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We present new findings that distinguish drift diffusion models (DDMs) from the
linear ballistic accumulator (LBA) model as descriptions of human behavior in a
two-alternative forced-choice reward maximization (Rmax) task. Previous comparisons
have not considered Rmax tasks, and differences identified between the models’
predictions have centered on practice effects. Unlike the parameter-free optimal
performance curves of the pure DDM, the extended DDM and LBA predict families of
curves depending on their additional parameters, and those of the LBA show significant
differences from the DDMs, especially for poorly discriminable stimuli that incur high
error rates. Moreover, fits to behavior reveal that the LBA and DDM provide different
interpretations of behavior as stimulus discriminability increases. Trends for threshold
setting (caution) in the DDMs are consistent between fits, while in the corresponding
LBA fits, thresholds interact with distributions of starting points in a complex manner that
depends upon parameter constraints. Our results suggest that reinterpretation of LBA
parameters may be necessary in modeling the Rmax paradigm.
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1. INTRODUCTION
Among the many models proposed to describe decision tasks,
leaky competing accumulators (LCAs) (Usher and McClelland,
2001) and drift diffusion models (DDMs) e.g., Ratcliff and
Rouder (1998) have been especially prominent. More recently the
linear ballistic accumulator (LBA) (Brown and Heathcote, 2008)
was introduced as a conceptually simpler alternative to DDMs.
All these models employ drift terms that describe mean rates
of evidence accumulation, thresholds that signal decision times
when crossed, and sources of variability, either within or across
trials. All have been validated against particular behavioral data,
but since they differ in structure, number of parameters, and
the manner in which variability enters, they may suggest differ-
ent processing mechanisms [although the DDM can be derived
from the LCA under certain conditions (Bogacz et al., 2006)]. It is
therefore of interest to compare their accounts of given data sets.

The comparative study of Donkin et al. (2011) revealed few
differences between the abilities of the LBA and DDM to fit and
predict behavioral data. However, an earlier comparison of DDM
fits to simulated data from LBA, DDM, and LCA found that DDM
and LCA parameters correlated in a one-to-one manner, but those
of LBA and DDM did not (van Ravenzwaaij and Oberauer, 2009).
Subsequently, differences in drift rates, non-decision times and

caution parameters were found in many-parameter fits of prac-
tice effects (Heathcote and Hayes, 2012), but these differences
were not connected to optimal theories of performance in per-
ceptual choice tasks. LBA fits were not included in a substantial
recent paper (Teodorescu and Usher, 2013) that compared sev-
eral race and LCA models. Nor have the LBA and DDMs been
compared for reward maximization (Rmax) tasks in which par-
ticipants have learned strategies and apply task-based knowledge
to optimize performance.

In Rmax tasks participants are instructed to adopt a strat-
egy that yields maximum rewards, and are given a fixed time
interval to complete each block of trials, during which they may
attempt the task as many times as they wish, as detailed in sec-
tion 2.3. Task difficulty is held constant within a block but varied
between blocks. In the two-alternative forced-choice (2AFC) task
from which data is analyzed here, visual moving dots stimuli were
used and task difficulty was adjusted via motion coherence (Balci
et al., 2011). Depending on difficulty, a participant may attempt
the task few times, slowly and cautiously, or she may work faster
but more carelessly. The 2AFC Rmax task performance and model
fits have been tested against the DDM, and DDM fits have been
shown to describe a speed-accuracy tradeoff quite close to that of
high performing participants (Bogacz et al., 2006; Simen et al.,
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2009; Bogacz et al., 2010; Balci et al., 2011). However, Rmax task
performance and fits have not previously been compared across
models.

Here we compare the LBA, which represents evidence in favor
of two or more options, with the pure and extended (Ratcliff,
e.g., Ratcliff and Rouder, 1998) DDMs, which assess differences
of evidence between options. In the LBA two drift rates, believed
to be correlated with neural activity (e.g., Gold and Shadlen, 2000,
2001; Gold et al., 2008), represent preferences for each of the two
options; in the DDMs, a single drift rate represents the difference
between these preferences.

For both the DDMs and the LBA models, thresholds, also
called caution parameters (Donkin et al., 2011), set a level of
accumulated activity at which a decision is made. Caution is key
in setting the speed-accuracy tradeoff: high caution implies low
speed and high accuracy and low caution implies high speed and
low accuracy (Bogacz et al., 2006; Brown and Heathcote, 2008;
Balci et al., 2011). For example, caution can explain the rela-
tively slow response times of elderly individuals (Ratcliff et al.,
2004). Caution can be experimentally manipulated by adjusting
task difficulty from block to block, and optimal values of caution
can be determined analytically for the pure DDM and numer-
ically for the extended DDM and the LBA, as shown below in
section 2.2.

An important difference between the DDMs and the LBA
models is the treatment of variability. In the DDMs variability
enters as additive Gaussian noise in the evidence accumulation
dynamics during each individual trial. In the extended DDM,
there are additional trial-to-trial variabilities in the starting point,
in the drift rate of evidence accumulation, and in the non-
decision time. In contrast, there is no additive noise in the LBA
during individual trials, as implied by the adjectives “linear” and
“ballistic.” Instead there is only trial-to-trial variability in the
starting points and in the drift rates. Nonetheless, the LBA mod-
els can capture much of the same behavior as the extended DDM,
and they do so with fewer parameters (Brown and Heathcote,
2008; Donkin et al., 2011).

Direct numerical comparisons of the role of caution in the
models are straightforward. Parameters can be fit to participant
behavior at each difficulty level for each model. For a given
parameter set, changes in speed and accuracy of responses as cau-
tion is varied can be computed, and thus the value of the caution

parameter that yields the highest reward rate can be determined
for each difficulty level. An optimal speed-accuracy tradeoff for
each model and participant can then be derived, assuming that
caution is varied from one difficulty condition to the next.

