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Content of the lectures

• Today :

• Dynamical processes in physics …
Algorithms for solving optimization problems
Reminder on random 3-SAT

• Analysis of random 3-SAT solving with a backtracking 
procedure

• Tomorrow :

• Local search algorithms for random SAT
Gradient descent 
Clause flip

Purpose: give technical ability to carry out calculations!



Dynamical processes in Physics

Configuration of variables X={x1,x2,…,xN} e.g. spins 
Energy function H[X]
Equilibrium Probability Distribution    Pgibbs[X] = exp(-H[X]/T) / Z

Dynamics: X at time T Y at time T+1

• P[X,T=0] = dX or 1/2N

• P[Y,T+1] = Ê M[Y,X]  P[X,T]                    Pgibbs[Y]
X T ö¶

e.g. Metropolis (one spin flip)  M[Y,X] = { 1    if   H[Y] § H[X]
e-(H[Y]-H[X])/T if H[Y] ¥ H[X]

Convergence if Tö¶, then Nö¶

But what happens if  Nö¶, then Tö¶ ?



Dynamical processes without Hamiltonian

Contact process:
• graph with vertices occupied or empty
• ocuppied becomes empty with prob. P
• empty becomes occupied with prob. Q×occup. neighbors

Evolution 
rules

• Large time limit: all empty!
• Non trivial if  N infinite first 
• Life time as a function of N (relaxation).



Combinatorial optimization algorithms
=  set of evolution rules for an instance and/or a configuration of variables

leading to a solution.

• Complete algorithms:
tells you whether an instance of SAT has a solution or not (solves 
exactly a decision problem).  

• Local search algorithms:
looks for solutions through a sequence of small improvements of           
some initial configuration (cannot prove unsatisfiability).

• Probabilistic algorithms:
Local search + upper bound on the probability of failure
(one sided probabilistic algorithm)

Want to study various properties of algorithms, essentially average (or distribution)
of running times.



A reminder on the 
Satisfiability of (random) Boolean constraints

( w or   NOT x or   y )
and

( NOT w or   x or   z )
and

( x or   y or   NOT z )

3-SAT    NP-complete
(and >3)?
2-SAT P

                
           α =

nb. of variables

nb. of clauses

Mitchell, Selman, Levesque ‘92
Crawford, Auton ‘93
Gent, Walsh ‘94

Chao, Franco ‘86, ‘90
Chvatal, Szmeredi ‘88



Phase transition and typical complexity

sat unsat

sat unsat

4.3αC ≈

easy-hard-less hard patternphase transition!

Rigorous results:
•
•
• “time” < 1.5N

 αα if lexponentia C>
 αα iflinear C<<

Rigorous results:
•
•
• transition region width → 0

3.26   αC >
51.4 αC <

3.42



=x

SAT, 
a disordered 
spin system 

(at zero 
temperature)

Cf. Lecture on Stat. Mech. by C. Borgs and J. Chayes.



Phase diagram of random 3-SAT

no
solution

many 
solutions 4.250

α
3.92

N dimensional 
hypercube

T,F F,F

x1

x2 d0

T,T F,T

Cf. Lecture on Stat. Mech. Of  Disordered Systems by M. Mezard.



Dynamics of  the 
Davis-Putnam-Loveland-Logemann algorithm

Rigorous analysis of search heuristics

Distribution of 
resolution times

(left tail)

Quantitative study
of search trees

(with backtracking)
probability

resolution
time

2 N w

?



How to 
solve 3-SAT?

DPLL
“Branch & 

bound”
search 

algorithm



Backtrack algorithm, search tree and heuristic

Davis-Putnam algorithm = heuristic + backtracking 
↓

search tree

A satisfiable instance (easy)

B  unsatisfiable instance (hard)

C  satisfiable instance (hard)

Complexity = size of search tree (=  number of nodes –or leaves-)

• Unit-Clause (UC): pick variable in 1-clause if any, or any unset variable
• Generalized unit-clause (GUC): pick variable in shortest clause
• Shortest Clause With Majority (SC ): pick most frequent variable in 3-clauses

1



Trajectories and the 2+p-SAT problem

phase diagram of the 
2+p-SAT model

clauses with 3 var. 
α

unsat

sat

“dynamics”    the
of                     algorithm

clauses with 2 or 3 var.
α , p



Analysis of the GUC heuristic (I)

NO BACKTRACKING !

Evolution rules:
1. If no clause left, output « Satisfiable »;
2. Otherwise, select randomly a shortest clause e.g. (not y),

and set one of its literals to True  e.g. y=F.
3. Simplify remaining clauses; 

e.g. (not y or z) is removed, (y or w or q) ö (w or q)
3. If a unit clause with false literal appears  e.g. (y), output 

« Contradiction »;
Else go to 2.

