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Abstract—The problem of choosing the best set of parameters for a given mathematical model that adequately
describes independent experimental data is formulated in terms of the optimal control theory. The sum of
squares of discrepancies between experimental data and their analogues calculated within the framework of a
given mathematical model of a process is minimized. A solution to the problem is found, and conditions for
optimally choosing the parameters of the mathematical model are established. The search algorithm is gener-
alized for the case where a penalty function is present, and an efficient way of including inequality constraints
is suggested. The algorithm was tested by finding the thermal conductivity of single crystals (Ioffe–Ioffe clas-
sical experiment), thermal diffusivity of a thin plate, and parameters of gene expression during the fruit fly
(Drosophila melanogaster) embryo evolution. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Let a boundary-value problem for a set of equations
with given differential operator and boundary (initial)
conditions be the mathematical model of a process. In
check experiments, the coefficients of the equations, as
well as dissimilar terms in the equations and boundary
conditions, are unknown (or partially known) and have
to be found in such a way that the model describes ade-
quately experimental data obtained independently.
Usually, a set of boundary-value problem parameters
(coefficients of equations, source functions, etc.) that
best fits experimental data under given conditions is
sought in this case. If mere interpolation fails, the prob-
lem may be solved in terms of the optimal control the-
ory. The development of such an approach to experi-
mental data processing is the aim of this work.

To find the phenomenological parameters of a
model, one may apply the least-squares method to fit
experimental data. Then, in terms of the optimal control
theory, a model quality functional to be minimized is
the sum of the squares of deviations of experimental
data from values calculated independently within the
framework of this mathematical model. The deviations
are summed at times they were determined in experi-
ments. Such a functional may have several local min-
ima and, if necessary, a penalty function. Also, inequal-
ity constraints may be imposed on some of the problem
parameters.

In the simplest statement, this problem was briefly
considered in [1]. In the work cited, an associated algo-
rithm was described and generalized for the case with a
1063-7842/03/4811- $24.00 © 21364
penalty function and an efficient way of taking into
account inequality constraints was suggested.

1. STATEMENT OF THE PROBLEM

Suppose we know the values of some vector func-
tion y(ti) = (y0(ti), …, yK – 1(ti))T that characterizes the
state of a system at different times. The superscript T
hereafter means transposition; i = 1, …, J, where J is
the total number of time instants at which independent
experimental data were obtained; and K is the number
of state variables for a system studied. We assume that
a system of first-order differential equations in the inde-
pendent variable t together with a boundary condition is
given and that this system depends on the vector of
parameters q = (q0, …, qI – 1)T, where I is the number of
parameters:

(1)

This system describes the behavior of a physical
system in experiments. The left side of (1) is the vector
of dimension K, which is composed of time derivatives
of the function v(t, q) (state variables), and the right
side of (1) is the vector function f(v, q). If necessary, a
penalty function P(q) can be introduced into the prob-
lem.

Let us introduce a set of indices of parameters Il on
which inequality constraints

(2)

are imposed.

∂v
∂t
------- f v q,( ); v 0( ) v 0.= =

qi
low qi qi

up,   ≤ ≤  i Il I⊂∈
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Optimal control in this case consists in choosing
parameters such that the quality functional (a measure
of deviation of measured data from those calculated in
terms of an independent model for a physical process)

(3)

is minimized.

Note that many problems of mathematical physics
that are stated in the form of higher order differential
equations can be reduced to the normal form, i.e., to a
system of first-order equations with additional paramet-
ric variables (Pfaffian special system) [2]. Therefore,
the selection of system (1) as the basic set of the prob-
lem stated is justified.

Finding the minimum of the quality functional
necessitates the derivation of first-order stationary con-
ditions. For system (1), which is written in general
form, they are conveniently found with the Lagrange
method of multipliers. In this case, however, one must
consider an extended quality functional that includes
inequalities (2), which impose restrictions on the con-
trol parameters. To this end, inequalities (2) must be
transformed into equivalent equalities.