The models can also be evaluated and compared by examin-
ing their predictions of optimal performance. For the pure DDM,
a unique parameter-free Optimal Performance Curve (OPC)
describes the relationship between error rate (ER) and a nor-
malized decision time (DT), independent of model parameters
(Bogacz et al., 2006). Parameterized families of OPCs may also be
determined for the extended DDM, and as the values of the addi-
tional parameters (variances in drift rate, in starting point, and in
non-decision time) become small, these curves approach that of
the pure DDM (Bogacz et al., 2006). Like the extended DDM, the
LBA does not predict unique OPCs, and our analysis of the LBA
reveals a critical interaction between thresholds and variance in
starting points.

While the DDMs and the LBA can reproduce key aspects of
behaviors, the DDM fits suggest that participants are on average
least cautious on the most difficult tasks, in which the optimal
strategy is random guessing. In contrast, an LBA fit indicates that
participants are on average more cautious on the most difficult
tasks, and that they reduce variance in starting points as difficulty
decreases. These differences between the DDM and the LBA pre-
dictions highlight the role of diffusive noise within trials in the
DDMs, which is sacrificed for simplicity in the LBA model.

The paper is structured as follows. In section 2 we discuss
our methods, describing the LBA model, the pure and extended
DDMs, and parameter-fitting procedures. We review optimal per-
formance theory for the pure and extended DDMs, develop anal-
ogous results for the LBA, propose an adapted LBA that decouples
starting point from thresholds and compare model performances
in the limit of large noise. Section 3 describes our results pri-
marily in terms of parameter fits across subjects, and section 4
contains a discussion and directions for future work. Details of
fits to individual participants are provided in the Supplementary
Material.

2. MATERIALS AND METHODS
2.1. DRIFT DIFFUSION AND LINEAR BALLISTIC ACCUMULATION
In this section we describe the pure and extended (Ratcliff) DDMs
and the LBA models. The two models are illustrated in Figure 1.

FIGURE 1 | Comparative illustration of pure DDM (left) and LBA (right) models. See text for description of extended DDM and further details.
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2.1.1. Pure drift diffusion model
In the pure DDM the difference in evidence for the two choices
evolves according to the following scalar equation:

dx = μdt + σdW, x(0) = x0, (1)

where x(t) is the aggregate evidence at time t, μ is the drift rate,
σ is the diffusion rate, and dt and dW represent time and Wiener
noise increments, respectively. Evidence accumulates noisily from
the starting point x(0) = x0 at time t = 0 to the first time t =
T at which x(T) = +z or −z. Without loss of generality, we
assume that μ ≥ 0 (Bogacz et al., 2006). Thus, the two thresh-
olds, +z and −z, respectively, correspond to selecting the correct
and incorrect choices. We will refer to z interchangeably as the
threshold or the caution (parameter); z can take any non-negative
value.

Only four parameters are required to predict DT for
Equation (1): μ, x0, σ , and z, and there are closed form analytical
expressions for mean DT and ER (Bogacz et al., 2006):

DT = z

μ
tanh

( zμ

σ 2

)
+ 2z

μ
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(
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σ 2

)
exp

(
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σ 2

)
− exp

(
− 2zμ
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σ 2

)
⎞
⎠ . (3)

In addition, the pure DDM is augmented by a non-decision
time parameter, T0, corresponding to non-decision processes.
The estimated reaction time (RT) is the sum of the decision and
non-decision times: RT = DT + T0.

Although our data were derived from unbiased stimuli, we
allow non-zero starting points in order to make direct compar-
isons among all the models, since extended DDMs and LBAs use
ranges of starting points.

2.1.2. Extended drift diffusion model
In the extended (Ratcliff) DDM, evidence accumulation in each
trial is governed by the same process as in the pure DDM, but with
added variability in starting points, drift rate, and non-decision
time:

dx = μ∗dt + σdW, x(0) = x∗
0, (4)

where μ∗, σ , z, x∗
0 , and T∗

0 , respectively represent the drift rate,
diffusion rate, threshold, starting point, and non-decision time
for a given trial. Evidence accumulation proceeds from the start-
ing point x(0) = x0 at time t = 0 to the first time t = T at which
x(T) = +z or −z. For each trial, μ∗ is selected from N (

μ, s2
μ

)
,

x∗
0 is selected from U

(
x0 − sx0

2 , x0 + sx0
2

)
, and T∗

0 is selected

from N
(

T0, s2
T0

)
, where N and U respectively denote Gaussian

(normal) and uniform distributions, and μ, sμ, sx0 , T0, sT0 are all
non-negative constant scalars.

The additional variability in the model parameters from trial
to trial augments the model’s descriptive power. In particular,
the extended DDM, unlike the pure DDM, can predict different

RT distributions for correct and error trials, even with unbiased
mean starting points. Prior work has suggested that the parame-
ters new to the extended DDM sufficiently extend the descriptive
capabilities of the DDM to merit the additional modeling cost
(Ratcliff and Rouder, 1998; Ratcliff and Smith, 2004; Balci et al.,
2011). However, analytical expressions for DT and ER analogous
to Equations (2, 3) do not exist for the extended DDM. The
extended DDM is frequently called the Ratcliff DDM due to a
large body of work by Ratcliff to characterize it. Here the thresh-
old z can assume any non-negative value outside the range of
starting points (Tuerlinckx, 2004).

