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Even-skipped (eve)
Kruppel (Kr)

Hunchback (hb)

Giant (gt)

Knirps (kni)

Segmentation gene expression imagesSegmentation gene expression images as in as in
FlyExFlyEx  ddatata a basebase: : http://urchin.spbcas.ru/flyexhttp://urchin.spbcas.ru/flyex

Insect body has a periodic 
structure called segments.
Determination stage will be 
considered.
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Maternal
Coordinate

Genes

bicoid (bcd)
caudal (cad)
hunchback (hb)

Gap Genes

Pair-Rule
Genes

EnSegment
Polarity
Genes

engrailed (en)
wingless (wg)

even-skipped (eve)
odd-skipped (odd)
hairy (h)
runt (run)
fushi-tarazu (ftz)
paired (prd)

hunchback (hb)
Krüppel (Kr)
knirps (kni)
giant (gt)
tailless (tll)
huckebein (hkb)
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14 segmentation genes
are concerned with 
initial DETERMINATION 
event. 
Each has
a distinct pattern of
expression.

About 40 segmentation genes of the whole 
genome are active 
in blastoderm, while others are involved in 
oocyte formation OR active after gastrulation
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In addition, 
each expression
pattern changes
over time.

Each expression pattern changes 
over time.
Unlike as in MA we take the data 
In space also.
Pair-rule gene (eve) late in blastoderm 
period resolves to 7 distinct stripes
4 nuclei wide
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Formation and nuclear structure ofFormation and nuclear structure of
DrosophilaDrosophila blastoderm blastoderm

10 11 12 13

14

An embryo is only 0.5 mm long

4 microns

Even in microscale 
a nuclear structure exists on each 
cycle of an embryo development

Highly discrete structure ? 
In what scale?

Can it be modelled 
with a continuum ?

Are the nuclear divisions  =
 mitosis necessary 
for pattern formation ?
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1. Data from embryos or MA’s both are  series of snapshots.

2.  They cannot describe temporal behaviour of gene
expression with given accuracy up to date.

3.   No spatial pictures of gene expressions provided, too.

4.   Formal representation of experimental data for further
analysis?

MotivationMotivation
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Motivation (contMotivation (cont’’d)d)

5. Pattern formation is common for many irreversible
(bio)chemical reactions ( and physical processes).

 6. Many p.d.e. provide  patterns as suitable solutions.

 7. Drosophila is one of the simplest biological system
for bio & math tests.
         Math simulation is the cheapest one.

 * How to develop a simplest possible mathematical model
providing solutions with features given by biology ? Patterns?

 * How to define coefficients in continuous model (p.d.e)
 in order to fit data of biological experiments ?



Les Houches 2004Les Houches 2004 99

Analysis of the Analysis of the DrosophilaDrosophila blastoderm blastoderm

Images

Database Records;
Numerical Text Files

Quality Functional
Model Parameters

Model Parameters
Aim to adopt continuum model instead
of tracking the dynamics of each 
single nucleus ->modification of 
mitosis rule representation ?
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cel

Time
3 Rules

Nuclear Division

Cell cycle

Mjolsness, Sharp & Reinitz  (1991). JTB 152: 429-453.
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Time

3 Rules

Interphase

1. Protein Synthesis

2. Protein Transport

3. Protein Decay

Mjolsness, Sharp & Reinitz  (1991). JTB 152: 429-453.
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Time

Mitosis

1. Protein Synthesis

2. Protein Transport

3. Protein Decay

Mjolsness, Sharp & Reinitz  (1991). JTB 152: 429-453.

3 Rules
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Fits to dataFits to data

INPUT: gene expression patterns, random parameters

OUTPUT:
gene circuit=gene network=particular set of parameters

In natural sciences the data have priority ->
let us change parameters until the model given
produces patterns that will be as similar as possible to
gene expression data.
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Formal geometry of
the blastoderm model

2D projection

Small and narrow 
data area
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Data fittingData fitting

Usually we seek parameters for
the differential-difference equations, governing
the gene network, that minimize a functional:

∑ −=

existsdata 
for which

and
, all

2
datamodel ))()((v

 t
a, i

a
i

a
i tvtE

Minimize E using the method of simulated annealing =
Metropolis’ method
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Simulated AnnealingSimulated Annealing

• Advantage: The method will yield the global
minimum of E.