2. NECESSARY CONDITIONS 
FOR MINIMUM

To derive necessary conditions for stationarity (opti-
mality) for quality functional (3), it is necessary to
introduce additional controls ui for which one can write
equivalent equalities. Since the choice of these equali-
ties is ambiguous, we will consider algebraic and trigo-
nometric transformations of the inequalities into equiv-
alent equalities.

(1) Algebraic transformation of the restricting
inequalities. Let us replace inequalities (2) with the
algebraic equalities [3]

(4)

It is obvious that the condition ui = 0 is satisfied if
the initial parameter takes on either of the two preset

extreme values, qi =  or qi = , and any ui ≠ 0 cor-
responds to an intermediate value of the control param-

eter:  < qi < .

Next, we introduce a vector function ψ(t) of
Lagrangean multipliers to include Eqs. (1) into the
functional and a necessary number µi of Lagrangean
multipliers to take into account the inequality con-
straints, which were transformed into (4). The extended

F v q,( ) = v ti q,( ) y ti( )–( )T v ti q,( ) y ti( )–( )
i 1=

J

∑ P q( )+

=  ϕ v 1 … v J, ,( ) P q( ),+

v i v ti q,( )=

ξ i qi qi
low–( ) qi

up qi–( ) ui
2– 0.= =

qi
low qi

up

qi
low qi

up
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functional of the problem can now be written in the
form

(5)

where the vectors µ = {µi} and u = {ui}, as well as the
vector function ξ(q, u) = {ξi(q, u)}, are introduced for
all i ∈  Il.

Thus, the restrictions are involved in the extended
functional and it reaches an extremum simultaneously
with (3). This allows us to use the standard procedure
for deriving the stationarity conditions.

Having calculated the first variation of the quality
functional

(6)

which is a measure of discrepancy between measured
and calculated data, and the first variation of differen-
tial constraints

(7)

which are the equations of model (1), we can write the
first variation of the Lagrangean function as

(8)

where ∂P/∂q are the components of the vector ∂P/∂qi.

Integrating (8) by parts yields

(9)

Here, ψ(ti + 0) and ψ(ti + 1 – 0) are the right- and left-
hand limits of the Lagrangean multipliers ψ(t) at inter-
mediate points where experimental data are available;
therefore, the values of Lagrangean multipliers (the
function ψ(t)) vary in steps.

Below are a set of first-order minimum conditions
for the quality functional [4] that use the stationarity

L ϕ v 1 … v J, ,( )=

+ ψT t( ) ∂v
∂t
-------– f v q,( )+ 

  td

ti

ti 1+

∫
i 0=

J 1–

∑ µTξ P q( ),+ +

δF
∂ϕ
∂v 1
---------δv 1 … ∂ϕ

∂v J

---------δv J
∂P
∂q
------ 

 
T

δq,+ + +=

∂δv
∂t

----------–
∂f
∂v
-------δv

∂f
∂q
------δq+ + 0,=

δL
∂ϕ
∂v i

--------δv i ψT t( ) ∂δv
∂t

----------–
∂f
∂v
-------δv+



ti

ti 1+

∫
i 0=

J 1–

∑+
i 1=

J

∑=

+
∂f
∂q
------δq

 dt µT ∂ξ
∂q
------δq

∂ξ
∂u
------δu+ 

  ∂P
∂q
------ 

 
T

δq,+ +

δL = 
∂ϕ
∂v i

-------δv i ψT ti 0+( )δv i ψT ti 1+ 0–( )δv i 1+–[ ]
i 0=

J 1–

∑+
i 1=

J

∑

+
∂P
∂q
------ 

 
T

δq ψT∂f
∂v
------ ∂ψT

∂t
----------+ 

  δv ψT∂f
∂q
------δq+ td

ti

ti 1+

∫
i 0=

J 1–

∑+

+ µT ∂ξ
∂q
------δq

∂ξ
∂u
------δu+ 

  .
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condition δL = 0:

(10)

(11)

(12)

(13)

This set of equations solves the problem of minimiz-
ing the discrepancy between experimental data and data
calculated from a solution to the boundary-value prob-
lem.

