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• Yesterday: Theoretical framework for model inference 
            (special case: many interacting & stationary variables)

        Mean-field inference
          Applications covariation in protein families (I)

• Today: Issues & advanced statistical physics methods
Inverse Hopfield-Potts model & Random Matrix Theory

 Applications to covariation in proteins (II)
       to neural data (I)

• Tomorrow:  Case of interacting & non-stationary variables
   Applications to neural data (II)
              to ecological systems

   



  

Questions

1. Practical methods to find interactions J
ij
 from the correlations c

ij
?

    (fast, accurate algorithms)

2. How much data does one need to get reliable interactions?
    (overfitting ...)

J* → configurations {S
i
} → c → J

|J* − J|

B = nb. configs

?



  

Questions

3. How large should be the sampled sub-system?

correlation
length

Is the inverse problem well-behaved ?

Asymptotic inference : B → infinity, while N is kept fixed
         Error on each parameter of the order of B-1/2 

What happens in practice, i.e. when B and N are of the same order of magnitude ?



  

Analytical approaches

• Mean field inference

• Importance of prior(s)

• Pseudo-likelihood algorithms

• Advanced statistical physics methods 

• Inverse Hopfield model
 

 



  

Pseudo-likelihood methods (1)

Idea:  avoid calculation of partition function using Callen identities (1963) 

Ravikumar, Wainwright, Lafferty (2010)
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Prior:   increase signal/noise ratio by exploiting the sparsity of J
ij



  

Pseudo-likelihood methods (2)

0

k
J

k0

Complexity:   if B > a logN, the procedure finds couplings of amplitude |J| > a’ (logN /B)1/2 
        in time poly(B,N) 
        [ a & a’ depend on the maximal degree (number of neighbours of i with J

ij
 ≠ 0) ]  

• Ising model should be the true model for data
• Coupling matrix is not symmetric (but is asymptotically consistent)
• Susceptibility χ should be small (fails in the vicinity of the critical point)
• All poly algorithms fail at critical point ?

Caveat:
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k
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cost

0

Bento, Montanari '09



  

What is the relevant susceptibility for the inverse problem?

Susceptibility:    χ
ij,kl

 = 
∂ <si sj 

> 

∂ J
kl
 

=   response of a correlation to a small 
     change in an interaction
     may be long range ...

J
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Inverse problem is 
well-behaved

if χ−1 short range !



  

Examples of inverse susceptibility matrices

• Spherical (Gaussian) models :  χ−1
ij,kl

 = J
ik
J

jl    
has the same sparsity as J

•  
Liquid theory: χ−1 is closely related to the Ornstein-Zernike                 

                        direct correlation function. The short-rangedness of χ−1 

                                            is used for closure scheme e.g. Percus-Yevick

• Critical point of ferromagnet:  χ−1(q) ~ q2-η  
                                  
                                         ∫

r>R
 dr χ−1(r) ~ R -(3-η)

• 1D Ising model : 4-point χ−1 is sparse!  

• Real data: see tomorrow

R



  

Analytical approaches

• Mean field inference

• Importance of prior(s)

• Pseudo-likelihood algorithms

• Advanced statistical physics methods 

• Inverse Hopfield-Potts model
 

 



  

Adaptive cluster expansion (1)
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 (and other variables...)

Cocco, M. (2011,2012) ; Barton, Cocco (2012)



  

Adaptive cluster expansion (2)

Large cluster entropies are 
network-specific

Small cluster entropies are 
due to sampling noise

c
ij

|i-j|
#config-1/2



  

Adaptive cluster expansion (3)

•  Number & size of clusters adapt to data structure
•  J is (almost surely) unveiled if  B >> log N  (and not N)
•  Successful on critical Ising models in 2D

Universal distribution (independent spins)



  

Application to retinal recordings (1)

N=32-60 ganglion cells recorded for about 2000 sec
(spontaneous activity)

Meister et al. (2003)

ε
m

m
i



  

Application to retinal recordings (2)

Maps in 
retinal plane

Cocco, M., Leibler (2009)

Useful for : population coding (cf talk by Vijay)
Tomorrow ...



  

Analytical approaches

• Mean field inference

• Importance of prior(s)

• Pseudo-likelihood algorithms

• Advanced statistical physics methods 

• Inverse Hopfield model
 

 



  

Inverse Hopfield model : 
retarded learning phase transition

Example:  N=100, ξ = Gaussian (0,.7) 

Watkin, Nadal (1994)
Baik, Ben Arous, Peche (2005)
Cocco, R.M. (2011)

#config=40

#config=400
Phase transition!

|ξινφ − ξ|

# config / N



  

Inverse Hopfield Model : posterior entropy of patterns

Example : P=1 pattern, L=2,  α
L 
=1

~1/α ?

Retarded learning transition

Cocco, M., Sessak (2011)



  

Inverse Hopfield Model : error on the inferred patterns

 For pattern components ~1, corrections to S
0
 are useless (at best) unless 

many configurations are available ...
→ Mean-Field is better (even if wrong) when few data are available



  

Applications to covariation in protein families (1)

• Hopfield-Potts model : 20 + 1 symbols

• Multi-sequence alignment : compute 1-, 2-residue frequencies

• Preprocessing of data :
clustering (discount groups of similar sequences)

  pseudo-count for amino-acids a never present on site i

• Computation of patterns 



  

Applications to covariation in protein families (2)

spectrum

inverse 
participation 
ratio

Cocco, M., Weigt (2012)



  

Applications to covariation in protein families (3)
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Cocco, M., Weigt (2012)



  

Applications to covariation in protein families (5)

Contacts can be predicted from repulsive patterns only

Cocco, M., Weigt (2012)
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