2.1.3. Linear ballistic accumulator model
The LBA model is conceptually simple and yet can provide rich
descriptions of behavior, rivaling those of the extended DDM
(Brown and Heathcote, 2008; Donkin et al., 2011). Evidence xi(t)
for each of two or more choices accumulates linearly and ballis-
tically in time t from xi(0) = xi0∗ toward a threshold z at a drift
rate μ∗

i :

xi(t) = x∗
i0 + μ∗

i t, i = 1, 2, . . . , N. (5)

As in the extended DDM, parameters may vary from trial to
trial. Here μ∗

i is selected from N [
μi, s2

]
and x∗

i0 from U [0, A]
on each trial. The parameter A > 0 defines the maximum value
that any starting point x∗

i0 may assume. The accumulator xi(t)
that is first to reach the threshold z is selected. In prior work,
A has been restricted to lie below z, i.e., A ≤ z (Brown and
Heathcote, 2008; Donkin et al., 2011). A non-decision time T0 is
also included. While drift rates generally differ for each accumu-
lator (μi �= μj), the remaining parameters A, z, s, T0 are common
to all accumulators.

Closed form expressions describing the LBA model’s behavior
were derived in Brown and Heathcote (2008). The cumulative dis-
tribution function (CDF), Fi(t), and the probability density func-
tion (PDF), fi(t), can be written in terms of the LBA parameters
for individual accumulators:

Fi(t) = 1 + z − A − tμi
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, (7)

where �( · ) is the CDF and φ( · ) the PDF for the normal dis-
tribution with zero mean and unit variance. See Brown and
Heathcote (2008, Supplementary Material) for the derivations of
Equations (6, 7).

To determine mean first passage times for competing accu-
mulations, we use the defective PDF, denoted PDFi(t); unlike the
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standard PDF, the defective PDF generally integrates to a value
between 0 and 1. PDFi(t) describes the likelihood that accumula-
tor xi(t) reaches the threshold provided that no other accumulator
has already done so:

PDFi(t) = fi(t)
∏
j �= i

(
1 − Fj(t)

)
. (8)

Because drift rates μ∗
i are selected from a normal distribution, in

some cases all μ∗
i ’s are negative. When this happens, the model

produces an infinite decision time, and no response is given.
Thus to compare LBA responses to those predicted by the two
DDMs, which are finite on every trial, we consider only simu-
lated LBA trials that yield a finite response time, i.e., that have at
least one accumulator with a positive drift rate on that trial. To
do so we modify the expressions above by a normalization factor
α(μ1, . . . , μN , s) = 1 −∏N

i = 1 �
(−μi

s

)
, which is the probabil-

ity that no accumulator reaches threshold. This follows since
�
(−μi

s

)
is the probability that the ith accumulator has μ∗

i < 0.
The normalized defective probability density functions pi(t) are
given in Brown and Heathcote (2008) as

pi(t) = PDFi(t)

α(μ1, . . . , μN , s)
. (9)

For a two choice task, we therefore have

p1(t) = PDF1(t)
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s
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(−μ2
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) , (10)

p2(t) = PDF2(t)
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s

)
�
(−μ2

s

) , (11)

with
∫∞

0 (p1(t) + p2(t))dt = 1. The expressions for DT and
ER are

DT =
∫ ∞

0
t(p1(t) + p2(t))dt, (12)

ER =
∫ ∞

0
p2(t)dt. (13)

Following the convention adopted for the DDM, we shall assume
that μ1 ≥ μ2, so that p1(t) and p2(t) represent correct and incor-
rect responses, respectively, and the corresponding DTs may be
written as

DTcorrect = 1

1 − ER

∫ ∞

0
tp1(t)dt, (14)

DTerror = 1

ER

∫ ∞

0
tp2(t)dt. (15)

We also normalize the sum of the mean drift rates: μ1 + μ2 = 1.
For the LBA described in the literature (Brown and Heathcote,
2008; Donkin et al., 2011), the threshold must not fall within the
range of starting points, i.e., we must have z ≥ A. The LBA, unlike
the two DDMs, therefore almost always predicts non-zero DTs.
Implications of this in determining an optimal speed-accuracy
tradeoff are discussed in the next section.

2.2. OPTIMAL PERFORMANCES
As in Bogacz et al. (2006), we define optimal performance as a
strategy that maximizes the Reward Rate (RR):

RR = 1 − ER

DT + T0 + RSI
, (16)

where RSI denotes the response to stimulus interval (see sec-
tion 2.3 below). To assess performance, we seek a relationship
between the behavioral measures ER and DT that yields the max-
imum RR for a given decision making model. This Optimal
Performance Curve (OPC) (Bogacz et al., 2006) relates normal-
ized DT to ER, where the former is defined as DT

Dtot
with Dtot =

T0 + RSI. We now describe OPCs for the DDM, extended DDM,
and LBA.

2.2.1. Optimal performance under the pure DDM is described by a
unique curve

The pure DDM has a unique, parameter-free OPC, defined by

DT

Dtot
=
(

1

ER log 1 − ER
ER

+ 1

1 − 2ER

)−1

, (17)

which is derived by finding the threshold that maximizes RR
for a given task difficulty (Bogacz et al., 2006). This function
is shown in solid black in Figure 2 below. Its general shape can
be intuitively explained by noting that for very noisy stimuli,
prolonged evidence accumulation cannot improve much over
random choices, so at the righthand end optimal thresholds
approach zero, DT → 0 and ER → 0.5. Alternatively, very easy
tasks require little accumulation to achieve high accuracy, so DTs
are also small at the left, but ER → 0. For each intermediate
difficulty level and a given Dtot = T0 + RSI, there is a unique
optimal threshold with associated DT and ER between 0 and 0.5
that maximizes RR, thus defining the curve. All other thresholds,
associated with faster or slower RTs, yield smaller net rewards at
that task condition. Going from right to left, RRs rise as difficulty

FIGURE 2 | Optimal Performance Curves (OPCs) for the LBA are not

unique. The following parameters for the standard LBA were used in the
simulation: s = 0.32, T0 = 226 ms, RSI = 1000 ms, μ1 + μ2 = 1. The
unique OPC of the pure DDM is shown in black.
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decreases, but it is important to recognize that any point on the
OPC corresponds to maximum RR for a specific task condition.
See Bogacz et al. (2006) and Zacksenhouse et al. (2010) for further
discussion and illustrations of the OPC.

