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Segmentation gene expression images as in
FlyEx data base: http://urchin.spbcas.ru/flyex

o Even-skipped (eve)
Kruppel (Kr) T2y

Hunchback (%b)

Insect body has a periodic
structure called segments.
Determination stage will be
considered.
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14 segmentation genes
are concerned with
initial DETERMINATION
event.

Each has

a distinct pattern of
expression.

About 40 segmentation genes of the whole
genome are active

in blastoderm, while others are involved in
oocyte formation OR active after gastrulation
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In addition,
each expression
pattern changes
over time.

Each expression pattern changes
over time.

Unlike as in MA we take the data

In space also.

Pair-rule gene (eve) late in blastoderm
period resolves to 7 distinct stripes

4 nuclei wide
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Formation and nuclear structure of
Drosophila blastoderm
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An embryo is only 0.5 mm long

Even in microscale
a nuclear structure exists on each
cycle of an embryo development

Highly discrete structure ?
In what scale?

Can it be modelled
with a continuum ?

Are the nuclear divisions =
mitosis necessary
for pattern formation ?




Motivation

1. Data from embryos or MA’s both are series of snapshots.

2. They cannot describe temporal behaviour of gene
expression with given accuracy up to date.

3. No spatial pictures of gene expressions provided, too.

4. Formal representation of experimental data for further
analysis?
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Motivation (cont’'d)

5. Pattern formation is common for many irreversible
(bio)chemical reactions ( and physical processes).

6. Many p.d.e. provide patterns as suitable solutions.

7. Drosophila is one of the simplest biological system
for bio & math tests.
Math simulation is the cheapest one.

* How to develop a simplest possible mathematical model
providing solutions with features given by biology ? Patterns?

* How to define coefficients in continuous model (p.d.e)
in order to fit data of biological experiments ?
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Analysis of the Drosophila blastoderm

Bioinformatic Analysis of the Drosophila Blastoderm

FEIIEL olelhERy Transcriptional
Differential Differential P

Equation | Continuum Equation | Coarse Contol
q o
del Approximation Model Graining ?? Model
Mode

Fit Model
To Data

a. Simulated Annealing
b. Optimal Control Theory
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Gene Expression
Data
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Model Parameters

Aim to adopt continuum model instead
of tracking the dynamics of each
single nucleus ->modification of
mitosis rule representation ?

Quality Functional

Database Records;
Numerical Text Files

Images




7.8 min

9.5 min

12.4 min

21.1 min

50.0 min

5 Cleavage Cycles

Time (min) Cycle Number Duration Foe & Alberts (1983). J Cell Sci 61: 31-70
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Nuclear Division

L4

(U (U

'l' 'l'| |'l' (g l

Mjolsness, Sharp & Reinitz (1991). JTB 152: 429-453.

Rule

Les Houches 2004




Interphase

2. Protein Transport

3 Rules

Mjolsness, Sharp & Reinitz (1991). JTB 152: 429-453.
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Time

Mitosis

A

2. Protein Transport

Mjolsness, Sharp & Reinitz (1991). JTB 152: 429-453.
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Fits to data

INPUT: gene expression patterns, random parameters

In natural sciences the data have priority ->

let us change parameters until the model given
produces patterns that will be as similar as possible to
gene expression data.

OUTPUT:
gene circuit=gene network=particular set of parameters
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blastoderm solid border

N

/ physically transparent border; not diffusive for coefficients in PDE models ?

Formal geometry of
the blastoderm model

2D projection

Vv

Scales: u=10M-7) molesiter, L=0.9mm; T=44 min

data area for FDE models

Yo
fl}"’!{”’ Data area

the embryo moc eI.

Small and narrow
data area
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Data fitting

Usually we seek parameters for
the differential-difference equations, governing
the gene network, that minimize a functional:

E = (V? (t)model - via (lt)data)2

alla, 1,
and ¢
for which
data exists

Minimize E using the method of simulated annealing =
Metropolis’ method
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Simulated Annealing

Advantage: The method will yield the global
minimum of E.

Disadvantage: Computationally intensive.

e serial simulated annealing:

« parallel simulated annealing:
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Simulated Annealing

Metropolis et al., 1953; Kirkpatrick et al., 1983

. Compute E = E_, from the variables Xx; .

