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Diffusion models have become essential for describing the performance
and statistics of reaction times in human decision making. Despite their
success, it is not known how to evaluate decision confidence from them. I
introduce a broader class of models consisting of two partially correlated
neuronal integrators with arbitrarily time-varying decision boundaries
that allow a natural description of confidence. The dependence of de-
cision confidence on the state of the losing integrator, decision time,
time-varying boundaries, and correlations is analytically described. The
marginal confidence is computed for the half-anticorrelated case using
the exact solution of the diffusion process with constant boundaries and
compared to that of the independent and completely anticorrelated cases.

1 Introduction

In most interesting situations, detection of a signal involves discriminating
a meaningful from a random energy fluctuation. A standard procedure
employed to discriminate between these two alternatives is to integrate over
time such fluctuations and decide that there is a signal embedded in the
noise if the accumulated sum reaches a predetermined threshold and that
there is no signal otherwise. Although this is just the way some photosensors
are used to detect dim stars, humans seem to employ a remarkably similar
strategy to make decisions. Human performance and reaction time statistics
in two-alternative forced-choice tasks are accurately fit by models consisting
of a diffusion process of an underlying variable to decision boundaries
(Ratcliff, 1978; Ratcliff & Smith, 2004; Luce, 1986; Usher & McClelland,
2001; Bogacz et al., 2006; Mazurek, Roitman, Ditterich, & Shadlen, 2003;
Ratcliff, Hasegawa, Hasegawa, Smith, & Segraves, 2007; Wang, 2002; Beck
et al., 2008). Moreover, diffusion to bound processes seem to be neurally
hardwired in several areas of the brain, where the neurons’ firing rate
reflects integration of noisy information for alternatives and determines
choices and decision times when it reaches a fixed threshold (Hanes &
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Schall, 1996; Shadlen & Newsome, 1996; Platt & Glimcher, 1999; Ratcliff
et al., 2007; see Schall, 2001, for a review).

Upon a decision, a crucial variable is the degree of confidence about
the choice. In detecting a new particle or star, the estimated confidence
will determine if we can believe in the result. Humans and animals are
able to reliably estimate confidence or uncertainty about their decisions
and use it to change or abort behaviors (Vickers, 1979; Juslin & Olsson,
1997; Vickers & Lee, 1998; Landy, Goutcher, Trommershuser, & Mamassian,
2007; Whiteley & Sahani, 2008; Kepecs, Uchida, Zariwala, & Mainen, 2008).
Human subjects can be asked directly to report their confidence, but it is
also possible to use choice behaviors in humans and animals to estimate
their decision confidence. For instance, a subject can be presented with two
choices: one that involves high but uncertain reward and another with low
but certain reward. The confidence that the subject has about the uncertain
reward at any trial will determine which option is taken, and therefore
decision confidence can be estimated from its behavior at any trial. Despite
the importance of decision confidence, very little is known about how it
is encoded in the nervous system (but see Kepecs et al., 2008; Beck et al.,
2008). Furthermore, the dependence of confidence on essential parameters
of the decision process like reaction time or distance to boundary of the
losing integrator has not been established. Knowing such dependencies on
simple models would allow a quantitative comparison between theory and
both behavioral and neurophysiological data.

This letter describes analytically decision confidence for a decision diffu-
sion model (DDM) consisting of two neuronal integrators receiving partially
correlated inputs. The main results are as follows: (1) decision confidence
depends on the difference between the traveled distances by the two inte-
grators in a general way, regardless of the correlation in the inputs and on
the time dependence of the decision thresholds; (2) accumulation of evi-
dence over time occurs without any leak or loss, that is, the final state of the
integrators and elapsed time fully specify the a posteriori probability dis-
tribution over the parameters on which the decision is based; (3) marginal
confidence is computed for the independent, half-anticorrelated, and com-
pletely anticorrelated cases as a function of the decision time, being at a
maximum for independent integrators; and (4) the distributions of reaction
times for the above cases are characterized. Models with several integrators
similar to the one proposed here have been introduced before to describe
qualitatively decision confidence (Vickers, 1979), but analytical expressions
for confidence are in general not known for these simple models (Juslin &
Olsson, 1997; Vickers & Lee, 1998; Van Zandt, 2000; Pleskac & Busemeyer,
2007). It is worth mentioning that the DDM considered here reduces to the
classical DDM (Ratcliff & Smith, 2004; Luce, 1986) when the two integrators
receive completely anticorrelated inputs, for which decision confidence as
a function of the decision time is also completely characterized for arbitrary
time-dependent boundaries.
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2 Model

I consider a decision diffusion model (DDM) consisting of two neuronal
integrators with variables x1 and x2 receiving independent and cross-
correlated inputs,

ẋ1 =μ1 + σ [
√

1 − ρ η1(t) + √
ρ ηc(t)],

ẋ2 =μ2 + σ [
√

1 − ρ η2(t) + √
ρ ν ηc(t)], (2.1)

where ηi (t), i = 1, 2, c are independent gaussian white noise processes with
zero mean (〈ηi (t)〉 = 0) and unit variance (〈ηi (t)ηi (t′)〉 = δ(t − t′), where
δ(t − t′) is the Dirac’s delta function).1 The variables x1 and x2 can cor-
respond to averaged firing rates across a population of neurons with sim-
ilar tuning, or to population-averaged voltages (Mazurek et al., 2003). The
model captures the approximately linear ramping activity observed in neu-
rons in lateral intraparietal area (LIP) and frontal eye fields (FEF) in mon-
keys performing simple decision tasks (Hanes & Schall, 1996; Shadlen &
Newsome, 1996). The kth neuronal integrator (k = 1, 2) drifts with rate μk

and accumulates input white noises with total deviation σ . The correlation
coefficient, ρ ∈ [0, 1], determines the degree of correlation between the two
integrators, being independent if ρ = 0 and completely correlated if ρ = 1.
The correlation index, ν ∈ {−1, 1}, determines the correlation sign between
them, being positively correlated if ν = 1 and anticorrelated if ν = −1. The
variables x1 and x2 diffuse from the initial values a and b until one of them
reaches its threshold, �1(t) and �2(t), respectively, which can depend on
time.