Thus, the stationarity condition can be recast in the
form of a vector equality for the Lagrange function gra-
dient ζ:

(14)

(2) Numerical solution algorithm. Let a set of I
parameters q be given, a physical process be described
by system (1), and it be necessary to find the coeffi-
cients of the equations such that the discrepancy
between a solution to the model mathematical problem
and measurements is minimal at each point of a given
interval. Then, a solution algorithm for the problem
stated by (1)–(3) consists of the following steps.

(1) Equation (1) is integrated.
(2) Equation (10) is integrated in reverse order, i.e.,

from tJ to t0, in view of initial condition (12) and condi-
tions (11) at those intermediate points where experi-
mental data are available.

(3) The parameter gradient ζk = ζ(v k, qk) is calcu-
lated by formula (14).

(4) Condition (13) for Lagrangean multipliers that
correspond to algebraic constraints for additional con-
trols ui is satisfied as follows. If a parameter qi in (2)
meets the strict inequality, µi = 0; otherwise, ui = 0 and
µi is selected so that a new value of the parameter qi is
allowable.

(5) New values of parameters qk + 1 are found by the
formula

(15)

where k is the number of iterations and αk is a parame-
ter selected so that functional (3) diminishes at each
step.

Steps 1–5 are repeated until a desired calculation
accuracy is achieved, for example, until the value of the
functional becomes less than a preset value. A vector of

∂f
∂v
-------ψ ∂ψ

∂t
-------+ 0  t ti ti 1+ );,[∈∀=

∂ϕ
∂v i

-------- ψ ti 0–( ) ψ ti 0+( )+– 0,=

i 1 … J 1–( );, ,=

∂ϕ
∂v J

--------- ψ tJ( )– 0;=

µiui 0, i Il.∈=

ζ v q,( ) ψT ∂f
∂q
------ td

t0

tJ

∫ ∂P
∂q
------ µT ∂ξ

∂q
------+ +≡ 0.=

qk 1+ qk α kζ k,–=
parameters qN obtained at the last step specifies a solu-
tion to the problem.

(3) Trigonometric transformation of constraints.
The commonly used procedure in the optimal control
theory is the replacement of control parameters qi for
which inequality constraints (2) are imposed by new
controls ui by means of trigonometric relationships, for
example,

(16)

where the factor γ is taken so as to improve divergence
during numerical experiments and the constant α and β
are determined from the upper and lower limits of the
initial controls:

Clearly, such a transformation is not unique; there-
fore, it seems reasonable to consider another finite rep-
resentation:

(17)

The above transformations are applied only to those
qi that must satisfy conditions (2). Thus, instead of (1),
we obtain upon rearrangements

(18)

where  = {qi} for i ∉  Il and u = {ui} for i ∈  Il.

Designating {ui} as {qi}, where i ∈  Il, we can write
(18) in the form of (1), where q = {qi} and i = 0, 1, …,
I – 1.

To derive necessary minimum conditions for the
discrepancy functional, we write the Lagrangean

(19)

where ψ(t) is, as before, the vector function of
Lagrangean multipliers.

Now, there is no need for additional multipliers that
include inequality constraints into the extended func-
tional, since they are involved in the equations.

