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Many issues : limitation over temporal and spatial sampling, noise 
(measurement, dynamics), stationarity, classes of models 
(number of parameters), computational effort for inference, ...
(signal/noise < 1, large systems)

≠  Physics       (uniform interactions → low dimensional models,
          reproducibility → good sampling, thermal equilibrium)  



  

• Today: Theoretical framework for model inference 
      (special case: many interacting & stationary variables)

 Mean-field inference
   Applications covariation in protein families (I)

• Wednesday:  Issues & advanced statistical physics methods
         Inverse Hopfield-Potts model & Random Matrix Theory

          Applications to neural data (I), covariation in proteins (II)

• Thursday:  Case of interacting & non-stationary variables
  Applications to neural data (II)
              to ecological systems

• Now: Brief overview of the biological/biophysical systems and inference   
            problems 

   



  

Example 1: 

Concerted activity of a neural population

Fujisawa, Amarasingham, 
Harrison, Buzsaki (2008)

Schnitzer, Meister (2003)
Schneidman et al. (2006)



  

• Network depend on activity (functional connections)
• Connections can be modified through learning …
• More sophisticated methods to infer effective connections for encoding/decoding:

input output

encoding

decoding



  

Example 2: 

Coevolution of residues in protein families

Morais Cabral et al. (1996)

PDZ domains

Gobel et al. (1994)

• Conservation of residues (used for homology detection, phylogeny reconstruction)
• Two-residue correlations ? could reflect structural and functional constraints ...



  

Issues :  Measurement noise, dynamical noise,
limited number of samples, unknown (not measured) species, …

Is there any reliable signal about species-species 'interactions'? (additivity?)
Exploit interactions to predict dynamics, extinction ? 
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Lotka-Volterra equations:

j

Example 3: 

Coupled dynamics of species in an ecological system

Population ecology : interactions between species (existence, additivity, …)



  

Example 4: 

Unzipping dynamics of a single DNA molecule

Huguet, 
Ritort (2010)

Bockelmann, Heslot (1996)

direct
problem

inverse
problem

distance in nm (v =10 nm/sec)



  

• Today: Theoretical framework for model inference 
      (special case: many interacting & stationary variables)

 Mean-field inference
   Applications to neural data (I)

• Wednesday:  Advanced issues & statistical physics methods
         Inverse Hopfield-Potts model & random matrix theory

          Applications to covariation in protein families  

• Thursday:  Case of interacting & non-stationary variables
  Applications to neural data (II)
              to ecological systems

   



  

Goals

• Compression of data (eliminate indirect correlations, sparser representation?)

• Find effective interaction network 
          (ex: contact map in protein residue case)

• Obtain predictive, generative models 
          (ex : model for artificial protein sequences)

• Feedback with experiments : design of optimal, maximally informative
                                                                          protocols

Could be used to test effect of perturbation …
          to define 'energy' landscape and probe configuration space ...

correlated activity

interaction interactioninteraction



  

Microscopic model for the data (1)

mi = <σi >,   cij = <σiσj >, ...                  (constraints are realizable)  Constraints

Data (1,0,0,0,1,0,1,1, ..., 1,0,0,1,1,0)
(0,1,0,0,0,1,1,1, ..., 0,1,1,0,0,0)
(1,1,0,1,0,1,1,0, ..., 1,1,0,0,1,1)

...
(0,1,0,0,1,0,0,0, ..., 0,0,0,1,0,0)

⇒    Probability p(σ
1
, σ

2 
,... , σ

N
 ) ?

Maximum entropy principle       (Jaynes, 1957)

Find p(σ) maximizing the entropy  S[p] =  - ∑ p(σ) ln p(σ) 
under the selected constraints                       σ

(here, stationary and discrete data)



  

Microscopic model for the data (2)

Analogy with Thermodynamics and Ensembles in Statistical Physics

•  System with energy E, volume V, N particles, ...
•  Fix average value of volume V ↔ impose pressure p :  E → E + pV
                       number of particules N ↔ impose chemical potential µ :  E → E - µ N 

Model •  E(σ;J,h) =  - ∑ Jij σi σj - ∑ hi σi      
  
•  pMAXENT(σ;J,h) = exp( -E(σ;J,h) ) / Z[J,h]

   where     Z[J,h] = ∑ exp( -E(σ;J,h) ) 
                