A two-alternative forced-choice task is modeled as follows. A decision
for choice k (k = 1, 2) is made whenever the variable xk reaches its threshold
�k(t) first. It can be assumed that the decision is correct if the boundary first
reached corresponds to that of the integrator with the highest drift. This is
a general situation that, for instance, could correspond to a task in which
the goal is to detect the brighter of two lights. It also arises naturally in ex-
periments in which the direction of motion of a random-dot motion display

1In numerical simulations, equation 2.1 is solved using the Euler method with small
time step δt as

δx1 =μ1δt + σ [
√

1 − ρ w1 + √
ρ wc ]

√
δt,

δx2 =μ2δt + σ [
√

1 − ρ w2 + √
ρ ν wc ]

√
δt,

where δxi (i = 1, 2) are the variable increments in each step and wi (i = 1, 2, c) are inde-
pendent across time and follow normal gaussians.
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Figure 1: (A) Two integrators with independent white noise inputs. The system
evolves until one of the integrators reaches its time-varying threshold—in this
case, integrator 1. (B) The state probability density for the system in A when
the boundaries are constant over time consists of three images, equation A.9,
arranged on a circle (see the appendix). The two semi-lines of the absorbing
boundary are indicated with l1 and l2. (C) Two integrators with time-dependent
boundaries and half-anticorrelated white noise inputs. (D) The state probability
density for the system in panel C with constant bounds consists of five images,
equation A.8, arranged on an ellipse (see the appendix).

has to be determined during short presentations (Shadlen & Newsome,
1996; Mazurek et al., 2003). Here, the direction of motion can be modeled
by the sign of the drift rates of the two integrators (i.e., μ = μ1 = −μ2 > 0
indicates rightward motion, while μ = μ1 = −μ2 < 0 indicates leftward
motion). The difficulty of this task is controlled by the motion coherence,
that is, the percentage of dots that move in the same direction as opposed
to random directions, and it can be modeled by the magnitude of the drift
rates, |μ| = |μ1| = |μ2|. It will be assumed that the variance of the noise and
correlation coefficient remains constant across all stimulation conditions. I
assume that when a decision has been made, the state of the losing inte-
grator can be read out. Figure 1 illustrates the model for the independent
(ρ = 0 in Figure 1A) and half-anticorrelated (ρ = 1/2, ν = −1, in Figure 1C)
cases with time-varying thresholds.
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Figure 2: The DDM in equation 2.1 covers continuously the range between dif-
fusion models (classical DDM) and race models as a function of the correlation
coefficient between the input noises. A mixture model corresponds, for example,
to the DDM with half-anticorrelated inputs. Circles represent integrators.

The classical DDM (Ratcliff & Smith, 2004; Luce, 1986) is a special case of
equation 2.1 when the integrators receive completely anticorrelated inputs
(ρ = 1, ν = −1), μ = μ1 = −μ2, and the thresholds are identical and time
independent, �1(t) = �2(t) = �. In that case, only motion parallel to the
diagonal x1 = −x2 is possible, and therefore each integrator can be viewed
as the antineuron of the other. Equations 2.1 reduce in this case to the
system

ẋ = μ + σ η(t), (2.2)

where x = x1 = −x2 and the decision boundaries lie at x = ±� (as before,
η(t) is a gaussian white noise process). Although very relevant to fit behav-
ioral data, the classical DDM assumes perfect anticorrelation between the
integrators, and such degree of correlation seems unrealistic in the brain
(Zohary, Shadlen, & Newsome, 1994).

When ρ = 0 in equations 2.1, the two integrators become independent,
and then the system becomes a race model (see, e.g., Vickers, 1979; Luce,
1986). Therefore, the model defined in equations 2.1 covers a wide spec-
trum of classical models of decision making, ranging from the classical
DDM for ρ = 1 and ν = −1, to the race model for ρ = 0, as shown in
Figure 2. However, the model considered here does not include interactions
or connections between the neuronal integrators, as in Usher & McClelland
(2001). A discussion about these models has been recently presented in
Bogacz (2007).
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3 Results

3.1 Independence of the Probability Distributions over the Drift Rates
on Decision Boundaries. A decision about which drift is higher (μ1 > μ2 or
μ2 > μ1?) in the system defined in equations 2.1 will depend on the drift esti-
mates at decision time t given the observed trajectories of the integrators up
to that time, denoted x̄1 and x̄2, with initial states x1(0) = a and x2(0) = b at
t = 0. The critical quantity is then the probability density of having the drifts
μ1 and μ2 given the trajectories x̄1 and x̄2 up to time t, p(μ1, μ2 | x̄1, x̄2). In-
stead of working directly with this density, it is more convenient to introduce
the new variables u = x1 + x2 and v = x1 − x2 and work with the probabil-
ity density p(μu, μv | ū, v̄) of having drifts μu = μ1 + μ2 and μv = μ1 − μ2

given the trajectories ū = x̄1 + x̄2 and v̄ = x̄1 − x̄2, with initial conditions
u0 = a + b and v0 = a − b. In the new variables, equations 2.1 transform into
two independent Wiener processes, with means μu and μv , and variances
σ 2

u = 2σ 2(1 + ρν) and σ 2
v = 2σ 2(1 − ρν), making the calculations easier.

Let us first consider the case in which there are not boundaries. The case
with boundaries will be considered immediately after this discussion. If
the time is discretized in n steps of size δt, such that t = nδt, and defining
ui = u(iδt) (vi = v(iδt)), i = 1, . . . , n, then the probability density of having
a variable step δui = ui − ui−1 (δvi = vi − vi−1) at time t = iδt follows a
gaussian distribution with mean μuδt (μvδt) and variance σ 2

u δt (σ 2
v δt). Since

each increment is independent of the others, the probability density of the
trajectory (ū, v̄) is

p(ū, v̄ | μu, μv) = limn→∞(2πσuσvδt)−n
n∏

i=1

e
− (δui −μuδt)2

2σ2
u δt

− (δvi −μvδt)2

2σ2
v δt . (3.1)

If p(μu, μv) is the distribution of the drifts based on prior knowledge, Bayes’
theorem states that p(μu, μv | ū, v̄) ∝ p(ū, v̄ | μu, μv)p(μu, μv), where the
proportionality is in relation to the drift rates. If the prior distribution is uni-
form, p(μu, μv) = p0, Bayes’ theorem and equation 3.1 give after normaliza-
tion that the free (i.e., without boundaries) distribution over the drift rates is

pfree (μu, μv | ū, v̄) = p f ree (μu, μv | u − u0, v − v0, t) =

= 1
2πσuσv/t

e
− (μu−(u−u0)/t)2

2σ2
u /t

− (μv−(v−v0)/t)2

2σ2
v /t , (3.2)

where (u, v) is the ending point of the trajectory (ū, v̄) at time t. Then
the a posteriori probability distribution over the drift in the variable
u (v) is a gaussian distribution with mean (u − u0)/t ([v − v0]/t) and
variance σ 2

u /t (σ 2
v /t). Hence, the mean drift is just the slope of the trajectory,

computed as the ratio between the distance from initial to ending points,
and elapsed time. The variance of the probability distribution decays as
a function of time, so a longer time results in a narrower distribution
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and therefore in a better estimation of the drifts. Importantly, the identity
between pfree (μu, μv | ū, v̄) and pfree (μu, μv | u − u0, v − v0, t) shows that
all the information in relation to the drift rates available in the trajectories is
preserved in the distances traveled by the integrators (i.e., their final state)
and elapsed time. This is just the description of the fact that the traveled
distances and elapsed time are sufficient statistics for the distribution of
drift rates.

Now I consider the case in which there are boundaries �k(t) (k = 1, 2). In
this case, only trajectories that do not cross the boundaries at any time
before t (i.e., (ū, v̄) such that u + v < 2�1(τ ) and u − v < 2�2(τ ) for all
τ < t) are realizable, while the trajectories that cross the boundaries be-
fore time t are absorbed. In what follows, I show the central result that the
probability distribution of the drift rates given the traveled distances by
the integrators and the elapsed time when boundaries are present is iden-
tical to the probability distribution of the drift rates when there are not
boundaries, equation 3.2.