After integrating (19) by parts, the standard deriva-
tion of necessary conditions for minimum leads us to a
formula for the first variation of the Lagrangean:

(20)

ui α i βi γqi( ),sin+=

α i qi
up qi

low+( )/2; βi qi
up qi

low–( )/2.= =

ui α i βi γqi( ).tanh+=

∂v
∂t
------- f v q u, ,( ),=

q

L ϕ v 1 … v J, ,( )=

+ ψT t( ) –
∂v
∂t
------- f v q,( )+ 

  td

ti

ti 1+

∫
i 0=

J 1–

∑ P q( ),+

δL = 
∂ϕ
∂v i

--------δv i ψT ti 0+( )δv i ψT ti 1+ 0–( )δv i 1+–[ ]
i 0=

J 1–

∑+
i 1=

J

∑

+ ψT ∂f
∂v
------ ∂ψ

∂t
-------+ 

  δv ψT ∂f
∂q
------δq+ td

ti

ti 1+

∫
i 0=

J 1–

∑ ∂P
∂q
------ 

 
T

δq.+
TECHNICAL PHYSICS      Vol. 48      No. 11      2003



NEW DATA PROCESSING TECHNIQUE 1367
By virtue of the stationarity condition δL = 0, the
necessary conditions for minimum have the form

(21)

(22)

(23)

Thus, the stationarity conditions may be recast as
the vector equality

(24)

where ζ is the Lagrangean gradient:

(25)

(4) Numerical solution algorithm for the trigono-
metric transformation of the constraints. Let a set of
I parameters q be given, a physical process be described
by system (1), and it be necessary to find the coeffi-
cients of the equations such that the discrepancy
between a solution to the model mathematical problem
and independent measurements is minimal at each
point of a given interval. Then, a solution algorithm for
the problem stated by (1)–(3) consists of the following
steps.

(1) System (1) is integrated with a desired accuracy.

(2) Conjugate system (21) is integrated in reverse
order, i.e., from tJ to t0, in view of (22) and (23).

(3) The parameter gradient ζk = ζ(v k, qk) is calcu-
lated by formula (24).

(4) New values of parameters qk + 1 are found by the
formula

(26)

where k is the number of iterations and the step αk of the
gradient method is selected so that functional (3)
diminishes at each step.

Steps 1–4 are repeated until a desired calculation
accuracy is achieved, for example, until the value of the
functional becomes less than a preset value. A vector of
parameters qN obtained at the last step provides a solu-
tion to the problem.

Unlike Section 2.2, here there is no need for step 4,
since the constraints are taken into account in the new
extended functional.

∂f
∂v
-------ψ ∂ψ

∂t
-------+ 0 t ti ti 1+ );,[∈∀=

∂ϕ
∂v i

-------- ψ ti 0–( ) ψ ti 0+( )+– 0,=

i 1 … J 1–( );, ,=

∂ϕ
∂v J

--------- ψ tJ( )– 0.=

ζ v q,( ) 0,=

ζ v q,( ) ψT ∂f
∂q
------ td

t0

tJ

∫ ∂P
∂q
------.+=

qk 1+ qk α kζ k,–=
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3. NUMERICAL EXPERIMENTS IN HEAT 
CONDUCTION PROBLEMS

A simple example of the problem studied is analysis
of temperature fields in a sample with the subsequent
determination of the coefficients of related equations.
Let us demonstrate the efficiency of our data processing
method by finding the thermal conductivity (thermal
diffusivity) of a sample from measured temperature
values.

(1) Thermal conductivity of single crystals. To
verify the method, we turn to the classical results of
Ioffe and Ioffe for the thermal conductivity of single
crystals [5]. As in [5], assume that experimental condi-
tions are such that the conventional heat conduction
equation

(27)

(τ is time; x is spatial coordinate; and T, k, and c are the
temperature, thermal conductivity, and specific heat of
the sample) is valid.

Our goal is to find the thermal conductivity coeffi-
cient k that provides the least deviation of a solution to
(27) from an experimental curve.

Ioffe and Ioffe experimented with a NaCl single
crystal sandwiched in copper blocks with the same ini-
tial temperature. The lower block was immersed in a
coolant or liquid air. One thermocouple measured the
temperature difference T1 – T2 between the blocks; the
other, the temperature T2 of the upper block relative to
room temperature T0. The readings of both thermocou-
ples were taken in 30-s intervals for the measurement
time τm = 7 min and tabulated (Table 1).