NB: Contradiction does not mean Unsatisfiable!



Analysis of the GUC heuristic (II)

Call P(K)[M;N] the measure over random K-SAT instances with M clauses and 
N variables.

Call PT[instance] the measure over instances after T steps of the heuristic. 

3-SAT
instances

Mixed 1-,2-,3-SAT
instances

GUC

heuristic
Initial measure

PT=0[instance]= P(3)[M;N] 
Measure PT[instance] ?

Define the numbers C1(T), C2(T), C3(T) of 1-, 2-, 3-clauses after T steps;
Then:            

PT[instance | C1(T), C2(T), C3(T) ] = P(1)[C1(T);N-T] ≈ P(2)[C2(T) ;N-T] ≈ P(3)[C3(T);N-T] 



Analysis of the GUC heuristic (III)

Flows of 
clause populations

1

3 <C3(T)> = O(1)< e3(T) > = < w2(T) > =• Average values of e and w:
2 (N-T)

• Concentration of clause densities:

Reduced time 
t=T/N

3 c3(t)fl < e3(t) > = < w2(t) > = 2 (1-t)



Analysis of the GUC heuristic (IV)

Set of coupled Ordinary Differential Equations:

where rj(t) is the probability that a literal is chosen from a j-clause at time t,

r1(t) + r2(t) + r3(t) = 1

What are the values of these probabilities?



Analysis of the GUC heuristic (V)

3 a
2

Estimate the initial creation rate of 2-clauses: < w2(0) > =

Case a < 2/3

Case a > 2/3

should always be smaller than unity!!!



Analysis of the GUC heuristic (VI)

ra
tio

 a
of

 c
la

us
es

/v
ar

.

3-SAT

0.5

r1 > 1

OK if a < 3.003… (also sufficient condition)

2/3

3.0

1.5

fraction p of 3-clauses



Analysis of the GUC heuristic (VII)

( ) ( )

( )

( )t,αp,F
dt
αd

t,αp,F
dt
dp

α0α,10p

α

p
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=

=

==
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t

(unsat)

sat



Complete search trees (I)

2+p-SAT phase diagrama > aC

N=300
6600 nodesp1,a1

N=200
6300 nodes

p2,a2
N=120

7600 nodes

Proof of unsatisfiability

one branch:    p(t) , α(t) many branches:     ω (p,α,t)
ODE PDE



Complete search trees (II)

Instance to be solved

DPLL induces a non 
Markovian evolution 

of the search tree

Imaginary, parallel 
building up

of the search treeFinal
Search tree



Toy model of search tree (I)

Consider only 
clauses with 3 variables

(Dont’care about empty clauses!)

• Obviously the total number of branches at depth T equals B(T)=2T .

• Consider the number of branches B with C3 3-clauses:

branching matrix



Toy model of search tree (II)

Branching matrix is simply (twice) a Binomial law:

Consider the action of the algorithm during the interval,

Then, clause densities are expected to change by O(e), and 

3 c3(t)m3(t)=where
2 (1-t)



Toy model of search tree (III)

During time interval ,  branches numbers change according to

• Diagonalization of the (Toeplitz) matrix Ktoy:

• Exponential scaling Ansatz for the numbers of branches:

Eigenvalues:

with
(wave number)

Eigenvectors:



Toy model of search tree (IV)

Finally, changing the sum over clauses number into an integral through,

allows to obtain

Now:
1. Estimate integrals through saddle-points;
2. Expand up to first order in e assuming w is once differentiable with respect

to t and c3.



Toy model of search tree (V)

We obtain:

Saddle point over r3:

Initial condition:

w(c3 , t=0)  = 
0  if c3 = a

-¶ otherwise {



Toy model of search tree (VI)

Solution:

Graphical
representation

NB: max of w(c3 , t) gives back most probable c3(t) for GUC heuristic trajectory.



Analysis of DPLL search tree (I)

Branching matrix

Average number 
of branches with 

clause populations 
C1, C2, C3

• B(C1, C2, C3;T) ~ exp[ N  w(c2, c3;t) ]   where ci = Ci/N , t = T/N

• Distribution of C1 becomes stationary over O(1) time scale



Analysis of DPLL search tree  (II)

Eigenvectors of K:

Effective matrix in (C1,C1’) sector



Analysis of DPLL search tree  (III)

Generating function of
Eigenvector components

V0(x) ~ (R-x)-1Asymptotic behavior:

Pole of V0 located in R>1 (localized eigenvector), or R=1 (extended eigenvector)

Potential

Analogy with 
1D-Quantum Mechanics
(discrete, non hermitean)

0 1 32
C1

entropic
gain



Analysis of DPLL search tree  (IV)

t

t+dt

(PDE)

+ moving frontier between alive (finite C1) and dead branches (C1=O(N))



Analysis of DPLL search tree  (V)

t = 0.01

(sat)

unsat

Halt line
(Delocalization transition

in C1 space)

t = 0.05

t = 0.09

100 =α



Comparison to numerical experiments

ω= N2Q

(nodes) (leaves)

unsat

sat

α
≈

α

















 ++
=ω

292.01
2

51ln
2ln6
53

2



Satisfiable, hard instances  3.003< α < 4.3
(which could made be easier?)

sat

unsat

unsat

sat

The complexity of 3-SAT solving  is strongly affected by 
the phase transitions of 2+p-SAT .



