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Many issues : limitation over temporal and spatial sampling, noise 
(measurement, dynamics), stationarity, classes of models 
(number of parameters), computational effort for inference, ...
(signal/noise < 1, large systems)


≠  Physics       (uniform interactions → low dimensional models,
          reproducibility → good sampling, thermal equilibrium)  







  


• Today: Theoretical framework for model inference 
      (special case: many interacting & stationary variables)


 Mean-field inference
   Applications covariation in protein families (I)


• Wednesday:  Issues & advanced statistical physics methods
         Inverse Hopfield-Potts model & Random Matrix Theory


          Applications to neural data (I), covariation in proteins (II)


• Thursday:  Case of interacting & non-stationary variables
  Applications to neural data (II)
              to ecological systems


• Now: Brief overview of the biological/biophysical systems and inference   
            problems 


   







  


Example 1: 


Concerted activity of a neural population


Fujisawa, Amarasingham, 
Harrison, Buzsaki (2008)


Schnitzer, Meister (2003)
Schneidman et al. (2006)







  


• Network depend on activity (functional connections)
• Connections can be modified through learning …
• More sophisticated methods to infer effective connections for encoding/decoding:


input output


encoding


decoding







  


Example 2: 


Coevolution of residues in protein families


Morais Cabral et al. (1996)


PDZ domains


Gobel et al. (1994)


• Conservation of residues (used for homology detection, phylogeny reconstruction)
• Two-residue correlations ? could reflect structural and functional constraints ...







  


Issues :  Measurement noise, dynamical noise,
limited number of samples, unknown (not measured) species, …


Is there any reliable signal about species-species 'interactions'? (additivity?)
Exploit interactions to predict dynamics, extinction ? 
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Lotka-Volterra equations:
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Example 3: 


Coupled dynamics of species in an ecological system


Population ecology : interactions between species (existence, additivity, …)







  


Example 4: 


Unzipping dynamics of a single DNA molecule


Huguet, 
Ritort (2010)


Bockelmann, Heslot (1996)


direct
problem


inverse
problem


distance in nm (v =10 nm/sec)







  


• Today: Theoretical framework for model inference 
      (special case: many interacting & stationary variables)


 Mean-field inference
   Applications to neural data (I)


• Wednesday:  Advanced issues & statistical physics methods
         Inverse Hopfield-Potts model & random matrix theory


          Applications to covariation in protein families  


• Thursday:  Case of interacting & non-stationary variables
  Applications to neural data (II)
              to ecological systems


   







  


Goals


• Compression of data (eliminate indirect correlations, sparser representation?)


• Find effective interaction network 
          (ex: contact map in protein residue case)


• Obtain predictive, generative models 
          (ex : model for artificial protein sequences)


• Feedback with experiments : design of optimal, maximally informative
                                                                          protocols


Could be used to test effect of perturbation …
          to define 'energy' landscape and probe configuration space ...


correlated activity


interaction interactioninteraction







  


Microscopic model for the data (1)


mi = <σi >,   cij = <σiσj >, ...                  (constraints are realizable)  Constraints


Data (1,0,0,0,1,0,1,1, ..., 1,0,0,1,1,0)
(0,1,0,0,0,1,1,1, ..., 0,1,1,0,0,0)
(1,1,0,1,0,1,1,0, ..., 1,1,0,0,1,1)


...
(0,1,0,0,1,0,0,0, ..., 0,0,0,1,0,0)


⇒    Probability p(σ
1
, σ


2 
,... , σ


N
 ) ?


Maximum entropy principle       (Jaynes, 1957)


Find p(σ) maximizing the entropy  S[p] =  - ∑ p(σ) ln p(σ) 
under the selected constraints                       σ


(here, stationary and discrete data)







  


Microscopic model for the data (2)


Analogy with Thermodynamics and Ensembles in Statistical Physics


•  System with energy E, volume V, N particles, ...
•  Fix average value of volume V ↔ impose pressure p :  E → E + pV
                       number of particules N ↔ impose chemical potential µ :  E → E - µ N 


Model •  E(σ;J,h) =  - ∑ Jij σi σj - ∑ hi σi      
  
•  pMAXENT(σ;J,h) = exp( -E(σ;J,h) ) / Z[J,h]


   where     Z[J,h] = ∑ exp( -E(σ;J,h) ) 
                


•  find couplings and fields such that all N+ N(N-1)/2 constraints are fulfilled 


i<j i  Ising model!  
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Boltzmann Machine Learning


• Start from random J
ij
 and h


i


• Calculate <σ
i
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> and <σ
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using Monte Carlo simulations


• Compare to c
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 and m


k
 (data) and update J
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 Problems: 1.  issue of thermalization (critical point ? 
may take exponential-in-N time …)


2.  convergence (yes, but flat modes ?)