Two steps will be followed in the proof. First, it is shown that the proba-
bility density of having the state (u, v) at time t when arbitrary boundaries
are present can be factorized in two terms: one that depends on the drift
rates but not on the boundaries and another that depends on the bound-
aries but not on the drift rates. Second, it is shown that this factorization
and Bayes’ theorem naturally lead to equation 3.2 for uniform a priori dis-
tributions over the drift rates. This proof is similar to that derived by Beck
et al. (2008) for Poisson-like distributions.

The probability density of observing the state (u, v) of the integrators
at time t given initial conditions (u0, v0) and drift rates μu and μv can
be expressed as the integral of the probability of having the trajectory
(ū, v̄), equation 3.1, over all possible trajectories with initial point (u0, v0)
and final point (u, v), which do not cross the boundaries at any time
before t,

pbound (u, v, t | μu, μv)

=
∫




d(δ�u) d(δ�v) limn→∞
n∏

i=1

e
− (δui −μuδt)2

2σ2
u δt

− (δvi −μvδt)2

2σ2
v δt

2πσuσvδt
, (3.3)

where d(δ�u) = d(δu1), . . . , d(δun) and d(δ�v) = d(δv1), . . . , d(δvn) (remember
that a trajectory (ū, v̄) is defined in terms of the differential increments
(δui , δvi ) for i = 1, . . . , n in time steps δt = t/n), and the region 
 is defined
as the set of trajectories (ū, v̄) that satisfies u0 + v0 + ∑ j

i=1(δui + δvi ) <

2�1( jδt) and u0 − v0 + ∑ j
i=1(δui − δvi ) < 2�2( jδt) for j = 1, . . . , n (i.e.,

they do not cross the boundaries before time t), along with the constraint
that

∑n
i=1 δui = u − u0 and

∑n
i=1 δvi = v − v0 (i.e., the initial and final points

are (u0, v0) and (u, v), respectively). By expanding the squared terms in the
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exponents of equation 3.3 and using that
∑n

i=1 δt = t,
∑n

i=1 δui = u − u0,
and

∑n
i=1 δvi = v − v0, it is possible to extract out from the integral the

terms that depend on the drift rates as

pbound (u, v, t | μu, μv) = e
− μ2

ut−2μu (u−u0)

2σ2
u

− μ2
v t−2μv (v−v0)

2σ2
v R(u, v), (3.4)

where

R(u, v) =
∫




d(δ�u) d(δ�v) limn→∞
n∏

i=1

e
− δu2

i
2σ2

u δt
− δv2

i
2σ2

v δt

2πσuσvδt
. (3.5)

Note that R(u, v) depends on the boundaries but not on the drift rates.
Since the quantity of interest is the probability distribution of the drift

rates given the final state of the integrators, pbound (μu, μv | u, v, t), and this
is proportional to equation 3.4 through Bayes’ theorem, then only the de-
pendencies of equation 3.4 on the drift rates are explicitly considered. This
means, interestingly, that to determine the distribution over the drift rates,
it is not required to compute explicitly the complicated integral in equa-
tion 3.5, a task achievable only in particular cases. Therefore, after using
Bayes’ theorem pbound (μu, μv | u, v, t) ∝ pbound (u, v, t | μu, μv) (proportion-
ality is in relation to the drift rates; here a uniform a priori distribution over
the drifts rates is assumed, but a similar result holds for any arbitrary a
priori distribution) and normalizing the expression, it is found that

pbound (μu, μv | u − u0, v − v0, t) = 1
2πσuσv/t

e
− (μu−(u−u0)/t)2

2σ2
u /t

− (μv−(v−v0)/t)2

2σ2
v /t

(3.6)

regardless of the boundary conditions, which is identical to equation 3.2.
This proves that pbound (μu, μv | u − u0, v − v0, t) = pfree (μu, μv | u − u0, v −
v0, t).

Finally, one needs to show that all information contained in the trajec-
tory (ū, v̄) is preserved in the final state of the integrators and elapsed
time in the presence of boundaries. Since for any trajectory that does
not cross the bound at any time before t, (ū, v̄), one has pbound (μu, μv |
ū, v̄) = pfree (μu, μv | ū, v̄), then using equations 3.2 and 3.6, pbound (μu, μv |
u − u0, v − v0, t) = pbound (μu, μv | ū, v̄). Therefore, the integrators accumu-
late evidence with any leak or loss. This interestingly means that, as in the
case without boundaries, the shape of the trajectory does not need to be
remembered, since the final state of the integrators and elapsed time con-
tain all necessary information in order to perform inference about the drift
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rates. More formally, the distances traveled by the integrators along with
the elapsed time are sufficient statistics for the drift rates.

The equivalence between probability distributions with and without
boundaries can be understood intuitively as follows. Note, first, that any
trajectory that does not cross the boundaries at any time before t and has the
same initial and final points leads to the same probability distribution over
the drift rates, equation 3.2. Note, second, that the effect of the boundaries
is to reduce the number of trajectories that can reach a given ending point
from the same initial condition compared to the case with no boundaries.
However, since any of the remaining realizable trajectories (i.e., those that do
not cross the boundaries) with the same initial and ending points lead to the
same probability distribution of the drift rates, the shape of the boundaries
does not affect the information available about the drifts at time t.

The result that the probability distribution over the drift rates does not
depend on the temporal profile of the decision boundaries before the de-
cision time is nevertheless surprising. Let us assume, for instance, that the
decision boundaries drop sharply to very negative values at short times and
then recover back to some finite value and that the final state of one integra-
tor is positive, x1 > 0. Then one could argue that the a posteriori probability
distribution over the drift rate μ1 of that integrator has to be skewed to
very large negative values (i.e., negative drifts are more likely than positive
ones) because the trajectory of the integrator first needed to reach very low
values before ending at the final state x1 > 0. Then, in general, one would
conclude that the probability distribution over the drift rates depends not
only on the final state of the integrators, but also on the temporal shape of
the boundaries. Equation 3.6 shows that the above reasoning is incorrect
and that in fact the probability distribution over the drift μ1 has a larger
probability mass at positive values. The paradox can be resolved by noticing
that the traveled distances by the integrators and elapsed time are sufficient
statistics for the drift rates μk (k = 1, 2) in the decision process, while the
shape of the paths traveled provides no additional information about the
drift rates. Therefore, the state of the integrators, along with the elapsed
time, summarizes all information one needs to know to make a decision
that involves any inequality over their drift rates.

