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Abstract. A formalism capable of handling the first step of hierarchical replica symmetry
breaking (RSB) in finite-connectivity models is introduced. The emerging order parameter is
claimed to be a probability distribution over the space of field distributions (or, equivalently
magnetization distributions) inside the cluster of states. The approach is shown to coincide with
previous works in the replica-symmetric case and in the two limiting cases0 and 1 where

m is Parisi’s break point. As an application to the study of optimization problems, the GS
properties of the random 3-satisfiability problem are investigated and we present a first RSB
solution improving replica-symmetric results.

1. Introduction

It is now commonly thought that spin glasses may exhibit highly interesting and nontrivial
features already at the mean-field level [1, 2]. This statement stems from the extensive
studies performed during the last 20 years on models with infinite connectivity (IC),
especially on the celebrated Sherrington—Kirkpatrick (SK) model [1]. Such models strongly
differ from realistic finite-dimensional systems on two points, that is their large connectivity
and the absence of any geometrical underlying structure. As was realized some years ago,
only the latter aspect is intrinsic to mean-field theory while the unrealistic nature of the
connectivity may be cured [3,5-10]. Mean-field spin glasses with finite connectivity (FC)
are of importance for at least two reasons. First, they are expected to share common
properties with finite-dimensional physical systems that IC models cannot exhibit [4].
Secondly, it is now well known that optimization or decision problems can rigorously be
mapped onto the ground state (GS) of spin-glass models with FC [11]. The understanding
of complex optimization problems [12], which would be of practical use for algorithmic
design, therefore requires the introduction of sophisticated techniques that were invented
in the IC models context, e.g. replica symmetry breaking (RSB) [2]. As regards to their
potential interest, the investigation of the spin-glass phase of FC models has attracted little
attention in the past years [7—10]. This situation is probably due mainly to the technical
difficulties arising in the analytical calculations.

In this paper, we show that the complexity of FC models with respect to IC ones
manifests itself through the emergence of new and richer order parameters (section 2). We
expose how to compute the free-energy of FC models within the one-step RSB scheme
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in section 3. Section 4 is devoted to the derivation of the saddle-point equation for the
functional order parameter. Throughout the paper, we check that this formalism gives back
the known results for the replica symmetric (RS) theory of FC models and the RSB theory
of IC models. Our approach can be applied to any Ising FC spin glass and is therefore
of particular relevance to optimization problems. As an illustration, we concentrate in
section 5 upon the so-called random 3-satisfiability (3-SAT) problem, of central importance
in complexity theory [12, 13]. Recent theoretical interpretations [14, 15] of the numerical
data accumulated so far on 3-SAT [16] speak indeed for the existence of a spin-glass phase,
making 3-SAT a valuable testing ground for RSB calculations. A first RSB solution is found
and shown to improve the RS result.

2. Order parameter for finite-connectivity models

2.1. Occupation densities and the multilevel gas picture

Let’H be a Hamiltonian depending dvi Ising spinsS;, i = 1, ..., N and on some quenched
degrees of freedom. To compute the equilibrium properties, we resort to the replica method
[2]. Once the system has been replicaidtnes and the disorder averaged out, we obtain an
effective model of 2-states spinsS; = (S}, S2,..., S"). In the absence of any underlying
geometry (e.g. lattice), the effective Hamitoniafas is invariant under any relabelling of

the sites. As a consequendeer depends upon the spimmgly through the 2 occupation
densitiesc(o) defined as the normalized fractions of sitesuch thatS; = o [15, 17].

This is the very meaning of a mean-field theory: the effective Hamiltonian depends on the
spins only through a finite set of global fields rather than an extensive set of local ones. For
instance, the effective Hamiltonian of the SK model at inverse tempergt{te 17] reads

n 2
NHE = —% <ngs;‘>
i<j

a=1

~ _PN < o9)?
~ - gzc(al)c(az)(al 2) (€N
up to O(1) irrelevant terms.
In this picture, we may interpret any mean-field IC or FC replicated system as a ‘gas’ of
N particles living on 2 interacting levels. Each level is labelled by a veatocomprised
of n binary components® = +1 and is filled in withN¢(o) particles. Taking into account
the entropic contribution coming from the combinatorial choices of the sites, we obtain the
general expression for theh moment of the partition functio#,

1
zn = / 1_[ de(o) 8<Zc(a) — 1) g NBFch )
0 4y —

where the bar denotes the average over the disorder and the free-energy functional reads,
to the largest order iV,

1
F(leh) = Hen(leh + 5 Y c(@)Inc(o). 3
In the thermodynamical limit, the occupation densiti¢s) are determined through thé 2
saddle-point equations corresponding to the optimization of the free-energy functipnal

8He
c(o) = A(n) exp (—ﬂ 8c(0'ﬁ)> 4)
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wherei(n) is to be chosen to ensure the normalization ofdlse All equilibrium properties
can then be computed.