The polynomial/exponentiel crossover

sat 
(poly)

sat 
(exp)

unsat 
(exp)

“dynamical” transition
(depends on the heuristic)

3:
003.3:
667.2:

≈M
GUC
UC

SC 3
5α,

5
2p TT ==but

T is largely heuristic independent (universality)



Fluctuations of complexity for finite instance size

Histograms of 
solving times

α=3.5 

Exponential
regime 

Complexity
= 2 0.035 N

+ fluctuations !Linear regime 
Very rare! frequence = 2-0.011 N

Talks later this week by  S. Cocco  and  A. Montanari
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Local search algorithm
Configuration:  set of N Boolean variables or spins xi = 0,1 
Goal: minimize some cost function over the x’s. 

Configuration space 
for N=3

Local search algorithm:
1. Start from some (more or less) random configuration C (   );
2. Look at neighbors of  C in Configuration Space (    ), and their attached costs;
3. Move to one of these neighbors (          ) with some transition rate, or remain in C.
4. Go to 2.



Gradient descent procedure
=  Monte Carlo Algorithm at zero temperature

• The procedure: 

a. Start from a random configuration, call E the number of 
unsatisfiable clause (energy).

b. If E=0, STOP.
c. If E>0, pick up a variable randomly; flip it if the corresponding

energy E’ is smaller or equal to E. Goto b.

• Possible relationship between Replica results and MC method

• Example of 3-XORSAT



Random 3-XORSAT  (I)

Logical XOR instead of OR  =  system of linear equations modulo 2

x1 + x3 + x12 =   0  mod 2 

• N  Boolean variables x1, x2, x3 , …, xN ;
• M  clauses (pick up randomly three variables and a second

member equal to 0 or 1), e.g.  

• repeat M times.

Are all clauses (equations) satisfiable together?

….     depends on ratio    c=M/N  !



Random 3-XORSAT  (II)

Phase diagram derived from Replica method, then Rigorous analysis:

Hamming distance (fraction of 
variables that differ) between solutions

no
solution

many 
solutions 0.9180

c
0.818

N dimensional 
hypercube

d0=1/2



Random 3-XORSAT  (III)

Graphical representation of clauses

x1

0

x12
(triangle, or plaquette)

x3

x1 + x3 + x12 =   0 

Depending on values of variables, the clause is Satisfied or Unsatisfied,

US



Blocked Islands   (I)

S

S

SS

S U

S

SNumber of 
unsat clauses 

= 1

S

U

SU

S

SS

S

S S

S

U

U

Unsat
= 2

Unsat
= 2



Blocked Islands   (II)

Statement:

Blocked islands prevent the algorithm from reaching the ground state

Proof:

• show that, with high probability, there is an extensive number 

Islands  = c7  e – 45c  N + o(N)

of  islands, a finite fraction of which are blocked.

• deduce a lower bound to the final energy reached by Gradient descent

Energy ¥ q(c) . N

729
8



Blocked Islands   (III)

NB:  Fixed probability (not fixed number) statistical ensemble

Any triplet  p of vertices carries a clause with prob. 

Draw randomly a set of clauses, i.e. a set of triangles joining vertices

an island  

islands  

Define

Show that 

is highly concentrated and calculate its typical value.



Blocked Islands   (IV)
N vertices a triplet  p an island based on  p

with

# triplets external
to the island 

total # triplets



Blocked Islands   (V)

Average number of islands per vertex:

E[x]Concentration:

consider

Chebyshev’s inequality: for all e > 0,

show that Var[x] tends to 0 as N tends to infinity …



Blocked Islands   (VI)

Need to calculate second moment:

q

p

Depends only upon the number l
of common vertices between p and q

= 0, 1, 2 or 3



Blocked Islands   (VII)

î

Thus, with high probability, x does not deviate from the expectation value,

E[x] =



Blocked Islands   (VIII)

island

u

s

s

s

s

s
s

blocked island

with prob.