•  find couplings and fields such that all N+ N(N-1)/2 constraints are fulfilled 

i<j i  Ising model!  
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Boltzmann Machine Learning

• Start from random J
ij
 and h

i

• Calculate <σ
i
σ

j
> and <σ

k
> 

 
using Monte Carlo simulations

• Compare to c
ij
 and m

k
 (data) and update J

ij
 → J

ij
 - a (<σ

i
σ

j
> - c

ij
 )

                                          hk → hk - a (<σ
k
> - mk)

 Problems: 1.  issue of thermalization (critical point ? 
may take exponential-in-N time …)

2.  convergence (yes, but flat modes ?)

→ slow

Ackley, Hinton, Sejnowski (1985)



  

Microscopic model for the data (3)

Cross-entropy of data (= σ1,...,σB )          S† [J,h] = ∑ - ln p(σb;J,h)

       =  B ( ln Z[J,h]  - ∑ Jij cij - ∑ hi mi )
b=1

B

i<j i

J,h

S†[J,h;data]

• The minimum of S is the Ising model we are looking for :

• The hessian of S is positive semi-definite, hence S is convex

J*,h*

S[p]

S[pMAXENT] = S† [J*,h*] 

S† [J,h] 



  

Microscopic model for the data (4)

Hessian of the cross-entropy

∂2 S(J,h;data)
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where <  > = Gibbs average with the Ising model

Zero modes ? Non-realizable cases...

J,h



  

Bayesian inference framework (1)

Data = set of configurations σb , b = 1, 2, … , B= nb. of configs

P[ σ | J,h ] =  exp( ∑ Jij σi σj + ∑ hi σi) / Z[J,h] 

b

i<j i

P0[ J,h ]      (useful in case of undersampling ...)

Bayes formula P[ J,h | Data] ∝ ∏ P[ σb | J,h ]   ×   P0[ J,h ]

Likelihood

Prior

For instance :      P
0  ∝ exp( - ∑ Jij /(2J2 )) 

i<j
0



  

Bayesian inference framework (2)

Regularized
Cross-entropy

Posterior Proba
of J,h

P[ J,h | Data ] ∝  exp( B[ ∑ Jij cij + ∑ hi mi]) / Z[J,h]B 
i<j i

× P0[ J,h ]

S  =  - ln P[ J,h | Data ] 

i<j i

=  B ( ln Z[J,h]  - ∑ Jij cij - ∑ hi mi ) - ln P0[ J,h ] 

i<j i
=  B ( ln Z[J,h]  - ∑ Jij cij - ∑ hi mi ) + ∑ Jij /(2J2 )

i<j

(with Gaussian prior)
0



  

Analytical approaches

• Mean field inference

• Importance of prior(s)

• Pseudo-likelihood algorithms
 
• Advanced statistical physics methods 

• Inverse Hopfield-Potts model
 

 



  

Analytical approaches

• Mean field inference

• Importance of prior(s)

• Pseudo-likelihood algorithms

• Advanced statistical physics methods 

• Inverse Hopfield-Potts model
 

 



  

Mapping of 
20 top 

correlations 
and 

interactions

Weigt et al. (2009)

RNA polymerase sigma-70 region 2 

CORR INTER

Contact (<8Å)

No contact (>8Å) 

CORR INTER

Applications to protein residue covariation (1)

Potts model with 20 (amino-acids) +1 (gap) symbols
Compute 1- and 2- residues frequencies, f

ia
 and f

ia,jb
 

Regularization = pseudo-counts ...

Find couplings J
ia,jb

 from the inversion of correlation matrix cia,jb = f
ia,jb

 - f
ia
f

jb
   



  

Applications to protein residue covariation (2)

Morcos et al. (2011)

True Positive rate (< 8 Å)
over 131 protein families

INT

CORR



  

Applications to protein residue covariation (3)

INTINT
Contact
  (< 8Å)

No contact
   (> 8Å) 

Issues :  - large number of parameters to be inferred (~ (20 L)^2 )
 - not always successful (mean field?)
 - not accurate enough to be a generative model

Trypsin family PF00089, PDB 3tgi ADP-rybosilation factor family PF00025, PDB 1fzq 
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