Let us briefly comment on the pros and the cons of the above formalism with respect to
the usual formulation which involves overlaps between spins belonging to different replicas.
Expressions (2) and (3) always require us to compdterfler parameters. In the case
of IC models, most of them contain redundant information since énlyz — 1) distinct
overlaps are required. As we shall see in the following, the structure of the order parameters
of IC models is indeed very simple and does not account for the whole spectrum of mean-
field disordered models. For FC systems, the present formalism proves to be much more
tractable than the usual formulation from the analytical standpoint. It enables us to encode
all overlaps in a concise way through the generating functi@ni. Another advantage
of this approach appears when focusing on Hamiltonians psgipins interactionsy > 3)

[18]. The use of the occupation densiti€s avoids the physically unclear introduction of
Lagrange parameters, that are necessary to define overlaps even in the IC case.

2.2. Replica-symmetric ansatz

With a view to undertake RSB calculations, a short discussion of the RS ansatz is
illuminating. The RS theory of FC models was worked out ten years ago [5, 6] and
may be reformulated within the Thouless—Anderson—Palmer (TAP) framework [19]. Inside
the single RS state, the spigs fluctuate around their Gibbs averages). All relevant
information rests in the histograms(h) of the effective fields:;; = %tanhfl((s,»)) [5]. The

order parameter thus proves to be a functigqn belonging to the spacg of the probability
distributions over real numbers. How are these results recovered in the present formalism?
RS corresponds to the invariance of the saddle-pofat) under any permutation of its
components. In other words(o) is a function of the magnetization= " _, o only.
Inserting the above ansatz into the extremization conditiong @£}), one easily finds all
thermodynamical quantities through the one-to-one correspondence

n eBha“
clo) = fR dh prs(h) !:[1 <M> (%)
or, equivalently,

eﬁhs
(2 coshgh)"

where the symbol, stands for an integral over the whole real axis. Note that the integral
overh in (6) converges if the real part of the magnetizatiois smaller tham (in absolute
value). Therefore, when the number of replieatends to zero, the order parametér)

may be analytically continued on the imaginary axis. This is precisely what one needs to
go back to the field distribution

c(s) = /Rdh prs(h) (6)

_ ds H —ish
prstl) = /R Scls/pre (n = 0). @

Let us underline that a drastic simplification takes place in IC models. The field distribution
Prs (@ndc) becomes Gaussian; it is fully described by a variance, the RS owgif2lp and
the functional nature of the order parameter is hidden.

1 Another generating function of all overlaps was already introduced by Mottishaw and De Dominicis for technical
reasons. Their order parameter, however, includes some disorder dependence (see [7, equation (3)]) and its
interpretation is therefore less clear thar)s one. See also [10].
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2.3. Replica-symmetry broken ansatz

We now consider the first step of Parisi’'s hierarchical RSB scheme [2], regardless of the
possible existence of any new RSB pattern in FC spin glasses. Each refdiledbelled by a
couple of integersb, b) according to the numbérof the block it belongs to (X b < n/m)

and its positionb inside this block (1< b < m). Following Mottishaw and De Dominicis

[8], we see that (o) is left unchanged under any permutation inside the blocks and depends
only on the block magnetizations = Z’;:lf’(b’b)- To guess the structure of the order
parameter, we again resort to the TAP approach. ConsiderSspidue to the presence of
numerous states in the single cluster, the thermal avegyéuctuates from state to state.
Consequently, the effective field is distributed according to a function (k) € V. We

must keep in mind thag; is in turn a random variable depending on the particular spin under
consideration. The variety gf's may be taken into account by introducing their histogram,
that is a functionalP[p]. This is a normalized distribution over: [, Dp P[p] = 1. We

thus look forP such that

n/m hYb

ebh:
c(o) Z/“/DP P[p],!:[l/]edhp(h)(ZCOSI’ﬂh)m (8)

satisfies the saddle-point equations #Br The generic order paramet@ for FC models
appears to be much more complex than in the IC case.

As a simple check of the above formalism, let us see how to find back the RS theory.
In the latter case, there exists a unique state. The effective fields can therefore not fluctuate
from ‘state’ to ‘state’ andp; is simply a Dirac distribution irk;. The fieldsh; fluctuate
according to their distributiom,s. Defining

Prslp] = /R di prs(h)8[p(h) — 8(h — h)] 9)

we indeed find that the order parameter (8) simplifies to the RS expressions (5) and (6). In
equation (9), the symbdl denotes the Dirac functional, i.e. the product over all values of
h is omitted for simplicity. It was first remarked by Wong and Sherrington (in a different
formalism) [9] that a generalization of the above equation to the RSB case may be obtained
by replacing the inner Dirac distribution in equation (9) with a function to be optimized
over. This ansatz may be correct if the distributignaith a nonzero weight can be labelled
by (i.e. are not more ‘numerous’ than) real numbers. In the generic case, a full functional
P is neededh priori.