1
27

Thus with high probability, there is an number  

BI  = c7  e – 45c  N + o(N)

of  blocked islands, each with an energy equal to unity.
This gives a lower bound to the final energy reached by Gradient descent

Energy   ¥ BI

729
1024



Comments on Gradient descent and XORSAT
• 3-XORSAT easy to solve (linear algebra problem)

• Easy to solve up to cd=0.818 with a polynomial algorithm  looking at vertex 
degrees (non local)

• Cannot be solved by gradient descent, even when looking Q steps ahead
for any finite Q! 
BUT bound is very small:  q(c,Q) N <  q(c,1) N  < 1.5  10-9   N

cannot be seen for sizes < 1 billion spins
Necessary condition for convergence: q(c,Q) N ö 0, i.e. Q ~ log N

• What happens for other energy functions e.g. ferromagnets, random 3-SAT? 
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Unsatisfied clause flip procedure

• The clause flip procedure

• Exact results for 2-SAT and 3-SAT
upper bounds on resolution times valid for worst case

• Mean Field approach
approximate analysis of average performances for 3-SAT

• Conclusion



Clause flip procedure

1. Pick up an initial (random) configuration of variables;
2. If all clauses are satisfied, STOP.
3. Else, choose randomly one unsat clause and flip one of its attached variables;

Goto 2.

Example: ( NOT x1 or  x2 or  x3 )
( x1 or  x2 or  NOT x4 )
( NOT x1 or  x2 or  x4 )

F
T
T

set of
clauses

1. random configuration          x1=T,  x2=F,  x3=F,  x4=T

2. pick up first clause and flip one variable it contains
e.g.     x2=F  ö x2=T    then all clauses are satisfied
e.g.     x1=T  ö x1=F    then clause 1 is satisfied, but clause 2 is not

any longer.
Energy is not guaranteed to decrease!



Exact results for 2-Sat and 3-Sat

Suppose the formula is satisfiable, and call (x*)i a solution. Consider a clause
not satisfied by x,

0 0 0 0….x

x*

j+1  with prob. (K-j)/K 

2-SAT: free 1-D diffusion, resolution time growing as N2 at most.
3-SAT: probability of success >  (1/2)d*/O(N1/2)  > (3/4)N /O(N1/2) 

thus resolution time growing as (4/3)N

recently: 1.329… instead of 1.333…

1 01 0….
d=j  ö d’=

j-1  with prob. j/K 

r
1

j KK - j

d=Nd=0



Mean field analysis (I)
Parameters:

N = number of variables
M = number of clauses = a N
K = number of variables in each clause (K-SAT)

• Define Mj(T) the number of clauses satisfied by j literals after T     
clause flips with j = 0, 1,…, K.
(M0(T) is the number of unsatisfied clauses)

• Normalization condition:

• Define fractions of j-clauses:

Question: evolution equations for the fractions when T Ø T+1 ?



Mean field analysis (II)

Initial conditions for the fractions of  j-clauses:

After a new clause flip, i.e. from T Ø T+1:

1/K (K-1)/K j/K (K-j)/K 1

0 1 jj-1 j+1 K
# satisfying

literals

Mj(T+1) - Mj(T)  =         ((K-j+1)/K Mj-1(T) + (j+1)/K Mj+1(T)) - dj + dj-1
K
N

clause
populations

1 1/K



Mean field analysis (III)

DT = 1  leads to DMj = q(1). Thus, fractions Fj vary by q(1) on time scale DT = 
q(M). Define reduced time:  t = T/M.

Evolution equation: with

NB: normalization of fractions comes from nullity of matrix elements summed over columns.



Mean field analysis (IV)

Introduction of the generating function:

with

1. Homogeneous equation:

First order linear Partial Differential Equation



Mean field analysis (V)

2.    Wave propagation …

Initial conditions allow to
determine the wave envelope

Solution



Mean field analysis (VI)

Existence of a critical value of 
the ratio clause/variable

• If a < ad , then the procedure stops after a finite time with no unsat clause left.

• If a > ad , then the procedure never stops, and a finite fraction of clauses 
remain unsatisfied.



Comments on the analysis

• Numerical simulations confirm scenario is qualitatively correct …

… but numerical estimates for ad are larger than theoretical predictions.

• Quantitative agreement seems to improve for larger K or a in agreement 
with theoretical argument by G. Semerjian (2001).

• Behavior at very large times (exponential in N)  for a > ad …

a < ad a > ad
Fraction of

unsat clauses

time

Finite fraction of
unsat clauses left



Rare deviations

Log. (Proba. Success)/NFraction of
unsat clauses

timeq(N)

exp q(N)

+ fluctuations !

a
ad ac

ln 3/4

Also work by
W. Barthel and M. Weigt
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Conclusion

Few examples of solving algorithms which can be studied using 
statistical mechanics tools
= more or less legitimate extension of mathematical studies

• Average properties of  algorithms for random distribution of
instances.

• Can we obtain results true for any instance?
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