→ slow


Ackley, Hinton, Sejnowski (1985)







  


Microscopic model for the data (3)


Cross-entropy of data (= σ1,...,σB )          S† [J,h] = ∑ - ln p(σb;J,h)


       =  B ( ln Z[J,h]  - ∑ Jij cij - ∑ hi mi )
b=1


B


i<j i


J,h


S†[J,h;data]


• The minimum of S is the Ising model we are looking for :


• The hessian of S is positive semi-definite, hence S is convex


J*,h*


S[p]


S[pMAXENT] = S† [J*,h*] 


S† [J,h] 







  


Microscopic model for the data (4)


Hessian of the cross-entropy


∂2 S(J,h;data)
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where <  > = Gibbs average with the Ising model


Zero modes ? Non-realizable cases...


J,h







  


Bayesian inference framework (1)


Data = set of configurations σb , b = 1, 2, … , B= nb. of configs


P[ σ | J,h ] =  exp( ∑ Jij σi σj + ∑ hi σi) / Z[J,h] 


b


i<j i


P0[ J,h ]      (useful in case of undersampling ...)


Bayes formula P[ J,h | Data] ∝ ∏ P[ σb | J,h ]   ×   P0[ J,h ]


Likelihood


Prior


For instance :      P
0  ∝ exp( - ∑ Jij /(2J2 )) 


i<j
0







  


Bayesian inference framework (2)


Regularized
Cross-entropy


Posterior Proba
of J,h


P[ J,h | Data ] ∝  exp( B[ ∑ Jij cij + ∑ hi mi]) / Z[J,h]B 
i<j i


× P0[ J,h ]


S  =  - ln P[ J,h | Data ] 


i<j i


=  B ( ln Z[J,h]  - ∑ Jij cij - ∑ hi mi ) - ln P0[ J,h ] 


i<j i
=  B ( ln Z[J,h]  - ∑ Jij cij - ∑ hi mi ) + ∑ Jij /(2J2 )


i<j


(with Gaussian prior)
0







  


Analytical approaches


• Mean field inference


• Importance of prior(s)


• Pseudo-likelihood algorithms
 
• Advanced statistical physics methods 


• Inverse Hopfield-Potts model
 


 







  


Analytical approaches


• Mean field inference


• Importance of prior(s)


• Pseudo-likelihood algorithms


• Advanced statistical physics methods 


• Inverse Hopfield-Potts model
 


 







  


Mapping of 
20 top 


correlations 
and 


interactions


Weigt et al. (2009)


RNA polymerase sigma-70 region 2 


CORR INTER


Contact (<8Å)


No contact (>8Å) 


CORR INTER


Applications to protein residue covariation (1)


Potts model with 20 (amino-acids) +1 (gap) symbols
Compute 1- and 2- residues frequencies, f


ia
 and f


ia,jb
 


Regularization = pseudo-counts ...


Find couplings J
ia,jb


 from the inversion of correlation matrix cia,jb = f
ia,jb


 - f
ia
f


jb
   







  


Applications to protein residue covariation (2)


Morcos et al. (2011)


True Positive rate (< 8 Å)
over 131 protein families


INT


CORR







  


Applications to protein residue covariation (3)


INTINT
Contact
  (< 8Å)


No contact
   (> 8Å) 


Issues :  - large number of parameters to be inferred (~ (20 L)^2 )
 - not always successful (mean field?)
 - not accurate enough to be a generative model


Trypsin family PF00089, PDB 3tgi ADP-rybosilation factor family PF00025, PDB 1fzq 





		Diapo 1

		Diapo 2

		Diapo 3

		Diapo 4

		Diapo 5

		Diapo 6

		Diapo 7

		Diapo 8

		Diapo 9

		Diapo 10

		Diapo 11

		Diapo 12

		Diapo 13

		Diapo 14

		Diapo 15

		Diapo 16

		Diapo 17

		Diapo 18

		Diapo 19

		Diapo 20

		Diapo 21

		Diapo 22