. Make a change in one (or more) of the x; (this is
referred to as a “move”.

. Compute E = E,_, from the newly generated set of Xx;.

. Compute d =exp((E,,; - E,.,)/T).

. If 8>a random numbery : O<y<1,
keep the new x;’s (“accept the move”).
Otherwise, restore the old x;’s (“reject the move”).
Repeat while allowing 7 to decrease slowly from a large
value to zero. Typically this entails 10° to 10°
iterations.
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Why look at the P.D.E’s?

There is a large amount of papers concerning “Turing Models™.
Many useful results have been derived mathematically, but they
use the following assumptions:

Spatially uniform initial state, in which:
The chemical reaction network is at a stable point,
The initial state becomes unstable because of diffusion,

An autoactivating slow diffusing substance is paired with a fast
diffusing inhibitor.

These assumptions are false for most (not all!) biological systems.
Can one build theoretical understanding from a biologically realistic
set of PDE’s? - The first step is to construct them!

NRD equations determine patterns? VS central role of cells in developmental biology.
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Continuous model
Mass conservation in a volume V:

d a = % —
dtj;/v (x,t)dx = — aV]a(x,t) ds +fVFa(v)dx

_ j;/ (-V-] )+ F)dx; F —“reaction”;

Fick's law for diffusion: Zl (X,t) = —DaVVa (xat)

Equations for concentration (Non-linear Reaction-Diffusion Eqs) are
v, (x,t) =D v (x,t)+ F (x,t,V),a€[1,M]

XX

No nuclei considered, they are small enough in comparison with pattern size.
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Model equations -> Rea-Diff-Decay eqgs

“ N 2_.a
av — Ra(l.)g Z Tabvb + maVBCD (x) + ha _ )Lava n Da a ‘/2
ot = 0x

V¥ (x,?) -concentration of a-th protein, VP (X)— that of BCD protein

b
Ta - describes regulatory effects of gene b on gene a; (a matrix)

)\f’ - the decay rate of a-th gene product; R -max rate of protein
synthesis

ha - describes an effect of uniformly distributed maternal transcription
factors on gene a;
T, D® are regulatory and diffusion coetficients, resp.
x& [ is a spatial domain on A-P axis of an embryo .

Source term is very complex due to regulatory matrix; decay is to be involved

Discrete model: Reinitz, Sharp. Mech. Dev. 49:133—158, 1995
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egulation - expression function g IS responsib
for synthesis

g is to be of sigmoidal form.

Formal description is arbitrary.

It may be formalized as an algebraic
function of its complex argument f:

or the hyperbolic tangent : g(f) = 2 (tanh f T 1)

Near g=1/2 a small variation of regulator v results in change of synthesis rate
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Models of mitosis

R4 the max rate of synthesis for protein a depends on time ¢
due to mitosis.

Model - : R?(t)= cons

0, during mitosis

Model " : Ra(t)=<

d
RO —con 551 otherwise

&

Model (B) * doubling of

Rg after each division of nuclei

Aim to adopt continuum model instead of tracking the dynamics of each single nucleus ->modification of
mitosis rule representation.
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Fitting the model to expression data

There are N(N+5) phenomenological parameters for N genes:
a il a 1.a 1qa a
RE.T m* h*. A%, D

The functional to be minimized:

E Ezf(v ()C 4 )model v (X t )data)dx

genotypes a

Method: a new Optimal Steepest Descent Algorithm (OSDA).

Data are used at several time moments 1n cleavage cycles 13 and 14.
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Formal problem statement

Let the vector function of protein concentrations

v(t,q) = (vy(£,q),...,ve_,(t,q))" describes the system in time #, and

q=(qgy-----9,_ )T be the vector of parameters to be found.

The system of ODE's of the 1-st order written with respect to the
independent variable # 1s:

d

>
9t — f(v9Q)

and the 1nitial condition: v(0,q) =V

Les Houches 2004




Quality functional and constraints

F(v,q) = 3 (v(t,,9) - ¥(1)) (v(t,,q) = ¥(1,)) —— min

where all of J independent experimental observations are denoted as

y(t) = (yo(t)r"ay]{—l(t))T

Constraints 1n the form of inequalities are imposed on a subset
of parameters

low up
<< <<
4, =4;=(,
Lagrangian approach requires an expansion of a functional involving all constraints with add. Multipliers
and a starting point.
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Constraints

Constraints in the form of inequalities are imposed for the

parameters

Rlow
o, =(R

for each protein a.