How can expression (8) be analytically continued to reak? We first definev(y) as
the number of block$ of magnetizations, = y, with y = —m,—-m + 2,...,m — 2, m.
It is easy to check on (8) that(c) depends only on the set ofy)’s, as expected from
the invariance of the order parameter under permutations between blocks [7]. The discrete
nature ofy is merely due to the integer value mfand can be omitted to define an analytical
continuation of the order parameters. Consequently) may be any function in the range
—m < y < m satisfying the constraint
dyv(y) = n -0 (10)
—m m
in the smalln limit. Finally, the order parameter becomes a functional over the set of all
possible functions and reads, from (8),

m

el
cv] = '/VDP,P[P] exp( ) dyv(y)In [/;edh p(h)(ZCOSHBh)W‘:D (11)
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Note that the RS case is recovered by injecting the order parameter (9) into (11); one
recovers (6) withy = f:"m dyv(y)y. In the generic RSB case]v] depends on the whole
function and not only on its first moment

3. Expression of the one-step free-energy functional

3.1. Methods to compute the free energy

Two procedures can be followed to access the thermodynamical properties, depending on
the starting point of the calculation.

e From the saddle-point equationwve inject the expression of the order parameter (11)
into the saddle-point equation (4). The resulting equationPfys] has to be solved. Then,
one can compute the free-energy (3), possibly using the saddle-point equation to simplify
the calculation (especially the entropic term whose calculation is not easy).

e From the free-energy functionalsince we know that the saddle-point equation is
closed within the one-step algebra, we may first compute the free-energy funcfional
given in (3) restricted to one-step order parameters (8). Once the analytical continuation of
F to realm, n(— 0) has been carried out, we obtain the saddle-point equatioR|[fo} by
differentiating F with respect to the latter.

While both methods lead to the same result, the second one has an important practical
advantage. The (total) derivative of with respect to any parameter is equal to the
partial derivative, while this is not necessarily true in the first procedure. This is of little
interest for most of the control parameters which appear in the effective Hamiltonian only
(it is usually easy to compute the partial derivative Jfx in (3) and to perform the
analytical continuation—see next paragraph). However, considerable simplifications arise
when computing the derivative ¢f with respect ton. In the following, we shall therefore
adopt the second procedure.

3.2. Energetic contribution

According to the interpretation given in section 2, the effective Hamiltoftgp describes
the interactions between the different levets If the levels interactk by K, the
corresponding effective Hamiltonian typically reads

Het ~ Y. clo)c(or)...clok) [(01.02.....0k) (12)

where the interaction functioh is invariant under global permutations of both replica and
level labels. For all usual IC or FC models, the computatiort{gf within the ansatz (8)
as well as taking the limit — 0 do not present any difficulty.

As an illustration, we consider three examples:

e the SK modelinsertingc(o) (8) in Her (1), the trace over is straightforward to
carry out by writing

(01-02)° = 52 L exp(z ;afaf). (13)
We obtain:
1o B & /
THSK - P Dp1D
nHeﬁ mdz2| ), p1Dp2P[p1] Plp2]

- L . m 2 .
T For IC models, the only non trivial moment appearing dpv] is the variance /" dyv(y)y®. This
oversimplification reflects the Gaussian nature of the distribution in (42).
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n/m
X [/ dhy dhy p1(h1)p2(ho)(coshz + sinhz tanhBh; tanhﬁhz)’“}
R

B

= - Z(l—qﬂm(gf—qé)) (n — 0) (14)

where

2
CIOI/D,O’P[,O](/dh p(h)tanh,Bh)

14 R (15)
611=/Dp7’[p]/dh p(h)(tanhph)?.

|4 R

As expected for IC models, the functional nature of the order parameter is indeed drastically
washed out since only the two moments g1 of P[p] are relevant.

e The Viana—Bray modelthis model was introduced as a FC version of the SK model
[3]. The Viana—Bray Hamiltonian reads

[1— Y c(o) c(a2) coshBay - 02)} (16)

ﬂ 01,02

wherea denotes the mean connectivity per spin. We obtain

1 o
HH};‘? == / Dp1DpoPlpi] Plpol
1%

v _ &
Heff_f

x In |:/ dhq dhy p1(h1) p2(ho)(coshB + sinhB tanhﬁhltanhﬁhz)m] a7)
R

which explicitly depends upon on the whole distributiBfpo].
e the satisfiability problemthis FC model will be described in section 5. At this stage,
we only recall its Hamiltonian based dti-spins interactions:

n K
HIT = —% In |: Z c(o1)...clok) exp( - B Z H(S[GEH 1])] (18)

1o OK a=1 (=1

where§[.; .] denotes the Kronecker function aidis a positive real parameter [14]. We
obtain

1 1
“Heg' = _E/ Dp1...DpgPlp] ... Plog] —In /dhl-ndhl( p1(hy) ... px(hg)
n B Jv m R

Bk m
x<1+(e5 —1)K) } (19)
[1j=1 2 coshBh;

Note the additional complexity of (19) with respect to (17) due to the presence of multispins
interactions.