2.2.2. Optimal performance under the extended DDM is not
uniquely defined

The extended DDM has families of OPCs rather than a unique
OPC, as in the pure DDM. In the extended DDM, variability in
starting points precludes the possibility of trials with a DT = 0.
However, for low values of variance parameters in the extended
DDM, the OPCs for the extended DDM approach the OPC for the
pure DDM. For a sample OPC for the extended DDM see (Bogacz
et al., 2006, Figure 14). To compute such curves, all parameters
except drift rate and threshold are fixed. Then the threshold which
optimizes RR is computed for each drift rate and used to deter-
mine ER and normalized DT. Further details can be found in
Bogacz et al. (2006).

2.2.3. Optimal performance under the LBA is not uniquely defined
The LBA expressions of Equations (6–11) are complicated, and
simple analytical expressions of their OPC families do not seem
possible. Instead we approximate them numerically. To do this,
we fix T0, RSI, s, set μ1 + μ2 = 1 and choose A. We then calculate
ER and DT for each μ1 ∈ [0.5, 1]. From these we estimate the
optimal z and find the corresponding ER and DT, producing a
point on the OPC for the selected A value. We find that a different
OPC is generated for each value of A, as shown in Figure 2, i.e.,
there is no unique OPC for the LBA.

This is consistent with the observation that, for μ1 = μ2 = 0.5
(equal evidence for both options), different choices of A will affect
the DT but not the ER. This is because the expected accuracy
will be exactly 0.5 and no greater accuracy may be realized or
information accumulated over time. It follows that the optimal
solution is the lowest possible threshold and therefore the shortest
possible DT.

For the pure DDM and the extended DDM with zero starting
point variance (sx = 0), the threshold parameter, z, can go to 0,
and likewise the DT. However, in the LBA, the threshold must lie
at or above the top of the range of starting points, i.e., z ≥ A. Since
this is a key source of variability, in general A > 0. Moreover, the
lowest (and optimal) threshold for μ1 = μ2 = μ is therefore z =
A, which gives DT > 0. The OPC curve plotting DT

DTtot
varies with

the value of A as shown in Figure 2; the smooth portions of each
curve correspond to z > A (on the left) and z = A (on the right).
That is, when the task is difficult and the ER is close to 0.5, the
threshold, z, is as small as it can be. Moreover, unlike the OPC for
the DDM, the OPCs for the LBA terminate at ER = 0.5 with finite
normalized DTs. As A → 0, the normalized DTs approach 0 for
all ERs.

2.2.4. An adapted LBA allows fast responses at high error rates
The above analysis prompts us to define an adapted version of the
LBA, in which thresholds can take values in the range of starting
points, i.e., z ≥ A is relaxed to z ≥ 0. If the starting point in one or
both accumulators is greater than z, then DT = 0 and the accu-
mulator with the higher starting point is selected for that trial.

The mean error rate and decision time, ERa and DTa, for the
adapted DT with z < A are defined accordingly:

ERa(A, z, μ1, μ2, s) = 1

2
· A − z

A
+ z

A
· ER(z, z, μ1, μ2, s),(18)

DTa(A, z, μ1, μ2, s) = z

A
· DT(z, z, μ1, μ2, s), (19)

where ER and DT are calculated as in Equations (12–15) for the
standard LBA.

Instantaneous decisions occurring for starting points above z
can be seen as representing a prior resolution to respond as fast as
possible, as is optimal for entirely noisy (zero-coherence) stimuli,
see the OPC of Figure 2. In this case RT = T0. Hence the adapted
LBA can produce bimodal RT distributions, with a delta function
at T0 for trials with starting points above z and a second peak at
longer RTs due to those starting below z.

Numerically-derived OPCs for the adapted LBA are also non-
unique. As stimuli become less discriminable and ERs approach
0.5, the best values of z are those that minimize DT. Hence zopt →
0 as μ1 → μ2, leading to many rapid responses. For μ1 >> μ2,
we also find zopt → 0 and DT → 0, but with ER → 0 due to fast
drift toward correct choices. As A varies this produces a family of
OPCs with portions on the left similar to those of Figure 2, but
approaching DT = 0 as ER → 0.5. Also, as A → 0, zopt → 0 for
μ1 �= μ2, as for the standard LBA.

2.2.5. Noise scales differently in the pure DDM and standard LBA
Poorly discriminable stimuli correspond to low signal-to-noise
ratios μ/σ in the pure DDM, and may also correspond to vari-
ability in drift rates and starting points in the extended DDM. The
LBA has trial-to-trial variability (“noise”) in drift rates and start-
ing points but lacks additive noise in individual trials. We now
compare noise scaling in the two models in the case of equal mean
evidence for both alternatives, represented as μ1 = μ2 in the LBA
model and as μ = 0 in the DDM. We show that the DDM and
LBA behave differently as noise increases.