∂T τ x,( )
∂τ

--------------------
k
c
--∂2T

∂x2
---------=

Table 1.  Experimental data for the determination of the
NaCl thermal conductivity [5]

Measure-
ment no. τ, s T1 – T2 T2

1 60 7.7 0.22

2 90 10.7 1.5

3 120 12.3 3.2

4 150 13.4 5.0

5 180 13.9 6.85

6 210 14.2 8.75

7 240 15.0 10.7

8 270 15.2 12.75

9 300 16.1 14.80

10 330 16.3 16.85

11 360 16.7 18.95

12 390 16.8 21.0

13 420 16.8 23.1
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When using Table 1 [5], it is necessary to make two
assumptions. First, since in the experiment provision
was made for preventing heat losses, we may consider
the problem as one-dimensional and direct the x axis
normally to the block–sample interfaces from the warm
to cold block, i.e., from top to bottom. Second, since the
temperature gradient in the experiment varies slowly,
we may linearly interpolate in time the temperature val-
ues at the points x = 0 and L, where the measurements
were taken. The point x = 0 lies at the warm block–sam-
ple interface; the point x = L (L = 0.64 cm), at the sam-
ple–cold block interface.

The absolute temperature values are listed in Table 2
(the initial temperature was T0 = 24°C).

We discretize Eq. (27) over space, introduce a uni-
form mesh {xi = ih, h = L(K – 1)} (where i = 0, …, K –
1), take into consideration that the temperature distribu-

Table 2.  Absolute temperature values

Measure-
ment no. τ, s T2 T1

1 0 24 24

2 60 23.78 16.08

3 90 22.5 11.8

4 120 20.8 8.5

5 150 19 5.6

6 180 17.5 3.25

7 210 15.25 1.05

8 240 13.3 –1.7

9 270 11.25 –3.95

10 300 9.2 –6.9

11 330 7.15 –9.15

12 360 5.05 –11.65

13 390 3 –13.80

14 420 0.9 –15.9

–3.2

–3.4

–3.6

–3.8
–4.0

–4.2
–4.4

–4.6
–4.8

0 50 100 150 200 250 300 350
N

ln(f)

Fig. 1. Convergence for the quality functional f vs. number
N of iterations upon calculating the thermal conductivity.
tion depends parametrically on the thermal conductiv-
ity, and obtain the set of differential–difference equa-
tions

(28)

with the initial condition

(29)

and boundary conditions

(30)

(31)

The only unknown parameter in set (28) is the ther-
mal conductivity k.

The final sum of squares of discrepancies between
temperatures calculated (by model (27)) and measured
at all time points,

(32)

gives the quality functional for the problem of experi-
mental data processing.

Unfortunately, the function (τm, x) [5] is known
only at the points x = 0 and L. Since the boundary con-
ditions are approximated linearly, we may assume that
the second derivative on the left of (27) is constant and,
hence, the function is quadratic in x. For the function

(τm, x), we took a parabola ax2 + bx, since only two
coefficients can be found by two points.

Calculation was performed for 40 randomly
selected initial approximations that were uniformly dis-
tributed over the closed interval [0.005, 0.025]. The
outcome exceeded our expectations. The average calcu-
lated thermal conductivity was k = 0.012, rather than
k = 0.013, which was previously obtained by Ioffe. At
the end of the calculation, the integral deviation of the
calculated data from the quality functional (measured
data) was found to be 9 × 10–3.

Figure 1 shows a typical curve of convergence in the
problem of thermal conductivity of single crystals.

(2) Thermal diffusivity of a plate. By way of sec-
ond example, let us consider the problem of thermal
diffusivity [6] of a plate of thickness h = 10 cm. On one
side of the plate, the temperature was T0; on the other
side and at the middle of the plate, the temperature
oscillation amplitudes were ∆T1 = 10°C and ∆T2 = 8°C,
respectively. The oscillation period on the other side
was τ0 = 1 h.

