an adjusted constant). The green line includes a logarithmic correction
with β = 1.5 since a single component of the gradient at the extremum is
non-zero. The red line are MonteCarlo simulation data.

for an extremum on the boundary with all independent components of the
gradient non-vanishing. An example of such situation is Q(tb) = wfe

−νf tbνf+
(1− wf )e−νstbνs and a model of self with the first component νs and all the
other νj > νs. Intermediate cases interpolate between the previous two
extreme cases, see e.g. Fig. S5 where we plot

I =

∫
Q(tb) log

[∫
dw e

∑
b lnL(tb |w)δ(

∑
j wj − 1)

Q(tb)

]
dtb . (31)

There are other cases where the behavior at moderate times is even more
affected by finite-size effects, see Fig. S6. The conclusion from the figures
is that for discriminations down to precision O(1%) (which corresponds to
differences in log likelihoods of several units yet not several tens) drift and
diffusivity will change substantially during the decision process time span
and the applicability of the diffusion approximation is more limited than in
the case of detecting concentration differences.
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9 Detecting the time of mixing

In this Section we solve for a piecewise linear approximation to the recursion
formula for sensing the time when a longer lived species is mixed into the
background while preserving the total concentration. For a single receptor we
can time slice the path integral when the ligand falls off. If the occupancy
time of a ligand is ti, then the probability ratio for the likelihood of the
mixture to the pure state is:

R(ti) = 1− w + w
ν2
ν1
e(ν1−ν2)ti , (32)

where 0 < w � 1 is the fraction of added species 2 and ν2 < ν1 are the
Poisson off rates for the added and background species, respectively. A bio-
chemical model is most readily constructed for the log of the probability
ratio. Thus we need accumulate log(R) in Eq. 32. We therefore propose the
approximation:

log(R(ti)) ∼ −c1 + c2 max(ti − T, 0) , (33)

where c1 ∼ w, c2 ∼ ν1− ν2, and T is an offset defining when the exponential
term in Eq. 32 dominates w. A typical mean square error in approximating
log(R) by Eq. 33 is 1% when ti is sampled from the Poisson distribution
ν1e
−ν1t. An intuitive sense for Eq. 33 is gained from the curve in Fig. S4 :

the curve with positive drift has negative contributions from very frequent
and typical short binding events, while the long-binding events tend to favor
the mixture model. The positive value of the drift is controlled by binding
events longer than a certain value – the finite value of T where the green
curve crosses zero.

The recursion for the ratio of probabilities that the change point θ oc-
curred prior to the current time vs later given a string of occupancy times
t1, . . . , ti is

eρ(ti) ≡ P (θ < ti)

P (θ > ti)
=
R(ti)

1− λ
(λ+ eρ(ti−1)) , (34)

where λ is the assumed Poisson probability for the change point time θ to
occur at the i-th event. We can then shift ρ to scale out λ, take the log, and
approximate log(1 + eρ) ∼ max(ρ, 0). Since the change point is signaled by
ρ� 1 the trajectories that actually lead to a hit are not much affected and
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the errors made around ρ ∼ 1 will not seriously alter the value of ti− θ when
the call is made. After substituting Eq. 33 we can scale out c2 by setting
c1 + log(1 − λ) = cc2 and ρ = c2y to generate our final piece wise linear
recursion:

y′ = −c+ max(t− T, 0) + max(y, 0) . (35)

We first compute the false positive rate when the random times are sam-
pled from the background distribution νe−νt (dropping temporarily the sub-
script 1) a stationary distribution for y only exists when the average additive
term in Eq. 35 is negative, i.e.,

−c+ e−νT/ν < 0 . (36)

We will work in the limit c� 1 to allow a continuum approximation, which
we show in the end is still 5% accurate for c = 0.5. Using the so-called
Poisson clumping heuristic of Aldous [5] we can compute the false positive
rate from the stationary distribution of y and the average residency time for
y ≥ y0 given that y ≥ y0 at t = 0 and y < y0 just prior to t (the definition of a
“hit”). In what follows we will measure time in integer units as is natural for
the recursion in Eq. 35. The conversion to physical time is just to multiply
by 1/ν.

Clearly the distribution of y is limited to y ≥ −c and the small c limit
suggests a continuum approximation for the probability distribution function,
PDF(y), where the negative values are lumped into a delta function. The
equation for the stationary PDF thus reads:

PDF(y) = Aδ(y) + P (y), y ≥ 0 ; (37)

P (0) = B ; (38)

P (y) = (1− e−νT )P (y) + c ∂yP (y) +

e−νTAνe−νy + e−νT
∫ y

0

P (y − t)νe−νtdt . (39)