One can check that this is true in very simple cases, where analytical
solutions are known for the whole probability distribution over the final
state of the integrators. Let us consider, for instance, the diffusion of a
single integrator, which obeys equation 2.2, and let us assume that there
is only a time-dependent boundary at �(t) = A+ Bt. Then the probability
distribution at time t over the state x of the integrator with starting point
x = 0 and drift rate μ follows,

p(x, t | μ) = 1√
2πσ 2t

[
e− (x−μt)2

2σ2 t − e−D− (x−2A−μt)2

2σ2 t

]
, (3.7)
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Figure 3: Distribution of the drift rate for a one-variable diffusion process,
equation 2.4, with σ 2 = 0.5 s−1 from numerical results (thin line) and from
equation 3.8 (thick line) at decision time t = 200 ms. The boundary is defined as
�(t) = A+ Bt2 with A = 1.3 and B = −5 s−2. The mean and variance obtained
from the simulations are 5.57 s−1 and 2.50 s−1, respectively, close to the predicted
values 5.50 s−1 and 2.50 s−1. Sample trajectories were generated using drift rates
uniformly distributed in the range between −200 s−1 and 200 s−1. The trajectories
that reached the threshold �(t) within the time window t = 200 ms and t =
201 ms were used to compute the distribution of the drift rate.

with D = 2A(B − μ)/σ 2. (It is easy to show that p(x, t | μ) vanishes at the
time-dependent threshold, and since it is composed of a sum of two free
solutions of the associated Fokker-Planck equation, it is the solution with
a time-dependent absorbing boundary �(t); Cox & Miller, 1965.) Finally,
using Bayes’ theorem with uniform a priori distribution over the drift rate,
p(μ | x, t) ∝ p(x, t | μ), one finds that

p(μ | x, t) = 1√
2πσ 2/t

e− (μ−x/t)2

2σ2/t , (3.8)

that is, the a posteriori probability distribution over the drift rate μ is a
gaussian with mean x/t and variance σ 2/t, and it does not depend on
the parameters A and B that define the time-dependent boundary. (Note
that equation 3.8 is a particular case of equation 3.6 when restricted to the
dynamics of a single integrator.) The same result holds when there are two
side time-independent boundaries, a case for which analytical expressions
are also known (Cox & Miller, 1965), and in fact, as it has been shown before,
equation 3.8 is valid for any decision boundaries.

Figure 3 shows the probability density function over the drift rate μ

computed from numerical simulations of a single integrator that obeys
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equation 2.2 in the presence of a nonlinear boundary �(t), a case for which
there are no generally valid analytical solutions. Sample trajectories with
a broad distribution of drift rates were generated, and from the trajectories
that ended at threshold at times within a short window t and t + �t, the
distribution of drift rates at decision time was computed. As the theory
predicts, equation 3.8 should be valid in the presence of any threshold, and
therefore the distribution of drift rates should be a gaussian with mean
�(t)/t and variance σ 2/t when the decision is made at time t regardless of
the shape of the boundary. The simulations are in perfect agreement with
the theory.

A special feature of the DDM considered in equations 2.1 is that all
information is readily available in the final state of the integrators and the
elapsed time, equation 3.6. Indeed, this property is violated in neuronal
integrator models with leak terms (negative linear xks), as considered, for
example, in Usher and McClelland (2001). It can be shown that in these
models, the a posteriori probability density distribution over the drift rates
depends not only on the final states of the integrators but also on the mean
value of the trajectories. Furthermore, if expressed only as a function of
the final state of the integrators (along with the initial state and elapsed
time), the probability density over the drift rate depends on the temporal
profile of the decision boundaries �k(t). It is interesting to note, then, that
brain areas like LIP and FEF show ramping activity that resembles perfect,
leakless integration of evidence.

3.2 Decision Confidence. Upon a decision, confidence can be expressed
as the estimated probability that the highest signal has been correctly
detected given the observed trajectories of the integrators up to decision
time t. Given the final state of the integrators, the join probability density
of the drift rates is given by equation 3.6. From this probability density, it is
easy to compute whether the probability of μ1 > μ2 is larger or lower than
the probability of μ2 > μ1, and the choice μ1 > μ2 or μ2 > μ1 will be made
accordingly. In order to associate uniquely one decision boundary with
one choice, the initial states of the integrators and the bounds are taken
to be identical for the two integrators, a = b and �(t) = �1(t) = �2(t).
Therefore, if the boundary of integrator k = 1 is reached first, then at
decision time, x1(t) = �(t) > x2(t). This implies that the case μ1 > μ2 has
higher probability, and hence it is chosen (and, conversely, if integrator
k = 2 reaches its bound first). Without loss of generality, in the following,
integrator k = 1 is assumed to reach its boundary first, x1 = �(t), and then
the choice μ1 > μ2 has been made. Decision confidence can then be written
using equation 3.6 as

p(μ1 > μ2 | x2, t) = 1√
2π

∫ �(x2)
σv

√
t

−∞
dz e−z2/2, (3.9)

https://www.researchgate.net/publication/11855627_Usher_M_McClelland_JL_The_time_course_of_perceptual_choice_the_leaky_competing_accumulator_model_Psychol_Rev_108_550-592?el=1_x_8&enrichId=rgreq-cdc38117-a188-4b98-9e91-67f8a545dd0e&enrichSource=Y292ZXJQYWdlOzQxNDE1OTIyO0FTOjEwNDg4OTAzNjMxMjU5MEAxNDAyMDE4OTA0MDA1
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Figure 4: (A) Confidence for the decision μ1 > μ2 as a function of decision
time for x2 = 0.5 and as a function of x2 for t = 1 s for independent integrators
using equation 3.9. (B) Marginal decision confidence as a function of decision
time for independent (top, equations 3.20 and 3.22), half-anticorrelated (middle,
equations 3.20 and 3.21), and completely anticorrelated (classical DDM; bottom,
equation 3.11) integrators. Lines correspond to analytical expressions and data
points to simulations. For all cases, σ 2 = 3.8 s−1, �1 = �2 = 1 and a = b = 0.

where �(x2) = �(t) − x2 and x2 is the final state of integrator 2 at decision
time t. Equation 3.9 is a cumulative normal gaussian with the argument
being proportional to the ratio between the difference in distance trav-
eled by the two integrators and the squared root of the decision time. The
same expression holds if the prior distribution of the drifts is p(μ1, μ2) =
p(μ1)δ(μ1 − μ2), where p(μ1) = p0 (p0 is a constant), which states that μ1 is
distributed uniformly along with the constraint μ1 = −μ2. Decision confi-
dence depends, then, on the difference between the states of the two inte-
grators at decision time. The correlation between the integrators affect only
σv , and hence the slope of the confidence function, but it does not change
the functional dependence on the states of the integrators and elapsed time.

Figure 4A shows decision confidence as a function of decision time for
a fixed state of the losing integrator and as a function of the state of the
losing integrator, x2, for fixed decision time. Constant bounds, �(t) = �,
for the integrators are used in this example. As a function of decision time,
confidence decays monotonically from one to one-half. In the limit of long t,
equation 3.9 converges to 1/2 + (� − x2)/

√
2πσ 2

v t. The monotonic decay is
due to the fact that fast responses are likely to happen in trials in which large
drift rates are used, which leads to better performance and, hence, increased
confidence. As a function of the state of the losing integrator, decision
confidence decreases from one at large and negative x2 and approaches
one-half when x2 is close to threshold.