We first consider approximations of DT and ER about the
point 1

σ 2 = 0 (analogous to μ = 0) for the DDM. Taking μ and
z fixed and strictly positive, and expanding the expressions (2, 3)
with respect to the small parameter 1

σ 2 in Taylor series, we obtain

DT

(
1

σ 2

)
= z2

(
1

σ 2

)
− μ2z4

3

(
1

σ 6

)
+ O

(
μ4z6

σ 10

)
and (20)

ER

(
1

σ 2

)
= 1

2
− zμ

2

(
1

σ 2

)
+ z3μ3

6

(
1

σ 6

)
+ O

(
z5μ5

σ 10

)
. (21)

Here ER is O (1), and DT is O
(

1
σ 2

)
. Thus, ER scales differ-

ently with high noise σ as compared to DT. In particular, as
σ → ∞, ER→ 0.5 and DT→ 0. Intuitively, large noise pushes
the accumulation process rapidly toward one of the boundaries.

We now consider scaling of ER and DT with noise in the
standard LBA, and show that large noise generally leads to non-
zero DTs and always leads to non-zero mean DTs, given non-zero
thresholds. For non-discriminable stimuli μ1 = μ2 = 1

2 the LBA
has two sources of noise or variability: in drift rates, s, and in
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starting points, A. In all cases, since μ1 = μ2 and drift is the only
source of bias, ER = 0.5. We note that the mean DT can be 0 if
and only if A = 0, due to the constraint that z ≥ A, so that A �= 0
implies a non-zero distance to accumulate to threshold. To see
this, first suppose that s = 0 and then allow s to increase, produc-
ing a distribution of drift rates centered around μi = 1

2 . In fact
for s = 0 the RT distribution is

f (t) =

⎧⎪⎨
⎪⎩

0, t < z − A
μ

2μZ
A2

(
1 − μt

z

)
, t ∈

[
z − A

μ
, z

μ

]
0, t > z

μ

, (22)

with mean DT = (3z − 2A)/3μ, and this value will change con-
tinuously with s. It follows that for μ1 = μ2 and the minimum
z∗ = A, DT increases with A. This behavior for μ1 = μ2 and high
A is quite different from that of the optimized pure DDM, in
which large noise implies that mean DT → 0.

2.3. REWARD MAXIMIZATION EXPERIMENT
In order to compare model fits, we reanalyze human behavioral
data from a free response motion discrimination task previously
presented in Balci et al. (2011). Participants (n = 17, 6 male) were
asked to discriminate the direction of displays of moving dots
on a computer screen and instructed to maximize their rewards.
Task difficulty was adjusted via motion coherence determined by
the fraction of dots moving leftward or rightward while the rest
moved randomly.

Stimuli were viewed at ≈60 cm from the CRT monitor. The
participant indicated motion direction by pressing a key on a
standard keyboard: leftward with the “Z” key and rightward with
the “M” key. Leftward and rightward stimuli were presented with
equal probabilities. Premature responses, either anticipatory or
with RTs of less than 100 ms, were penalized with a buzzing sound
and a 4 s timeout period. When participants did not respond
prematurely, RSIs were selected from a truncated exponential dis-
tribution with mean of 1 s. Experiments were conducted at a
Macintosh computer, using the Psychophysics Toolbox (Brainard,
1997).

Each participant completed at least 13 daily sessions of 60 min
total duration. The first four of these sessions involved training
and practice without monetary reward. In each of the remaining
sessions, participants completed five blocks with motion stim-
uli presented at a different coherence in each block (0, 4, 8, 16,
and 32%, randomized across participants); participants earned
$0.02 for each correct response. Performance improved markedly
over the first 5 sessions and for certain participants continued
to improve until session 9. Here we only use data from sessions
10–13.

After completing the motion discrimination task, participants
performed an interval timing task and a signal detection task.
The signal detection task was the same as above, except that
participants were instructed to respond merely to motion onset,
regardless of direction. In one block they were instructed to press
the “M” key, and in the other, the “Z” key, again receiving $0.02
for each correct (non-anticipatory) response. The signal detection
data was used to compute non-decision times as described in the

following section. Interval timing data is not used here, so we do
not describe that task. For more details, see Balci et al. (2011).

2.4. DATA FITTING PROCEDURES
Fits were performed to participant data for the two DDMs and
the LBA using published toolboxes for the models in Matlab
(Tuerlinckx, 2004) and R (Donkin et al., 2009), respectively. Fits
to the LBA model required some modifications to the standard
LBA code, as outlined in Donkin et al. (2009).

Data were separated by difficulty and fits were computed for
individual participants over all five difficulty conditions. Multiple
fits were performed for each condition and participant, first vary-
ing only drift rate and caution (threshold) with difficulty level
for the pure DDM, and then also varying the range of starting
points, while the remaining parameters were held constant. The
DDMs and LBA were fit separately to RT distributions for correct
and error trials in each condition using five quantiles (10%, 30%,
50%, 70%, 90%). The same data and partitioning were used for
both model fit toolboxes. The toolboxes fit non-decision times T0,
so that mean RTs and DTs can be computed for all models.

Empirical non-decision times were also estimated for each
participant from their mean RTs for the fastest 25% of signal
detection trials, as in Balci (Personal Communication, 2011) and
Balci et al. (2011). These non-decision times were only used in
computing normalized mean DTs for the human data shown
below in Figures 3, 4 and Supplementary Figure S4; normal-
ized mean DTs for the models were derived from the model fit
toolboxes.

Both the DMAT (DDM) and LBA toolboxes allow the user to
constrain some parameters to constant values while others are
allowed to vary across conditions. The DMAT toolbox does this
by using a combination of a system of matrix equations similar
to those in general linear models, coupled with post-processing
to remove outliers (Vandekerckhove and Tuerlinckx, 2007, 2008).
The LBA toolbox uses the quantile maximum probability estima-
tor method (Heathcote et al., 2004) to estimate PDFs for correct
and error trials, which are then used to select model parameters.