In [6], the thermal diffusivity value was found by
plotting the Fourier test and turned out to be a =
0.009 m2/h.

∂T τ xi k, ,( )
∂τ

---------------------------
k
c
-- T τ xi 1– k, ,( ) 2T τ xi k, ,( )–(=

+ T τ xi 1+ k, ,( ) ); i 1 … K 2–, ,=

T 0 xi k, ,( ) T0; i 0 … K 1–, ,= =

T τ x0 k, ,( ) T2 τ( ); τ∀ 0 τm,[ ] ;∈=

T τ xK 1– k, ,( ) T1 τ( ); τ∀ 0 τm,[ ] .∈=

F k( ) T τm xi k, ,( ) T τm xi,( )–( )2
,

i 1=

K 2–

∑=

T

T
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Let us formalize the statement of the problem to
apply our method. The temperature variation is
described by the equation

(33)

where τ is time; x is the spatial coordinate; and T and
a are the sample temperature and thermal diffusivity,
respectively.

We discretize Eq. (33) over the coordinate x, intro-
duce a uniform mesh {xi = ir, r = h/(K – 1)} (where i =
0, …, K – 1), take into consideration that the tempera-
ture distribution depends parametrically on the thermal
diffusivity, and obtain the set of differential–difference
equations

(34)

with the initial condition

(35)

and boundary conditions

(36)

(37)

The only unknown parameter in set (34) is the ther-
mal diffusivity a.

In order to write the quality functional, we must
know the time dependence of the temperature in the
middle of the sample, (τ, h/2). The period of temper-
ature oscillation at this place is unknown, and we can-
not take it to be equal to τ0, since the thermal diffusivity
would indefinitely increase in this case. Let the oscilla-
tion period at the middle be τh/2 = 2τ0 and let the mea-
surement time be τm = τ0/2. Bearing in mind that the
plate is thin and the temperature conditions are quasi-
steady-state [6], we linearly interpolate temperature
values between the points x = 0, h/2, and h and desig-
nate the temperature distribution thus obtained as

(τm, x). Then, the quality functional has the form

(38)

The results are in good agreement with those
obtained in [6]. Calculation was made for 20 randomly
selected initial approximations that were uniformly dis-
tributed over the segment [0.0006, 0.0180]. The mean
value of the thermal diffusivity was found to be a =
0.0094 versus a = 0090 in [6]. The final value of the
quality functional was 23.63.

∂T τ x,( )
∂τ

-------------------- a
∂2T

∂x2
---------,=

∂T τ xi a, ,( )
∂τ

--------------------------- a T τ xi 1– a, ,( ) 2T τ xi a, ,( )–(=

+ T τ xi 1+ a, ,( ) ), i 1 … K 2–, ,=

T 0 xi a, ,( ) T0; i 0 … K 1–, ,= =

T τ x0 a, ,( ) = T0 ∆T1 2πτ
τ0
---- 

  ; τ∀ 0 τm,[ ] ;∈sin+

T τ xK 1– a, ,( ) T0; τ∀ 0 τm,[ ] .∈=

T

T

F a( ) T τm xi a, ,( ) T τm xi,( )–( )
2
.

i 1=

K 2–

∑=
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4. NUMERICAL EXPERIMENTS 
ON MOLECULAR BIOLOGY DATA PROCESSING

A comparatively new area of application of the algo-
rithm suggested is the processing of huge data arrays,
for example, simultaneous search for many hundreds of
phenomenological parameters in mathematical prob-
lems of biology and genetics, in particular, in the gene
chain model. Protein concentration greatly varies upon
the evolution of a biological object and is measured
with high accuracy, but finding a correlation of these
data with any of the advanced theoretical models is a
challenge. In one of them, the dynamics of a system is
described by nonlinear diffusion reaction equations
(NDREs), which contain 50 or more parameters on
most of which inequality constraints are imposed.