It is possible to compute decision confidence for the classical DDM
employing the general expression in equation 3.9. Here I use the prior



1798 R. Moreno-Bote

distribution p(μ1, μ2) = p(μ1)δ(μ1 − μ2) with p(μ1) = p0 (p0 is a constant),
which ensures the constraint μ = μ1 = −μ2; in addition, constant bounds
�(t) = � are used. Then the state of one integrator is determined by the state
of the remaining integrator, since when integrator k = 1 reaches its thresh-
old, x1 = �, integrator k = 2 is at x2 = −�. At decision time, the probability
distribution over the drift rate μ can be written using equation 3.6 as

p(μ | t) = 1√
2πσ 2/t

e− (μ−�/t)2

2σ2/t , (3.10)

and from this equation or from the general expression in equation 3.9 with
σv = 2σ , one gets that decision confidence is

p(μ > 0 | t) = 1√
2π

∫ �/σ
√

t

−∞
dz e−z2/2, (3.11)

which depends on only decision time (the dependence on the threshold
and noise variance is not made explicit). For long decision times, decision
confidence converges to 1/2 + �/

√
2πσ 2t. Experimental measurements of

decision confidence have been typically fit by a/t + b functions (Vickers,
1979), which are mathematically different from the a ′/

√
t + b ′ dependences

reported here. However, the two expressions are not very different
numerically one from each other when they are used in a limited range
of decision times. It should be noted that distinguishing between the two
expressions requires large amounts of data for very long reaction times,
which are not typically available. Nevertheless, it would be desirable to
design experiments that allow the estimation of confidence for a wide
range of decision times to test the analytical expressions found in this letter.

The classical DDM can be extended to the case in which the boundaries
are time dependent, �(t). In this case, the probability distribution over the
drift rate μ at decision time is written using equation 3.6 as

p(μ | t) = 1√
2πσ 2/t

e− (μ−�(t)/t)2

2σ2/t , (3.12)

and decision confidence then becomes

p(μ > 0 | t) = 1√
2π

∫ �(t)/σ
√

t

−∞
dz e−z2/2. (3.13)

Considering again the general DDM model, equation 2.1, if the drift
rates are not uniformly distributed but can take only two possible values
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μ1 = −μ2 = ±μ0 with probability one-half,

p(μ1, μ2) = 1
2

δ(μ1 − μ0) δ(μ2 + μ0) + 1
2

δ(μ1 + μ0) δ(μ2 − μ0),

(3.14)

then following similar steps as in equations 3.6 and 3.9, it can be shown
that

p(μ1 > μ2 | x2) = 1
1 + e−4μ0�(x2)/σ 2

v

. (3.15)

At decision time, decision confidence depends on the difference between the
traveled distances by the integrators, �(x2) = �(t) − x2, but not explicitly
on decision time. As in equations 3.6 and 3.9, confidence is independent
of the boundaries used to generate decisions. For the classical DDM with
time-dependent boundaries, �(t), decision confidence becomes

p(μ1 > μ2 | t) = 1
1 + e−2μ0�(t)/σ 2 , (3.16)

which depends on only decision time through the boundary time depen-
dence. It is interesting to note that for this case, decision confidence equals
the expression for the probability of reaching first the correct boundary
(Cox & Miller, 1965). Therefore, confidence and performance are identical
here. Although this result can be shown to be rather general, it is not true
for all boundary conditions.

Experimentally, human verbal reports of confidence are close but typ-
ically lower than the actual performance shown by the subjects (Vickers,
1979); in general, the slope of the confidence versus difficulty curve is lower
than that of the probability correct versus difficulty curve. One could argue
that verbal reports provide biased estimates of the true internal confidence
because of their discretized nature. A second, and more interesting, possi-
bility is that subjects’ belief does not fully correspond to their performance
because the subjects have not completely learned the task’s contingencies.
In either case, confidence would not correspond to the probability of being
correct. The last situation can be described with the DDM presented here
if, for instance, the variance σ in equation 2.1 is only approximately known
by the subject and is taken to be larger than the real one. For the problem
corresponding to equation 3.16, probability correct and confidence will be
correlated and have the same functional dependences on μ0 (which mea-
sures the difficulty of each trial), but the slope of the performance versus
difficulty curve will be higher than that of the confidence-versus-difficulty
curve.
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3.3 Marginal Confidence. Decision confidence depends in general on
both the decision time and the state of the losing integrator. However, for
comparison with behavioral data, it is necessary to know the marginal
decision confidence where the state of the losing integrator has been in-
tegrated out, since the latter is not typically available. Marginalization re-
quires knowing the probability density of xk (k = 1, 2) at decision time,
which satisfies a Fokker-Planck equation (FPE) with absorbing boundaries.
The FPE associated with equations 2.1 is

∂

∂t
P =

[
−μ1

∂

∂x1
− μ2

∂

∂x2
+ 1

2
σ 2

(
∂2

∂2x1
+ 2ρν

∂2

∂x1∂x2
+ ∂2

∂2x2

)]
P ,

(3.17)

where P ≡ P(�x, t | �x0) is the joint probability density of finding the integra-
tors in state �x = (x1, x2) at time t given that the initial condition at time t = 0
was �x0 = (a , a ). The FPE has to be solved along with the condition that at
the boundaries, defined as the semi-lines x1 = �(t) for all x2 ≤ �(t) (l1) and
x2 = �(t) for all x1 ≤ �(t) (l2), P has to be zero at all times. This condition de-
fines the semi-lines l1 and l2 as absorbing boundaries. Solutions to the FPE,
equation 3.17, are known for the independent and completely anticorrelated
(classical DDM) cases with time-independent boundaries (Cox & Miller,
1965). In the appendix, I provide details for the derivation of the solution
for two half-anticorrelated integrators with time-independent boundaries.
The above three solutions allow a direct comparison of marginal confi-
dence between different cases. In the following, � = 0 and a < 0. Then |a |
measures the initial distance to threshold.

In order to determine the marginal confidence (one needs to derive the
joint probability density that integrator k reaches its threshold at time t and
integrator j �= k is at state xj (xj ≤ 0) at that time, along with the condition
that no integrator has crossed its threshold before, given the initial condition
�x0. This quantity, denoted gk(t, xj | �x0, �μ), is written as

gk(t, xj | �x0, �μ) = −1
2
σ 2 ∂

∂xk
P(�x, t | �x0)|xk=0, (3.18)

which can be obtained from the probability flux vector expression associated
with the FPE (see equation 3.17; Risken, 1989). The dependence on the drift
rates �μ ≡ (μ1, μ2) has been made explicit for later convenience. Its integral
over xj is the conditional first passage times distribution for integrator
k. For instance, using equation A.9 in the appendix, for two independent
integrators equation 3.18 takes the expression

g1(t, x2 | �x0, �μ) = |a |
2πσ 2t2 e− (a+μ1 t)2

2σ2 t

(
e− (x2−a−μ2 t)2

2σ2 t − e− 2bμ2
σ2 − (x2+a−μ2 t)2

2σ2 t

)
,

(3.19)

and similarly for g2(t, x1 | �x0, �μ).
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Marginal confidence is defined as the confidence in a decision made at
time t when the state of the losing integrator and the values of the drift rates
are unknown or, more formally,