The terms in Eq. 39 are fairly transparent. When t ≤ T , Eq. 35 is just
y′ = −c + y with y ≥ 0 so the first two terms are just the Taylor expansion
of the shift P ′(y) = P (y + c) with a small correction ∼ ce−νT∂yP omitted.
The third term is the weight in the PDF at y = 0 boosted up by t > T .
Note we used a property of the Poisson distribution that shifting the time
multiplies the probability. The final convolution accounts for events t > T
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acting on P . The solution of Eq. 39 is elementary by Laplace transformation,
LP (s) =

∫∞
0
e−syP (y)dy

LP =
−cB + Aνe−νT/(ν + s)

−cs+ se−νT/(ν + s)
. (40)

Both A,B can be determined from the condition LP (0) = 1 (n.b. the relation
−cB+Ae−νT = 0 is the balance of the flux into δ(y) from the drift c with the
instances of t > T transferring weight from the δ function to y > 0) resulting
in,

PDF(y) =
α

ν
δ(y) +

αe−νT

νc
e−αy (41)

α = ν − e−νT/c > 0 , (42)

(and the sign of α follows from Eq. 36). We have compared Eq. 41 with
numerical simulations, and even for c = 0.5 (and thus not in the limit c� 1)
the errors in PDF for the weight at y = 0 and the exponent α are less than
5%, so the continuum limit is quite acceptable. (A diffusion approximation
to Eq. 39 would entail expanding the denominator of Eq. 40 to O(s2). The
result for P (y) would be two exponentials ∼ e−νy, e−νe

νT cαy that both decay
more rapidly than e−αy.)

The profile of y vs time is a sawtooth with a uniform decrease of −c per
step, punctuated by rare jumps upward with a distribution ∼ e−νy where y
is the value after the jump. To compute Poisson rate for hitting a cutoff y0
we divide the total probability for y ≥ y0 from Eq. 41 with the average dwell
time for y ≥ y0 given that at the preceding iteration y < y0. In the limit
νc� e−νT the dwell time is just 1/(νc) which represents the average distance
above y0 that y is kicked divided by the amount it decreases per iteration.
When the probably of a second kick while y is near y0 is not negligible a
more sophisticated calculation is needed for the dwell time.

Since we work in the limit e−νy0 ∼ 0 with boundary conditions P (0 ≤
y � y0) ∼ 0 we can write the recursion relation for the smooth part of the
PDF following Eq. 39 as:

P
′
(y) = (1− e−νT )P (y) + c∂yP (y) + e−νT

∫ y

0

P (y − t)νe−νtdt . (43)

The dwell time τ can then be computed by Laplace transforming and iterat-
ing the recursion in Eq. 43. The initial condition P0(y), must be proportional
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to e−νy since that is the functional form of the events that will kick y over
y0. To compute the dwell time from the integral over y > y0 of the iterates
of Eq. 43, requires that P0 is zero for y < y0 and is normalized to one. Its
Laplace transform is just LP0(s) = ν

ν+s
e−sy0 . Then we find for the dwell time

τ ,

τ ≡
n−1∑
i=0

∫ y1

y0−ε
Pi(y) , (44)

τ =

∫ (e(y1−y0)s − y−εs
s

)(enβ − 1)ν

β(ν + s)
, (45)

β = cs− s

ν + s
e−νT . (46)

Some care is needed to deform the integration contour for the inverse Laplace
transform. The manipulations become clearer if one does not expand the
discrete time iteration Eq. 43 for P (y) for small c but rather writes the first
two terms as (1 − e−νT )P (y + c) which is readily Laplace transformable if
one assumes that P (0 � y � y0) = 0 as allowed in Eq. 43 since we are
calculating only the dwell time in the limit of large y0. The real part of the
inversion contour can be moved through s = 0 with zero residue and the
contour closed to the left. The large y1, n limit can then be taken. There
remains a single pole at −ν + e−νT/c, which is proportional to the average
drift velocity Eq. 36. As expected, the mean dwell time diverges when the
mean drift downward in y tends to zero.

Thus,

τ = 1 +
ν/c

(ν − e−νT/c)2
(47)

γ =

∫ ∞
y0

PDF (y)/τ =
e−αy0

νcτeνT
, (48)

where γ is the Poisson rate for hitting the cutoff y0 in units of per iteration
and a 1 was added to Eq. 47 to account for the ambiguity in adjusting the
Poisson jump for c and to avoid nonsense for small τ , though our approx-
imations are only valid for τ � 1. Note τ in the limit e−νT � cν agrees
with expectations. Numerical simulations give roughly 10% agreement with
γ which is in part due to ambiguities in the simulation of deciding when short
intervals with y < y0 represent the same or distinct hits.
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The entire derivation from Eq. 39 onward can be generalized to ti sampled
from a mixture Q of Poissons. The e−νT is replaced by the total probability
weight for t ≥ T and the appropriate t distribution has to be convoluted
with P . The Laplace transform of Eq. 40 is a rational function with Q poles
which give a sum of Q terms of the form e−αqy in Eq. 41. Similar complexities
occur in the derivation of τ .
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