• Disadvantage: Computationally intensive.

• serial simulated annealing:

• parallel simulated annealing:

Min 12 hrs -  Max 52 days on a 2 Ghz Pentium P4

Min 4 hrs -  Max 14 days on 10 1.5Ghz AMD processors
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Simulated AnnealingSimulated Annealing

1. Compute E = Eold from the variables xi .
2. Make a change in one (or more) of the xi (this is

referred to as a “move”.
3. Compute E = Enew from the newly generated set of xi .
4. Compute  δ =exp((Eold  - Enew ) / T).
5. If  δ > a random number γ :  0<γ<1 ,
     keep the new xi’s (“accept the move”).
Otherwise, restore the old xi’s (“reject the move”).
Repeat while allowing T   to decrease slowly from a large

value to zero. Typically this entails 105 to 109

iterations.

Metropolis et al., 1953; Kirkpatrick et al., 1983
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Why look at the P.D.EWhy look at the P.D.E’’s?s?
There is a large amount of papers concerning “Turing Models”.
Many useful results have been derived mathematically, but they
use the following assumptions:

1.     Spatially uniform initial state, in which:
2.     The chemical reaction network is at a stable point,
3.     The initial state becomes unstable because of diffusion,
4.     An autoactivating slow diffusing substance is paired with a fast
           diffusing inhibitor.

These assumptions are false for most (not all!) biological systems.
Can one build theoretical understanding from a biologically realistic
set of PDE’s?             The first step is to construct them!

NRD equations determine patterns?   vs     central role of cells in developmental biology.
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Continuous modelContinuous model
Mass conservation in a volume V:
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Fick’s law for diffusion: ),(),( txvDtxj aaa ∇−=
r
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Equations for concentration (Non-linear Reaction-Diffusion Eqs) are:

],1[);,,(),(),( MavtxFtxvDtxv a
a
xxa

a
t ∈+= r

F – “reaction”;

No nuclei considered, they are small enough in comparison with pattern size.
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),( txva -concentration of a-th protein, – that of   BCD protein

Lx∈ is a spatial domain on A-P axis of an embryo .

)(xvBCD

Discrete model:  Reinitz, Sharp.  Mech. Dev. 49:133–158, 1995

abT - describes regulatory effects of gene b on gene a; (a matrix) 
aλ -  the decay rate of a-th gene product; R a-max  rate of protein 

synthesis
ah -  describes an effect of uniformly distributed maternal   transcription

factors on gene a;

aa Dm , are regulatory and diffusion coefficients, resp.

ModelModel  equations  ->  Rea-Diff-Decay equations  ->  Rea-Diff-Decay eqseqs

Source term is very complex due to regulatory matrix; decay is to be involved
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g

-4 40
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Formal description is arbitrary.

g is to be of sigmoidal form.

It may be formalized as an algebraic
function of its complex argument f:
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RegulationRegulation -  - expressionexpression  functionfunction      gg        isis  responsibleresponsible
forfor  synthesissynthesis

Near    g=1/2   a small variation of regulator v results in change of synthesis rate

0
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consttRa ≡)(Model A :
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Model B :
during mitosis

otherwise

Model C :
aR0 after each division of nuclei

Model (B)    + doubling of

Models of mitosisModels of mitosis

Ra- the max  rate of synthesis for protein a depends on time t
due to mitosis.

Aim to adopt continuum model instead of tracking the dynamics of each single nucleus ->modification of
mitosis rule representation.
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There are   N(N+5)   phenomenological parameters for N genes:

aaaaaba DhmTR ,,,,, λ

The functional to be minimized:

( )∑ ∑∑∫ −=
genotypes

2

datamodel ),(),(
a k L

k
a

k
a dxtxvtxvF

Method:  a new Optimal Steepest Descent Algorithm (OSDA).