p(μ1 > μ2 | t) =
∫

dx2 p(μ1 > μ2 | x2, t) P(x2, t | �x0), (3.20)

where decision confidence p(μ1 > μ2 | x2, t) is given in equation 3.9 and
P(x2, t | �x0) is the probability distribution of x2 at time t given that the first
integrator has reached threshold at time t averaged over the distribution
of drift rates. The latter is defined as P(x2, t | �x0) = C(t) g1(t, x2 | �x0), where
C(t) is a normalization constant; g1(t, x2 | �x0) = ∫

d �μ g1(t, x2 | �x0, �μ) p(�μ),
which includes the average over the distribution of drift rates; and p(�μ) is
the a priori distribution over the drift rates. One could also define marginal
confidence for a fixed set of values of drift rates, as they can be controlled
experimentally, but here I focus on the averaged quantity. For two half-
anticorrelated integrators, using a uniform prior along with the constraint
that μ1 = −μ2, and equations A.8 and 3.16, it is found that the probabil-
ity density of finding the second integrator at state x2 given that the first
integrator has reached its boundary at time t takes the expression

P(x2, t | �x0) ∝ e−(x2−2a )2/2σ 2t + e−(x2+2a )2/2σ 2t − 2 e−(x2
2 +4a2)/2σ 2t, (3.21)

where the proportionality is in relation to the variable x2. For two inde-
pendent integrators, using equations A.9 and 3.17, with the constraint that
μ1 = −μ2, it is obtained

P(x2, t | �x0) ∝ e−x2
2 /4σ 2t(eax2/σ

2t − e−ax2/σ
2t). (3.22)

Figure 4B shows that marginal confidence (computed using equations
3.20 to 3.22, for two independent and half-anticorrelated integrators and
using equation 3.11 for the classical DDM with the same threshold and
noise values in the three cases) is at a maximum for the whole range of
decision times when the integrators are independent, nearly so when they
are half-anticorrelated, and at a minimum for the classical DDM. Therefore,
decision confidence in integrators with even strong correlations is close to
that in independent integrators and higher than that in the classical DDM.
The large difference in marginal confidence between the classical DDM and
the half-anticorrelated or independent integrators is due to the fact that as
decision time increases, the losing integrator in the latter two cases sepa-
rates from its boundary (a reminder that the losing integrator has negative
drift). Using the fact that confidence increases as the distance between the
integrators increases, equation 3.9, it is now clear why marginal confidence
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Figure 5: Time evolution of the probability density distribution over �x for two
integrators with independent (A) and half-anticorrelated (B) white noise inputs.
The gray-coded distributions are plotted at three different times, using the so-
lutions in equations A.9 and A.8. Parameters for the independent integrators
(ρ = 0) are a = −1.5, b = −1, μ1 = 0.2 s−1, μ2 = 0.1 s−1, and σ 2 = 1 s−1. Param-
eters for the half-anticorrelated integrators (ρ = 1/2, ν = −1) are a = b = −1,
μ1 = 0.75 s−1, μ2 = 0 s−1, and σ 2 = 0.5 s−1. Besides, �1 = �2 = 0.

becomes higher for the independent and half-anticorrelated cases than for
the classical DDM.

3.4 Reaction Time Distributions. The time evolution of the probability
density function of finding the neuronal integrators in a given state can be
used to gain additional insight into the decision process. Figure 5 shows
three snapshots of the time evolution of the probability density distribution
over �x for two independent (see Figure 5A) and two half-anticorrelated
integrators (see Figure 5B). In both cases, I use μ1 > μ2 ≥ 0. The distri-
bution broadens over time and moves toward the boundaries. When the
distributions get close to the boundaries, their peaks remain approximately
stationary. For the parameter values used, the distributions approach the
boundary l1 more rapidly. Therefore, most of the trajectories will escape
through the semi-line l1. However, many others will cross l2 first. It can be
proved that one of the two boundaries is crossed at some finite time with
probability one if the drift of at least one integrator is larger than zero. The
distribution spreads circularly for two independent integrators, while for
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Figure 6: (A). First passage times-state joint probability distribution, g1(t, x2 |
�x0), for two independent (left) and two half-anticorrelated (right) integrators
(see equation 3.19, and equations 3.18 and A.8, respectively). White lines are
the mean value of x2 as a function of decision time. (B) First passage times
probability density distributions, gk(t), k = 1, 2, for independent (left) and half-
anticorrelated (right) integrators. Full and dashed lines correspond to the inte-
grator with higher and lower drift, respectively. Fluctuating lines correspond to
numerical simulations of equations 2.1. Parameters are as in Figure 5.

two half-anticorrelated integrators, the distribution spreads more along the
nonprincipal diagonal.

The first passage times-state joint probability distribution, equation 3.18,
can be used to describe the state of the losing integrator given that a decision
has been made. Figure 6A shows a typical example of the joint probability
distribution. The mean value of x2 (the white line) diverges monotonically
from threshold as a function of the crossing time of integrator k = 1. This is
because, as shown in Figure 5A, trajectories tend to disperse at long times. A
different picture emerges when the two integrators are half-anticorrelated,
equations 3.18 and A.8, as shown in the right panel. The mean value of x2

approaches threshold at short decision times, while it diverges from thresh-
old at long decision times. The first rise is due to the presence of negative
correlations in the inputs to the two integrators and can be understood as
follows. If integrator k = 1 reaches its threshold at a late time, this delay
is likely due to a negative input fluctuation to that integrator. Since the
two integrators have anticorrelated inputs, the integrator k = 2 has likely
experienced a positive input fluctuation, explaining why the mean value
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of x2 approaches the threshold at short decision times. At long decision
times, the diffusion of trajectories due to noise dominates over the previous
mechanism, and therefore the mean value of x2 diverges from threshold in
that regime.

Figure 6B shows the probability distributions of first passage times for
each integrator along with the condition that it crossed its threshold first.
This first passage time distribution is computed by integrating equation 3.18
with the probability distribution of the losing integrator. The integrator with
the higher drift crosses first the threshold with a probability larger than
one-half (full lines). The distributions are positively skewed, similar to the
reaction times distributions typically found in two-alternative forced-choice
tasks (Ratcliff & Smith, 2004; Luce, 1986).

4 Discussion

A decision diffusion model (DDM) consisting of two neuronal integrators
receiving independent as well as correlated inputs has been studied. De-
cision confidence has been shown to depend on the difference between
the traveled distances of the two integrators at decision time. Importantly,
leakless integrators accumulate evidence without loss, since their final state
and elapsed time fully specify the probability distribution over the signals,
regardless of the stopping rule used to make decisions. Different behav-
iors are obtained from leak integrators, since the probability distribution
over the drift rates depends not only on the final states of the integrators
and elapsed time. These results can have important consequences about
neuronal coding and integration of information in lateral intraparietal area
(LIP) and frontal eye fields (FEF), where almost linear, perfect integration
of evidence is observed.