The qualities of the resulting model fits were then assessed by
comparing their predicted mean RTs and ERs with data for each
condition and participant, using the Akaike, Corrected Akaike,
and Bayesian Information Criteria (AIC, AICc, and BIC) (Akaike,
1974, 1980, 1981). Finally, in addition to each participant’s actual
performance, a theoretically optimal performance for each diffi-
culty condition was estimated by allowing the caution parameter
to vary freely while holding all other parameters fixed at that par-
ticipant’s fitted values. The optimal value of caution is defined
as that yielding the highest possible reward rate, given constant
(fitted) values for the remaining parameters.

3. RESULTS
To compare the properties of the DDM and LBA in fitting
Rmax task data, we fitted the following models to data for each
participant:

• A pure DDM, in which thresholds z and drift rates μ vary
among coherence conditions (13 parameters: x0, σ 2, T0, 5 z’s
and 5 μ’s).

Frontiers in Neuroscience | Decision Neuroscience August 2014 | Volume 8 | Article 148 | 6

http://www.frontiersin.org/Decision_Neuroscience
http://www.frontiersin.org/Decision_Neuroscience
http://www.frontiersin.org/Decision_Neuroscience/archive


Goldfarb et al. DDM and LBA model comparisons

FIGURE 3 | Data and fits to Rmax behavior for (A) a high performing and

(B) a low performing participant. Empirical normalized DTs, estimated from
mean RT data for the main task and RTs from a signal detection task, are
shown in black with standard error bars. OPC for the pure DDM is shown in
gray, and OPCs for the LBA, computed as described in section 2.2.3, are

shown in purple open circles. LBA fits, shown in green, overestimate
normalized DTs for both subjects. The OPC for the LBA, however, lies
significantly below the data for Subject 32, because this data requires a small
starting point range A to get low DTs in difficult tasks, and a low A yields low
DTs throughout.

FIGURE 4 | Data and fits to Rmax behavior averaged over all

participants, with comparison to OPCs for pure DDM (gray) and LBA

(purple open circles). Data is shown in black, with error bars being the
mean of standard errors for each participant within the given ER bin. LBA
fits (green dots and dark blue diamonds) overestimate mean normalized
DTs, but the OPC for the LBA underestimates them.

• An extended DDM, in which thresholds z and mean drift rates
μ∗ vary among coherence conditions (16 parameters: x0, σ 2,
T0, 5 z’s, 5 μ’s and sx, sT0 , sμ).

• A second extended DDM, in which thresholds z, mean drift
rates μ∗ and ranges sx of starting points (SPs) vary among
coherence conditions (20 parameters: x0, σ 2, T0, 5 z’s, 5 μ’s,
5 sx’s, sT0 and sμ).

• A LBA model, in which thresholds z and mean drift rates μi

vary among coherence conditions (13 parameters, with μ1 +
μ2 = 1: A, s, T0, 5 z’s and 5μ1’s).

• A second LBA model, in which thresholds z, mean drift rates
μi and ranges A of starting points (SPs) vary among coherence
conditions (17 parameters, with μ1 + μ2 = 1: 5 A’s, s, T0, 5 z’s
and 5 μ1’s).

Note that, for increased flexibility, σ is not set to 1.

Table 1 | DDM and LBA model fit comparisons, with fit quality

defined by the match to mean ER and RT data.

Model Total AIC AICc BIC R2

parameters

Pure DDM 13 63.57 −1.43 93.50 0.98

Extended DDM 16 66.37 20.66 103.21 0.98

Extended DDM with var. SPs 20 66.76 30.40 112.81 0.99

LBA 13 80.44 15.44 110.37 0.95

LBA with var. SPs 17 66.18 23.68 105.32 0.99

Lower AIC, AICc, and BIC scores indicate better fits. See text for discussion.

AIC, AICc, and BIC scores for each participant and model
were computed based on mean RT and ER data and model
predictions. These were then averaged over all participants and
conditions to determine mean scores for each model. All three
metrics reward goodness of fit while penalizing extra parame-
ters; lower scores are desirable and negative values are possible
(Akaike, 1974, 1980, 1981). The scores, along with mean values of
the correlation coefficient R2, are summarized in Table 1. Figures
S1 and S2 in the Supplementary Material show individual fits
to RT and ER data. According to AIC, AICc, and BIC, the pure
DDM provides the best overall fit to mean RT and ER data, but
fits for each participant and condition are quite good for all five
models.

Lower AIC, AICc, and BIC scores for the pure DDM are due
to the fact that it has fewer parameters than all other models used
here except the standard LBA, and the pure DDM predicts mean
ER and RT data well. The extended DDM and LBA with variable
starting points achieve slightly higher mean R2 values than the
pure DDM, indicating better fits to mean behavior when addi-
tional parameters are included. Comparing the pure DDM fit to
the extended DDMs over RT distributions using the DDM tool-
box, the extended DDM (χ2 = 168.35, p < 0.05) and extended
DDM with variable starting points (χ2 = 408.94, p < 0.001)
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yield superior deviance scores (Chernoff and Lehmann, 1954).
However, fitting distributions is problematic because individual
participant data sets separated by coherence condition are rela-
tively small, and assessment of Rmax performance requires mean
RTs and ERs.

Table 1 also shows that allowing the range of starting points
to vary in the LBA yields better fits according to AIC and BIC but
not AICc, and that such variability in the extended DDM does not
improve fits according to any of these metrics.