The molecular biology problem of segment determi-
nation in a standard biological system, the fruit fly
(Drosophila melanogaster) embryo, was stated in
detail in [1]. The mathematical statement of the prob-
lem involves the set of NDREs

(39)

where the argument of g is

The basic element of the gene chain model is the
matrix T, which characterizes a gene chain. Its elements
Taj describe the interplay between the concentration of
one protein (the product of one gene) and the concen-
tration of another protein (the product of another gene)
by using a particular number specific for any pair of a
and j.

The control actions of the protein that is the Bicoid
product of maternal gene bcd are taken into account as
an external perturbation (it is specified by the parameter
ma), and the parameter ha reflects the threshold value of
regulatory action.

Let the position of a nucleus on the longitudinal axis
of the embryo be defined by index i and let all nuclei
contain a copy of a regular chain of N genes, which is
characterized by an N × N matrix T.

The first term on the right of (39) stands for gene
regulation and protein synthesis, with the parameter Ra

defining the level of synthesis. The second term
describes gene product (protein) exchange between
neighboring nuclei, with the parameter Da standing for
the exchange rate. The parameter λa describes the half-
life period of the protein; the third term, gene product
cleavage.

Differential constraints for the function f in (1) are
given by a set of nonlinear equations like (39). Numer-
ical simulation is aimed at determining N(N + 5)

∂v i
a

∂t
--------- Rag wi

a( )=

+ Da v i 1+
a v i

a–( ) v i 1–
a v i

a–( )+[ ] λ av i
a,–

wi
a Tajv i

j mav i
bcd ha.++

j 0=

N 1–

∑=
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Table 3.  Results of calculations (see text)

Value of functional 2 3 4 5 6

<1 2(7229) – – – 100(512621)

<10 13(48840) 3(77896) – 3(449563) –

<50 41(46000) 9(31755) 21(56027) 27(96432) –

<100 50(52341) 9(31755) 39(54134) 33(123410) –

>100 50(69730) 91(69873) 61(98863) 67(301301) –
parameters of the system, where N is the number of
genes.

Observables are patterns of gene activity, which
supposedly are solutions to equations like (39). A
desired set of parameters is that providing the closest fit
of these solutions to experimental data. As before, it is
necessary to minimize the sum of squares of discrepan-
cies between the concentrations of all proteins that
were calculated by the gene chain model and found in
independent experiments. The sum is taken over all
nuclei and all time instants for which experimental data
are available.

(1) Test for efficiency of the method. Let us apply
our method to data processing and finding the phenom-
enological parameters of a model described by a set of
several hundreds of NDREs (like model (39)).

Consider a system that describes a regulatory chain
of only two genes. In this case, we have 16 equations
with 2(2 + 5) = 14 parameters.

We take a certain set of parameters and solve the
direct problem, i.e., integrate system (1). Let known
values of the function y(ti) = (y0(ti), …, yK – 1(ti))T be
quantities v (ti, q) = (v 0(ti, q), …, yK – 1(ti, q))T that were
calculated for a given number J of points over a given
time interval (i = 1, …, J) (so-called artificial data).
Now, with these data, we will try to recover the initial
set of parameters. In this case, the quality functional at
the point of global maximum is known and equals zero.
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Fig. 2. The same as in Fig. 1 upon determining phenomeno-
logical parameters in the problem of molecular biology.
This allows us to estimate the quality of a solution from
the value of the functional.

Let inequality constraints be imposed on six param-
eters linearly entering into set (39). We introduce an
exponentially increasing penalty function that depends
on a complex consisting of the remaining eight param-
eters and solve the problem of minimization numeri-
cally in the same way as before.