Previous models have proposed that decision confidence is encoded in
the difference between the state of two integrators that accumulate evidence
in favor of two alternatives (Vickers, 1979; Juslin & Olsson, 1997; Vickers &
Lee, 1998; Van Zandt, 2000), like the DDM studied here. However, it was
not known how confidence was mathematically related to the difference of
the states (balance of evidence) of the integrators. As equation 3.9 shows,
decision confidence is a cumulative gaussian whose argument is propor-
tional to the balance-of-evidence term. In addition, it explicitly shows time
dependences that were not anticipated by these preliminary works. Pleskac
and Busemeyer (2007) have considered a model in which confidence is com-
puted after the decision has been made. However, an interesting alternative,
as proposed by the model presented here, is that that when a decision is
made, there is immediate access to decision confidence and the evaluation
of confidence does not require additional deliberation. Ratcliff and Starns
(2009) recently presented a model about how verbal reports of decision con-
fidence can be generated by human subjects. The model requires multiple
additional integrators (one for each confidence rating—for example, high,
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medium, or low), whose role is to determine which rating will be reported.
The DDM model that I have described here makes the interesting predic-
tion that decision confidence is represented in the brain as a continuous
value: if verbal reports about confidence are not forced, subjects might use
confidence only implicitly without the necessity of discretizing it.

Biophysically inspired neuronal network models for decision making
have been studied in Wang (2002) and Beck et al. (2008). These attractor
models show almost linear ramping activity at low firing rates, like the DDM
studied here, but they display nonlinearities that become evident when the
firing rate approaches the decision boundary. Consistent with these models,
Huk and Shadlen (2005) and Wong, Huk, Shadlen, and Wang (2007) have
shown that brief motion pulses (100 ms) injected at different times from
the onset of a dynamic random dot display affect the firing rate of LIP
neurons in a time-dependent manner, which earlier pulses producing larger
changes in firing rate than later pulses. As Huk and Shadlen (2005) pointed
out, this result is also consistent with a perfect integrator model of inputs
with time-decaying boundaries, like the DDM considered in this letter.
Further experiments are required to test which is the correct model. These
experiments would likely involve injecting motion pulses at different times
conditioned to the same firing rate of the LIP neurons for all times. In this
hypothetical experiment, the attractor model predicts time-shift invariance
of the induced changes in firing rate, while the DDM with time-decaying
boundaries predicts its violation. Further theoretical work is also required
to connect realistic neuronal attractor networks with simplified integrator
models and to determine to what extent nonlinearities that arise near the
decision boundaries can be well approximated by hard decision boundaries
(see Roxin & Ledberg, 2008).

Decision confidence has been shown to display two apparently contra-
dictory behaviors (Vickers, 1979). First, confidence decays as a function of
decision time when subjects are free to choose the stopping time (Henmon,
1911). In contrast, confidence increases as a function of decision time when
subjects are externally forced to make a decision at an experimentally con-
trolled time (Vickers, 1979). The first situation corresponds directly to the
case that I have considered in Figure 4B: since trials for which the difference
between the drift rates is large lead typically to short decision times, con-
fidence will be higher at shorter than at longer decision times. The second
situation can also be described with the DDM introduced here. This can be
seen by noting that in this case, equation 3.9 becomes

p(μ1 > μ2 | x1, x2, t) = 1√
2π

∫ �(x1 ,x2)
σv

√
t

−∞
dz e−z2/2, (4.1)

where �(x1, x2) = x1 − x2, x1, and x2 are the states of the integrators at time
t, and it is assumed that the two integrators are allowed to evolve freely
until the stopping time is externally forced (i.e., bounds are not present, as

https://www.researchgate.net/publication/6981692_Probabilistic_Decision_Making_by_Slow_Reverberation_in_Cortical_Circuits?el=1_x_8&enrichId=rgreq-cdc38117-a188-4b98-9e91-67f8a545dd0e&enrichSource=Y292ZXJQYWdlOzQxNDE1OTIyO0FTOjEwNDg4OTAzNjMxMjU5MEAxNDAyMDE4OTA0MDA1
https://www.researchgate.net/publication/23706599_Probabilistic_Population_Codes_for_Bayesian_Decision_Making?el=1_x_8&enrichId=rgreq-cdc38117-a188-4b98-9e91-67f8a545dd0e&enrichSource=Y292ZXJQYWdlOzQxNDE1OTIyO0FTOjEwNDg4OTAzNjMxMjU5MEAxNDAyMDE4OTA0MDA1
https://www.researchgate.net/publication/23409790_Neural_Circuit_Dynamics_Underlying_Accumulation_of_Time-Varying_Evidence_During_Perceptual_Decision_Making?el=1_x_8&enrichId=rgreq-cdc38117-a188-4b98-9e91-67f8a545dd0e&enrichSource=Y292ZXJQYWdlOzQxNDE1OTIyO0FTOjEwNDg4OTAzNjMxMjU5MEAxNDAyMDE4OTA0MDA1
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Figure 7: Decision confidence decreases with decision time when the stopping
time is internally determined by a threshold crossing (continuous lines) but
increases with time if the decision time is externally forced and there is no
threshold (dashed lines). In both cases, the classical DDM is considered (i.e., a
DDM with completely anticorrelated fluctuations), with bounds at � = 1 when
the decision time is internally generated and no bounds when the stopping
time is externally forced (for the the latter case, μ0 = 2 s−1). The noise variance
is σ 2 = 3 s−1 and 30 s−1 for the thick and thin lines, respectively.

in Vickers, 1979, and the state of the integrators is read out at the forced stop-
ping time). Since the difference between the states of the integrators grows
in mean linearly with time and proportionally to the difference in their drift
rates, that is, 〈�(x1, x2)〉 >= (μ1 − μ2)t, the argument of equation 4.1 grows
in mean as a function of time, and therefore confidence is expected to in-
crease. Figure 7 shows that decision confidence decreases as a function of de-
cision time for the classical DDM when decision time is internally generated,
equation 3.11, and that decision confidence in the same model without
boundaries for any given drift rate μv = μ1 − μ2 = 2μ0 > 0, approximated
as

p(μ1 > μ2 | t, μ0) ∼ 1√
2π

∫ μ0 t
σ
√

t

−∞
dz e−z2/2, (4.2)

increases as a function of the externally forced stopping time. As expected,
the curves move downward with increasing input noise σ , since the dif-
ficulty of the task increases with it. Mathematically, this is because both
equation 3.11 and equation 4.2 are decreasing functions of σ .

In summary, I have provided analytical tools to describe decision
confidence and uncertainty in decision making using the DDM. The
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analytical expressions for decision confidence in partially correlated
neuronal integrators found in this letter might allow estimating confidence
from multirecording neurophysiological data in decision areas like LIP and
FEF (Hanes & Schall, 1996; Shadlen & Newsome, 1996; Platt & Glimcher,
1999) and compare it with behaviorally measured confidence values.
The results can be extended to multiple integrators and to more general
forms of noise, therefore opening a window for studying how decision
uncertainty is represented in neuronal populations in the brain.

Appendix: Solution for a DDM with Half-Anticorrelated Integrators

This appendix provides details for the derivation of the solution of the FPE,
equation 3.17, for the case of half-anticorrelated integrators. It also gives the
derivation for the case in which the integrators are independent.