Figure 3 shows normalized DTs for representative high and
low performing participants (Subjects 32 and 34) and Figure 4
shows the DTs averaged over all participants. Individual fits
appear in Figure S4 of the Supplementary Material. The data is
shown in solid black with error bars, and model fits are super-
imposed in curves of various colors with different markers: the
LBA in green dots, the pure DDM in light blue with diamonds,
the extended DDM in dark blue with circles, the LBA with var-
ied starting point ranges in dark blue with diamonds, and the
extended DDM with varied starting point ranges in red with
squares. The OPC for the LBA is indicated in purple with circles,
and the OPC for the DDM in light gray.

Figure 3 illustrates a key difference between high and low per-
forming participants. For the former (Figure 3A), the fits all trend
downward and mean normalized DTs decrease as ERs increase,
as they do for the OPC for the DDM. For the latter (Figure 3B),
this trend is reversed and all fits diverge from the OPC for the
DDM. The pure and extended DDM fits lie close to the data in
both cases. The OPC for the LBA generally predicts the smallest
normalized DTs, but it lies far below the data at intermediate ERs
for the high performing participant.

As with individual subjects who do not perform at the highest
level (Figure 3B), the average behavior shown in Figure 4 diverges
from the OPC for the pure DDM as ERs increase. The difference
between the empirical normalized mean DTs of Figure 4 and the
OPC for the pure DDM is a good predictor of overall RR for each
of the coherence conditions (R2 = 0.53, p < 0.001).

The LBA models and the pure DDM overestimate normalized
DTs and the extended DDMs slightly underestimate them. This is
due in part to some subjectivity in the estimation of non-decision
time T0. For example, the LBA tends to fit smaller T0 values than
do the DDMs, and thus the LBA yields larger DTs (Donkin et al.,
2011). However, while the LBA fits lie above the data curve, the
OPC for the LBA lies below it, especially at intermediate ERs.
This holds for many high performing participants (see Figure 3A
and Supplementary Figure S4). For such individuals the range
of starting points is small (Supplementary Figure S6), so that
thresholds can be small without a major sacrifice in accuracy. We
investigate how starting point ranges depend on coherence below
(Figure 6A).

To better understand differences among the five models, we
next consider mean parameter fits for the caution parameter,
i.e., threshold, z. For each participant, coherence condition,
and DDM fit, we calculated a threshold, and then averaged
over individual threshold values for a given model and coher-
ence. Thresholds for individual participants and coherence levels
appear in Figure S5 of the Supplementary Material.

Figure 5A shows that mean threshold values increase with
coherence for all three DDMs. Allowing starting point ranges
to vary with coherence in the extended DDM increased thresh-
olds at the two lowest coherence levels, and this variation with
coherence over all thresholds is significant in the extended DDM
[F(4, 64) = 73.72, p < 0.01, η2 = 0.82]. Extended DDM fits to the
same data set in Balci et al. (2011) suggested approximately equal
evidence for both variable and constant thresholds, because of
differences in outlier treatment and in fitting algorithm options.

Figure 5B illustrates a similar analysis for the two LBA model
fits. The fit to the LBA model with starting point range fixed over
coherences also indicates that caution increases with coherence,
but allowing starting point ranges to vary with coherence reverses
this trend. A within-groups ANOVA on parameter values for the
LBA with and without variability in starting point ranges shows
that the main effect of LBA model type [F(1, 16) = 5.62, p < 0.05,

FIGURE 5 | Mean threshold values versus coherence. (A) Caution
increases with coherence in all DDM fits. Pure (blue) and first extended DDM
(red) fits do not differ significantly, but difficulty condition is significant
[F(4, 64) = 3.91, p < 0.01, η2 = 0.16]. Allowing the starting point range to vary
in the second extended DDM (green) does not improve fits by AIC/BIC, but
compared with the other two DDM fits, main effects of model
[F(2, 32) = 3.99, p < 0.05, η2 = 0.02] and interaction of model type and

difficulty condition [F(8, 128) = 2.06, p < 0.01, η2 = 0.01] are significant.
(B) Caution increases with coherence in the first LBA fit, and decreases with
coherence in the second LBA fit, with variable starting point range. A
within-groups ANOVA shows that main effect of model type [F(1, 16) = 5.62,
p < 0.05, η2 = 0.01] and interaction of model type and difficulty condition
[F(4, 64) = 4.29, p < 0.01, η2 = 0.08] are both significant. Bars indicate
standard errors for n = 17 subjects.
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η2 = 0.01] and the interaction of LBA model type and diffi-
culty condition [F(4, 64) = 4.29, p < 0.01, η2 = 0.08] are both
significant.

We next consider the role of starting point variability. Mean
values of starting point ranges, averaged across all participants,
are shown in Figure 6A for all models. The two models in which
variability is allowed exhibit similar monotonically decreasing
starting point ranges as coherence increases. Analogous data for
individual participants appears in Figure S6 of the Supplementary
Material, illustrating substantial variability among participants.

Figure 6B compares the DDM and LBA estimates of mean
drift rates. Here LBA drift values are reduced by subtracting 1

2
from μ1, so that μ = 0 corresponds to zero coherence in both
models, allowing direct comparisons. All models predict a mono-
tonically increasing mean drift rate with increasing coherence.
The effect of coherence on drift parameters is significant for
all models with a large effect size [F(4, 64) = 118.80, p < 0.001,
η2 = 0.76]. Interaction of model and condition type is also sig-
nificant, but effect size is modest [F(16, 256) = 5.48, p < 0.001,
η2 = 0.11]. The effect of model type on drift is also significant
[F(4, 64) = 7.79, p < 0.001, η2 = 0.10]. Drift rate estimates for
individual participants appear in Figure S7 of the Supplementary
Material, showing more uniformity than the starting point ranges
of Supplementary Figure S6. Thus, estimates of task difficulty are
in general agreement across all models.