Calculation was performed for 100 randomly
selected initial approximations that were uniformly dis-
tributed in the parameter space. For each of the initial
points, we obtained several results by the method of
simulated annealing [7] and the gradient method. In the
latter, inequality constraints were transformed algebra-
ically and trigonometrically (sin-transformation and
tanh-transformation with various γ).

Calculation was terminated if the functional
changed by less than a specified quantity at each step
from a given number of steps. The set of parameters q
obtained at the last step was taken to be optimal.

The numerical results listed in Table 3 are totally
consistent with the theory. Columns 2–6 show the per-
centage of trials (initial points) when the functional
falls into the interval indicated in column 1. The paren-
thesized figures mean the average number of integra-
tions of the set of equations or, in other words, machine
time costs. Column 6 shows the values obtained by the
random search (simulated annealing) method; column 5,
by the gradient method with algebraic transformation
of constraints; and columns 3 and 4, by the gradient
method with tanh- and sin-trigonometric transforma-
tions, respectively.

The optimal point and the number of steps turned
out to be dependent on the initial approximation. For
each of the initial points, calculations with tanh-trans-
formations with various arbitrary coefficients γ were
performed and the best result for each of the points was
taken. These calculations are summarized in column 2.

The basic conclusions following from the calcula-
tion results are as follows.

The modified gradient method may be used to
advantage in searching for the quality functional mini-
mum when large data arrays are processed.

With the initial point selected appropriately, the
number of steps needed for this method to become con-
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vergent is two orders of magnitude smaller than in the
random search method.

The most efficient transformation of inequality con-
straints is impossible to choose in advance; however,
the proper selection of the parameter of tanh-transfor-
mation provided the highest rate of convergence (see
Fig. 2).

DISCUSSION
Our numerical experiments show that the suggested

method of processing large data arrays for finding the
most appropriate parameters of a given mathematical
model has a number of advantages. Namely, it offers a
high rate of convergence and is applicable even if
experimental data are not independent, for example, if
the elements of the vector y(ti) (i = 1, …, J) represent a
Markovian sequence. In this case, the function ϕ(v(t1,
q), …, v (tJ, q)) in (3) takes the form

(40)

1

σ1 ti( ) 2π
-------------------------

y1 ti( ) v 1 ti q,( )–[ ] 2

2σ1
2

ti( )
----------------------------------------------–

 
 
 

expln
i 1=

J

∑

+
1

σ2 ti( ) 2π 1 ρ2 ti( )–( )
---------------------------------------------------- 1

2σ2
2 ti( ) 1 ρ2 ti( )–( )

---------------------------------------------–




expln

× y2 ti( ) v 2 ti q,( )–
ρ ti( )σ2 ti( )

σ1 ti( )
----------------------- y1 ti( ) v 1 ti q,( )–( )–

2





+
1

σK ti( ) 2π 1 ρ2 ti( )–( )
----------------------------------------------------- 1

2σK
2 ti( ) 1 ρ2 ti( )–( )

---------------------------------------------–




expln

× yK ti( ) v K ti q,( )
ρ ti( )σK ti( )
σK 1– ti( )

--------------------------––

---× yK 1– ti( ) v K 1– ti q,( )–( )
2
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In [7, 8], a version of the random search method (the
method of simulated annealing or the Metropolis
method) was applied to find phenomenological param-
eters that provide a global minimum of the quality func-
tional in a similar problem of mathematical biology. It
was shown that the given functional has many local
minima but simulated annealing “bypasses” them, find-
ing a global minimum.

However, the use of simulated annealing necessi-
tates multiple integration of a set of strong nonlinear
differential–difference diffusion reaction equations.
Note for comparison that, in the case of the random
search method, finding each subsequent approximation
to the entire vector of parameters requires that the qual-
ity functional be calculated as many times as the num-
ber of the parameters involved, while in the gradient
method, only once. This fact may become of special
significance when a large number of proteins (the prod-
ucts of gene activity) is considered, since the number of
integrations necessary for random search grows as the
number of proteins squared.
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