Data are used at several time moments in cleavage cycles 13 and 14.

Fitting the model to expression dataFitting the model to expression data
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FormalFormal  problemproblem  statementstatement

T
K qtvqtvqtv )),(),...,,((),( 10 −= describes the system in time t , and 

T
Iqqq ),...,( 10 −= be the vector of parameters to be found.

Let the vector function of protein concentrations 

),( qvf
t
v
=

∂
∂

Vqv =),0(

The system of ODE's of the 1-st order written with respect to the
independent variable t is:

and the initial condition:
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QualityQuality  functionalfunctional  andand  constraintsconstraints
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where all of J independent experimental observations are denoted as

T
K tytyty ))(),...,(()( 10 −=

up
ii
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i qqq ≤≤

Constraints in the form of inequalities are imposed on a subset
of parameters

Lagrangian approach requires an expansion of a functional involving all constraints with add. Multipliers 
and a starting point.



Les Houches 2004Les Houches 2004 2828

ConstraintsConstraints
Constraints in the form of inequalities are imposed for the
parameters

as

for each protein a.

To apply the Lagrange technique for optimization the
constraints are to be  transformed into equations for r.
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NumericalNumerical  algorithmalgorithm

 Integrate the system of p.d.e. given
 Integrate system for the Lagrangian multipliers from t(J) to t(0) with the

initial condition and conditions given in points, where data are available.

 Calculate the gradient   Zk=Z ( v(k) ,q(k))     where  v(k)   is the
solution of the original p.d.e’s obtained on  k-th iteration using q(k)

as parameters.

The new parameters q(k+1) are calculated as:

ak is used to minimize the value of the functional on each step.

Repeat it until the value of the functional be less than a value given.

The set of  qN defines the solution of the problem and the optimal
components of  this vector.

k
k

kk Zaqq −=+1
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ConvergenceConvergence  diagramdiagram

Log F      vs      Number of iterations is shown
Functional achieves a value of     10-8    in just 1000 steps.
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Early cycle 14

Late cycle 14 Data and Solution are compared.
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Best patterns: Best patterns: mmitosis model B, rms=1.003itosis model B, rms=1.003
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Best patterns: Best patterns: mmitosis model C, rms=1.28itosis model C, rms=1.28
00.20.40.60.812468101200.20.40.60.812468101200.20.40.60.8124681012Data00.20.40.60.8124681012PDE'sfit
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x/LModel C -Poorest fit!
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Advantages of OSDAAdvantages of OSDA
 OSDA can be successfully applied for finding the minimum of theOSDA can be successfully applied for finding the minimum of the

quality functional in the problem of analysis of big arrays ofquality functional in the problem of analysis of big arrays of
experimental data.experimental data.

 Given a good initial guess the OSDA needs Given a good initial guess the OSDA needs two orders less stepstwo orders less steps than than
the random search.the random search.

Details are in :Details are in :

  KozlovKozlov, , SamsonovSamsonov.   A novel approach to experimental data fitting by.   A novel approach to experimental data fitting by
means of optimal control theory.  means of optimal control theory.  TechnTechn. Physics, 2003, 48, 11, 1-8.. Physics, 2003, 48, 11, 1-8.

 Optimal parameters can be defined with the accuracy of Optimal parameters can be defined with the accuracy of  >10 %, >10 %, and  and hh
(constant maternal transcription factor)(constant maternal transcription factor) recovered with OSDA has the biggest recovered with OSDA has the biggest
error.   Simulated annealing showed the same error.   Simulated annealing showed the same behaviour behaviour ;  see:;  see:

ChuChu, Deng, , Deng, ReinitzReinitz. Parallel simulated annealing by mixing of states,. Parallel simulated annealing by mixing of states,
J J ComputComput. Physics, 148, 1999, 646-662.. Physics, 148, 1999, 646-662.
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aR aλ

Parametric stability of the modelParametric stability of the model

Various perturbation schemes were used:

- all parameters,

and only

abT only

am and ah only

aD only

- all parameters in the discrete model.