4. DISCUSSION
In this paper we compare accounts of behavior provided by fit-
ting DDM and LBA models to behavioral data from a 2AFC Rmax
task. Adjustments of thresholds, equivalent to caution, are known
to be central to DDM descriptions of Rmax behavior. For exam-
ple, participants may adjust their thresholds to best suit each
difficulty condition (Bogacz et al., 2006, 2010; Balci et al., 2011),
or pick a single threshold that works well, albeit suboptimally,
across multiple difficulty levels (Balci et al., 2011).

We first showed that, while the optimal performance curve
(OPC) for the pure DDM is unique and parameter free, OPCs for
the LBA are non-unique (Figure 2), like those for the extended
DDM. Moreover, for a given parameter set, optimal behavior in

the LBA is at least partially determined by the range of start-
ing points, A. If A > 0, fast responses at near signal detection
speed are impossible because of thresholds z ≥ A, and if A ≈ 0,
the quality of fits is limited. Lacking diffusive noise during trials,
the LBA requires variable starting points as well as variable drift
rates to produce a range of DTs and corresponding estimated RT.
Allowing A to vary with task difficulty yields significantly better
fits, and this parameter variability is consequently critical to the
success of the LBA. We also proposed an adapted LBA, in which
thresholds can lie below A, which we intend to analyze and fit to
data in the future.

We then fitted five models to an Rmax data set: a pure DDM,
an extended DDM, an extended DDM allowing starting point
ranges that vary with task difficulty, a standard LBA, and an LBA
that allows starting point ranges to vary with task difficulty. For
consistency, we employed the LBA parameterization of Brown
and Heathcote (2008) and Donkin et al. (2011) to parallel that
of the extended DDM. We found that DDMs yielded somewhat
better fits with a single starting point range. The AIC and BIC
criteria indicated improved fits for the LBA with varying starting
point ranges, although AICc did not (Table 1).

In all three DDMs and the LBA with a common starting
point range, participants modestly increased caution with coher-
ence. In contrast, allowing starting point ranges to vary in the
LBA predicted that participants decreased caution with coher-
ence (compare Figures 5A,B). However, starting point ranges
decreased with coherence in both models that allowed variability
(Figure 6A). The LBA models and the extended DDMs require
thresholds to lie at or above starting point ranges, but the addi-
tional source of within-trial randomness in the DDM may allow
smaller starting point ranges, and hence yield better fits for diffi-
cult stimuli. Thresholds can be arbitrarily low for the pure DDM,
since it has a single starting point. All models agree that drift rates
increase with coherence (Figure 6B).

Critically, then, the Rmax task reveals that the DDMs and the
LBA with varying starting point ranges provide fundamentally
different accounts of behavior. In the DDMs, increased partici-
pant caution accounts for changes in behavior as stimulus coher-
ence increases from 0% to 32%. According to the LBA model

FIGURE 6 | (A) Mean values of the range of starting points sx , A,
averaged over participants, by model and coherence condition (the pure
DDM does not allow starting point variability). (B) Mean values of drift

rate μ, averaged over all participants. For LBA model fits, the relative
evidence μ1 − 1

2 in favor of option 1 is shown. Bars indicate standard
errors for n = 17 subjects.
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with variable starting point range, participants instead decrease
caution and simultaneously reduce their range of starting points
as coherence increases. Consequently, mean accumulation dis-
tances can still decrease with coherence in the LBA, in spite of
smaller starting points. The corresponding RT and ER data there-
fore remain comparable between LBA and DDM fits. However,
interpretations of the role of caution in these fits are inconsistent,
adding to earlier findings that LBA parameters may not correlate
straightforwardly with those of the DDM (van Ravenzwaaij and
Oberauer, 2009; Heathcote and Hayes, 2012).

Our results raise the broad question of model design and
selection, and suggest several directions for future work. While
good overall, neither the LBA nor DDM accounts of behavior
are perfect. The pure DDM is analytically tractable and predicts
a unique, parameter-free OPC against which Rmax task perfor-
mances can be assessed (Bogacz et al., 2006), but it can fail to fit
RT distributions, especially when correct and error trials are sepa-
rated (Ratcliff and Smith, 2004). Additional freedom in extended
DDMs with variable drift rates and starting points across trials
allows good fits, but defies analytical description and produces
multiparameter families of OPCs. The LBA, incorporating trial-
to-trial variability but omitting diffusive noise within trials, is
almost as simple and tractable as the pure DDM, but it yields
families of OPCs in which the allowed range of starting points
plays a central and apparently complex role. In contrast, shifting
the unique starting point of the pure DDM makes clear predic-
tions regarding biased stimuli or incentivized rewards (Feng et al.,
2009; Simen et al., 2009; Rorie et al., 2010; Gao et al., 2011).

Future work might re-adjust our interpretation of LBA param-
eters. For example, one might assume that the starting point range
is controlled in tandem with thresholds. Indeed, a recent study
suggests that this range narrows with practice (Heathcote and
Hayes, 2012). The adapted LBA introduced in section 2.2.4 may
provide accounts of average behavior that are more consistent
with those provided by DDM fits, and, as noted there, it can pro-
duce bimodal RT distributions such as those sometimes observed
for low stimulus discriminability, e.g., Simen et al. (2009) and
Balci et al. (2011). Additional numerical and theoretical analyses
are also of interest. For example, following Teodorescu and Usher
(2013) one could compare models such as the Leaky Competing
Accumulator as well as optimal Bayesian accounts of behavior
with LBAs and DDMs.
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