<R" <R, = R" =0+ [, tanh(yr,),
+R,)/ 26 =(R,, - R,)/2

low low

To apply the Lagrange technique for optimization the
constraints are to be transformed into equations for 7.
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Numerical algorithm

Integrate the system of p.d.e. given

Integrate system for the Lagrangian multipliers from ¢(J) to #(0) with the
initial condition and conditions given in points, where data are available.

Calculate the gradient Z/=Z (v® ¢q®) where v¥ is the
solution of the original p.d.e’s obtained on k-th iteration using ¢®
as parameters.

The new parameters ¢**V are calculated as:

k+1

24 =qk_aka

a*is used to minimize the value of the functional on each step.

Repeat it until the value of the functional be less than a value given.

The set of g" defines the solution of the problem and the optimal
components of this vector.
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Convergence diagram

600 200
Number of iterations

LogF vs  Number of iterations 1s shown

Functional achieves a value of 10-% in just 1000 steps.
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Best patterns: mitosis model A, rms=1.04

PDE's fit

Early cycle 14
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Data and Solution are compared.




Best patterns: mitosis model B, rms=1.003

PDE's fit
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Early cleavage cycle 14
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Best patterns: mitosis model C, rms=1.28

AN PN

Early cleavage cycle 14

X

Late cleavage cycle 14 Model C -Poorest fit! /|
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Advantages of OSDA

s OSDA can be successfully applied for finding the minimum of the
quality functional in the problem of analysis of big arrays of
experimental data.

» Given a good 1nitial guess the OSDA needs two orders less steps than
the random search.

Details are in :

Kozlov, Samsonov. A novel approach to experimental data fitting by
means of optimal control theory. Techn. Physics, 2003, 48, 11, 1-6.

s Optimal parameters can be defined with the accuracy of >10 %, and /
(constant maternal transcription factor) recovered with OSDA has the biggest
error. Simulated annealing showed the same behaviour ; see:

Chu, Deng, Reinitz. Parallel simulated annealing by mixing of states,
J Comput. Physics, 148, 1999, 646-662.
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Parametric stability of the model

Various perturbation schemes were used:

- all parameters,

a
a
- R and )\v only Results present a very close numerical approx. to
the true minimum of functional for models A-C.

- Tab onl
y To increase the confidence random perturbations

_Nfand AW only

were made.

- D? only
- all parameters 1n the discrete model.

10.000 numerical experiments were made in each vicinity of the
optimal parameter set.

Vicinities considered: up to 1% of parameter values, from 1% to
5%, from 5% to 10%, ... , from 35% to 40%.
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Patterns perturbation: 50 random samples selected from
the 1% vicinity of optimal parameters set

Les Houches 2004

Results show a very close
numerical approximation

to the genuine minimum.

Over 1075 random perturbations
of the optimal parameter values
examined.




Patterns perturbation:
180 samples from 5% vicinity with rms < 2

In no case the functional was
Found smaller than the one
Provided by OSDA
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Long term patterns: mitosis model A
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Are the patterns asymptc%tically stable over a long time period? Are they close to attractors? The answgrSis No.
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Long time dynamics: mitosis model A, x = 0.15L

(Close to anterior)
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Long time dynamics: mitosis model A, x = 0.7L
(close to posterior)

Stationary behaviour in the adjastent part.
No coincidence with patterns on t=88
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ong time patterns dynamics In different m

Nuclear divisions have no role in
pattern formation

A — no mitosis

B — shutting off of synthesis only
C - shutting off +doubling of
synthetic density

OdelSs

Mitosis A

Mitosis B

Mitosis C

Discrete
model




Conclusions

The model is stable with respect to modification of the
equations structure (various diffusion and mitosis).

The model is stable with respect to small (1-2%) perturbations of
parameters, while the bigger perturbations may destroy the
patterns calculated.

Nuclear Divisions are Not Required for Pattern
Formation.

It could not have been obtained in experiments, since it is impossible to replace
the blastoderm cellular structure with a continuum where segmentation genes
act.

Turing (1952): “most of organism most of time is going
from one pattern into another
rather than from homogeneity into a pattern”.
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