10.000 numerical experiments were made in each vicinity of the
optimal parameter set.

Vicinities considered: up to 1% of parameter values, from 1% to
5%, from 5% to 10%,   …  , from 35% to 40%.

-

-

-

-

Results present a very close numerical approx. to
the true minimum of functional for models A-C.

To increase the confidence random perturbations
were made.
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Patterns perturbation:Patterns perturbation:          50 random samples 50 random samples selected fromselected from
thethe  1% vicinity1% vicinity  of optimal parameters setof optimal parameters set

00.20.40.60.81246810hb,t=88

00.20.40.60.81246810gt,t=88
00.20.40.60.81246810kni,t=88

00.20.40.60.81123456eve,t=88

00.20.40.60.81246810Kr,t=88

 http://urchin.spbcas.ru/flyex http://urchin.spbcas.ru/flyex

Results show a very close 
numerical approximation 
to the genuine minimum.
Over 10^5 random perturbations 
of the optimal parameter values
examined.



Les Houches 2004Les Houches 2004 3737

Patterns perturbation:Patterns perturbation:
180 samples from 5% vicinity with rms < 2180 samples from 5% vicinity with rms < 2

00.20.40.60.81246810Kr,t=88 00.20.40.60.8124681012hb,t=88

00.20.40.60.81246810gt,t=88 00.20.40.60.8124681012kni,t=88

00.20.40.60.811234567eve,t=88

In no case the functional was 
Found smaller than the one 
Provided by OSDA
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Long tLong termerm  patterns: patterns: mmitosis model Aitosis model A
00.20.40.60.810123456eve00.20.40.60.810246810gt00.20.40.60.810246810kni00.20.40.60.810246810Kr00.20.40.60.810246810hb

t = 88

t = 2000
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x

x

x
x is along A-P axis of the
blastoderm

Are the patterns asymptotically stable over a long time period? Are they close to attractors? The answer is No.
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Long time dynamics: Long time dynamics: mmitosis model A, itosis model A, xx = 0.15L = 0.15L
((close to anterior)close to anterior)
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Oscillations in time in the Anterior area
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Long time dynamics: Long time dynamics: mmitosis model A, itosis model A, xx = 0.7L = 0.7L
(close to posterior)(close to posterior)

Pr
ot

e i
n 

co
nc

en
tr

at
io

ns

time

Kr

hb

gt

kni

eve

500 1000 1500 2000
0

2

4

6

8

10

Stationary behaviour in the adjastent part.
No coincidence with patterns on t=88
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Discrete
model
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Long time patternsLong time patterns  dynamics in d  dynamics in different modelsifferent models

Nuclear divisions have no role in 
pattern formation
A – no mitosis
B – shutting off of synthesis only
C – shutting off +doubling of 
synthetic density
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ConclusionsConclusions

The The model is stablemodel is stable with respect  with respect     to modification of theto modification of the
equations structure equations structure     ((various various diffusion and mitosis).diffusion and mitosis).

The The model is stablemodel is stable  with respect with respect to small (1to small (1––2%) perturbations of2%) perturbations of
parameters, while the parameters, while the biggerbigger  perturbations perturbations may may destroy thedestroy the
patternspatterns calculated calculated..

TTuringuring  (1952): (1952):     ““most of organism most of time is goingmost of organism most of time is going
from one pattern into anotherfrom one pattern into another

rather than  from homogeneity into a patternrather than  from homogeneity into a pattern””..

Nuclear Divisions are Not Required for PatternNuclear Divisions are Not Required for Pattern
Formation.Formation.

It could not have been obtained in experiments, since it is impossible to replace
the blastoderm cellular structure with a continuum where segmentation genes
act.
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