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* Yesterday: Theoretical framework for model inference
(special case: many interacting & stationary variables)
Mean-field inference
Applications covariation in protein families (1)

 Today: Issues & advanced statistical physics methods
Inverse Hopfield-Potts model & Random Matrix Theory
Applications to covariation in proteins (11)

to neural data (1)

 Tomorrow: Case of interacting & non-stationary variables
Applications to neural data (1)
to ecological systems



Questions

1. Practical methods to find interactions Jij from the correlations cij?
(fast, accurate algorithms)

2. How much data does one need to get reliable interactions?
(overfitting ...)

J* =J] A

J* — configurations {S.} - ¢ -]

B =nb. configs



Questions

Asymptotic inference : B — infinity, while N 1s kept fixed

Error on each parameter of the order of B>

What happens in practice, i.e. when B and N are of the same order of magnitude ?

3. How large should be the sampled sub-system?

Is the inverse problem well-behaved ?

correlation
length



Analytical approaches

* Mean field inference

* Importance of prior(s)
 Pseudo-likelihood algorithms

» Advanced statistical physics methods

* Inverse Hopfield model



Pseudo-likelihood methods (1)

Idea: avoid calculation of partition function using Callen identities (1963)

<0,> = <tanh(k%Jok c th)>
~ h h) / ™~ ®
~ Ztan(kZJOk k+ )/ B JOk 0
sampled #0
conﬁgliations . \.
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Pseudo cross entropy:

«S» = Y log2cosh(YJ o'+h) -B((hm+>J c)
sampled k#0 k0
configurations

Ravikumar, Wainwright, Lafferty (2010)

Prior: increase signal/noise ratio by exploiting the sparsity of J,

cost function ({J}) = pseudo-cross entropy (h,{J, }) + A Y |J |
k



Pseudo-likelihood methods (2)

cost A

Complexity: if B > a logN, the procedure finds couplings of amplitude |J| > a’ (logN /B)"?
in time poly(B,N)
[ a & a’ depend on the maximal degree (number of neighbours of 1 with J ; #0) ]

Caveat: » Ising model should be the true model for data
» Coupling matrix is not symmetric (but is asymptotically consistent)
 Susceptibility X should be small (fails in the vicinity of the critical point)

* All poly algorithms fail at critical point ? Bento, Montanari '09



What is the relevant susceptibility for the inverse problem?
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Examples of inverse susceptibility matrices

 Spherical (Gaussian) models : )(‘1ij’k1 =1, has the same sparsity as J

o Liquid theory: X™1is closely related to the Ornstein-Zernike

direct correlation function. The short-rangedness of X
1s used for closure scheme e.g. Percus-Yevick

e Critical point of ferromagnet: X™(q) ~ ¢*"

J g dr X7H(r) ~ R
* 1D Ising model : 4-point X1 1s sparse!

* Real data: see tomorrow



Analytical approaches

* Mean field inference

* Importance of prior(s)
 Pseudo-likelihood algorithms

» Advanced statistical physics methods

* Inverse Hopfield-Potts model



Adaptive cluster expansion (1)
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Cocco, M. (2011,2012) ; Barton, Cocco (2012)



Adaptive cluster expansion (2)
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Adaptive cluster expansion (3)

Universal distribution (independent spins)

PDF 4

clusters of K spins

clusters of K+1 spins

AS

* Number & size of clusters adapt to data structure
 Jis (almost surely) unveiled if B >>log N (and not N)
 Successful on critical Ising models in 2D



Application to retinal recordings (1)

N=32-60 ganglion cells recorded for about 2000 sec Meister et al. (2003)
(spontaneous activity)
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Application to retinal recordings (2)
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Cocco, M., Leibler (2009)
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» network of conserved and « nearest-neighbour » interactions

* long-range, stimulus-dependent interactions
* susceptibility vanishes for d = 500 micro-meters

.

Useful for : population coding (cf talk by Vijay)
Tomorrow ...



Analytical approaches

* Mean field inference

* Importance of prior(s)
 Pseudo-likelihood algorithms

» Advanced statistical physics methods

* Inverse Hopfield model



Inverse Hopfield model :
retarded learning phase transition

Example: N=100, é = Gaussian (0,.7)

€V ¢

| >
Phase transition! # config/N
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inferred &

Watkin, Nadal (1994)
Baik, Ben Arous, Peche (2005)
Cocco, R.M. (2011)




Inverse Hopfield Model : posterior entropy of patterns

Example : P=1 pattern, L=2, o =1

Retarded learning transition

Cocco, M., Sessak (2011)



Inverse Hopfield Model : error on the inferred patterns

£
A
1 /2
~ (N/B}
N ' lowest order
-2
N with corrections
N N° N° B

For pattern components ~1, corrections to S_are useless (at best) unless

many configurations are available ...
— Mean-Field 1s better (even if wrong) when few data are available



Applications to covariation in protein families (1)

» Hopfield-Potts model : 20 + 1 symbols
* Multi-sequence alignment : compute 1-, 2-residue frequencies

* Preprocessing of data :
clustering (discount groups of similar sequences)
pseudo-count for amino-acids a never present on site 1

« Computation of patterns



Applications to covariation in protein families (2)
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Cocco, M., Weigt (2012)



Repulsive

Attractive

Applications to covariation in protein families (3)
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Applications to covariation in protein families (5)
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Contacts can be predicted from repulsive patterns only

Cocco, M., Weigt (2012)
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