The strategy is to find the solution of the FPE, equation 3.17, with bound-
ary conditions as specified in the main text as a linear superposition of free
solutions,

Pe (�x, t | �x′) = 1
πσuσvt

e
− (x1+x2−x′

1−x′
2−μut)2

2σ2
u t

− (x1−x2−x′
1+x′

2−μv t)2

2σ2
v t , (A.1)

with initial condition �x′ = (x′
1, x′

2), using the well-known method of the
images (Cox & Miller, 1965; Risken, 1989). Note that a free solution is a
bivariate gaussian with independent variables u = x1 + x2 and v = x1 − x2.
The free solutions satisfy the FPE, equation 3.17, for any initial condition.
However, none of them satisfies the vanishing boundary condition at the
semi-lines l1 and l2.

As a preliminary step, the FPE, equation 3.17, with absorbing boundary
on the line x1 = 0 is solved. I seek a solution with the form

P(�x, t | �x0) = Pe (�x, t | �x0) + r Pe (�x, t | �x1), (A.2)

consisting of a source at the initial condition �x0 = (a , b) (here it is not as-
sumed that a = b, as in section 3.3) and an image source at �x1 = (a1, b1)
weighted with the coefficient r . By imposing the boundary condition
P(0, x2) = 0 for all x2 (i.e., the line x1 = 0 is an absorbing boundary), I find
that the image coordinates are �x1 = (−a , αa + b) with α = 2(1 − σ 2

u /σ 2
v )/(1 +

σ 2
u /σ 2

v ), and

r = −eμu(u1−u0)/σ 2
u +μv (v1−v0)/σ 2

v , (A.3)

where u0 = a + b, v0 = a − b, u1 = a1 + b1 and v1 = a1 − b1. The solu-
tion satisfies the initial condition, P(�x, 0 | �x0) = δ(�x − �x0). If the absorbing
boundary is on the line x2 = 0, the solution instead is

P(�x, t | �x0) = Pe (�x, t | �x0) + s Pe (�x, t | �x2), (A.4)
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with the image at �x2 = (a2, b2) = (a + αb,−b) and

s = −eμu(u2−u0)/σ 2
u +μv (v2−v0)/σ 2

v , (A.5)

where u2 = a2 + b2 and v2 = a2 − b2. In both cases, the image is located on
the ellipse,

σ 2
v u2

0 + σ 2
u v2

0 = σ 2
v u2

i + σ 2
u v2

i , (A.6)

i = 1, 2, which includes the source at the initial condition. It is convenient
to introduce the matrices

�1(α) =
(

−1 0

α 1

)
, �2(α) =

(
1 α

0 −1

)
,

which define a mapping from the initial condition to the image positions
through the lines x1 = 0 and x2 = 0, respectively, �xi = �i (α)�x0, i = 1, 2. Re-
peated and alternated applications of �1 and �2 to the initial condition lead
to points that lie on the same ellipse, equation A.6.

A combination of the two previous images with the source at the initial
condition,

P(�x, t | �x0) = Pe (�x, t | �x0) + c1 Pe (�x, t | �x1) + c2 Pe (�x, t | �x2), (A.7)

is not a solution to the FPE, equation 3.17, with absorbing boundaries on
the semi-lines l1 and l2, for any values of c1 and c2. This is because the
source at the initial condition plus one of the images can vanish on one
semi-line, but not simultaneously on the other, implying the necessity of
additional images. One possibility is to augment the number of images to
try to match the boundary condition at the two semi-lines simultaneously.
In fact, I find that a finite number of images is enough for a DDM with
two half-anticorrelated integrators, corresponding to (ρ = 1/2 and ν = −1
in equation 2.1). The solution consists of five images,

P(�x, t | �x0) = Pe (�x, t | �x0) +
5∑

i=1

ci Pe (�x, t | �xi ), (A.8)

with σ 2
u = σ 2 and σ 2

v = 3σ 2; positions �x1 = (−a , a + b), �x2 = (a + b,−b),
�x3 = (b,−a − b), �x4 = (−a − b, a ), and �x5 = (−b,−a ); and coefficients c1 =
−e−2aμ1/σ

2
, c2 = −e−2bμ2/σ

2
, c3 = e−[2aμ1+2(a+b)μ2]/σ 2

, c4 = e−[2(a+b)μ1+2bμ2]/σ 2
,

and c5 = −e−[2(a+b)(μ1+μ2)]/σ 2
. The solution is schematically represented in

Figure 1D. The images are located on an ellipse, equation A.6. Their po-
sitions are obtained by applying iteratively and alternatively the matrices
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�i (α), i = 1, 2, with α = 1 to the initial condition. After defining �̂i = �i (1),
i = 1, 2, we have �x1 = �̂1�x0, �x2 = �̂2�x0, �x3 = �̂2�̂1�x0, �x4 = �̂1�̂2�x0, and
�x5 = �̂1�̂2�̂1�x0 = �̂2�̂1�̂2�x0. Images 1 and 2 are the images of the source
at the initial condition through lines x1 = 0 and x2 = 0, respectively. Images
3 and 4 can be thought of as the images of the first and second images
through the lines x2 = 0 and x1 = 0, respectively, and image 5 as the image
of images 3 and 4 through the lines x1 = 0 and x2 = 0. The coefficients have
been found by using the previous results for single line boundaries, which
allow imposing for each pair of image and its image through one semi-line
that the boundary condition is met on that semi-line.

A finite number of free solutions suffices too when the white noise in-
puts are independent across the two integrators, corresponding to ρ = 0 in
equations 2.1. The solution consists of three images,

P(�x, t | �x0) = Pe (�x, t | �x0) +
3∑

i=1

ci Pe (�x, t | �xi ), (A.9)

with σ 2
u = σ 2

v = 2σ 2; positions �x1 = (−a , b), �x2 = (a ,−b), and �x3 = (−a ,−b);
and coefficients c1 = −e−2aμ1/σ

2
, c2 = −e−2bμ2/σ

2
, and c3 = c1c2. A schematic

representation of the solution is shown in Figure 1B. All images and ini-
tial source lie on a circle, equation A.6. The positions of the two first im-
ages are obtained by application of the matrices �i (0), i = 1, 2 (α = 0) to
the initial condition, �xi = �i (0)�x0. Their coefficients can be obtained from
the coefficients of the images required to solve the FPE, equation 3.17,
with absorbing boundaries on the lines x1 = 0 or x2 = 0, equations A.4
and A.5. The third image can be thought of as the image of images 1
and 2 through the lines x2 = 0 and x1 = 0, respectively. It is uniquely de-
fined because of the transitivity of the matrix product �1(0)�2(0), that is,
�x3 = �1(0)�2(0)�x0 = �2(0)�1(0)�x0. The coefficient of the third image has
been chosen in order to match the boundary condition on both semi-lines
simultaneously. The solution for this case can also be obtained by mul-
tiplying the known individual solutions for two one-dimensional Wiener
processes with absorbing boundaries (Cox & Miller, 1965).
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