3.3. Entropic contribution

The calculation of the model-independent entropic contribution
S=-Y c(o)Inc(o) (20)

(e

to the free energy is far more complicated. Indeed, in contradtctg S is not a function
of a finite number of the integer moments

Co=Y [c@)] (21)

o
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of the order parameter. The computation of the entrSgg exposed in appendix A. The
final expression, in the small limit

%—S = —/Df)DV exp( —i /m dy G(y)v(y))c[iv]ln cfiv]

><l In [f ar /m dy e¥(2 cosx)” expf)(y)} (22)
R 2m —m

m

involves a double functional integrals overand v functions, see appendix A. The order
parameterP enters expression (22) through théunctional (11) as expected.

3.4. Back to RS: the: = 0 andm = 1 cases

In order to be self-consistent, the above formalism has to ensure that the RS free energy is
found whenm = 0 or 1. We shall now see that this is the case.

We first look at the energetic part gf. Within the RS ansatz, the order parame®ép]
simplifies to (9). It is a simple exercise to obtain the resulting expressions for the energy,
see e.g. (14), (17) and (19). We observe that the same expressions are found if we identify
the RS field distributiorp,s(h) with the following.

e Casem = 0:

polh) = / DpPlolo(h). (23)

More generally, the expansion of the one-step free-energy functional in powers of
coincides with an expansion in terms of the cumulantsPgp]. For instance, the first
nontrivial term (of ordenn) includes the two functions correlation

rni) = [ DoPlolotioh) (24)
which is diagonal in the RS assumption and shows off-diagonal contributions otherwise
[17]; Casem = 1:

path) = [ DoPlASG~ HIpD. (25)
where

H[p] = ;tanhl </Rdh ,o(h)tanhﬂh). (26)

Whenm = 1, an exponential number of states with exponentially small weights contribute
to the partition function. As a result, these states may be considered as effective micro-
configurations and their cluster as a single effective ‘state’. Equations (25) and (26)
express that the mean-spin magnetizations in the latter are simply the averages of the spins
magnetizations over all physical states (with vanishingly small weights).

The validity of the above relationship between RS theory andsthe 0 and 1 cases
also holds for the entropic part &f, see appendix B. In addition, we show in appendix B
how to compute the path integrals in (22) in the RS scheme to obtain the RS entropy

lg.= / D o1 102 coshgD)ere(iv) (L — Ineraliv)). 27)
n R 27T
with
ors(iv) = / dn Prs(h)eh)h- (28)
R
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The field distributionp,s is obtained through the optimization of both entropic and energetic
contributions to the RS free energy. This approach, that gives the same result as previous
works in the RS framework, we shall now extend to the first step of RSB.

4. Saddle-point equation for the functional order parameter

We shall now obtain the saddle-point equation fulfilled by the order param®étdr To do
so, we differentiate both entropic and energetic parts of the free-energy functional.

4.1. Differentiation of the entropic part

The entropy (22) depends on the order parameter threudi) only. It is convenient to
introduce the operator

. o ) efhy
Klp,v] = /Dvexp[—l 5 dy v(y)<v(y) —|n(/Rth(h)(2mW,,))}

x 1 In [ f e f : dy e77(2 cosx)" expf)(y)} (29)
m R 2T J_,,

which depends on both functiopgh) andv(y). Using the above definition, we rewrite the
derivative of the entropic contribution to the free energy as

iaf)fp] = —/DvlC[p, v]In cfiv] (30)
which depends on the field distributignthrough (29).

4.2. Differentiation of the energetic part

As emphasized in section 3.2, the calculation of the (model-dependent) energetic part of the
free-energy, and consequently of its derivative does not present any difficulty. It turns out
that the latter may always be written in the convenient form

1 gHef .
2 9P[0] = /DvlC[p, v]Q[iv]. (32)

We now give the expressions €f for the different models of interest.
e The SK model

Q%] = —g(m(l — qVvo + qo(v1)? + (1 — q)vy) (32)
whereqo, g1 have been defined in (15) and
vj = / dyv(y)y’. (33)

e The Viana—Bray model

2 1 "
a0 = -2 [ Dorploay - exp( [ ooy

o==+1 m
x In [/ dhq p1(h1) exp(;(m(A+ +A ) +oy(Ay — A_))) D (34)
R

A =In [coshﬂ(hl + e)}

=41).
coshBhy (e )
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e The satisfiability problem

K 1 m
Q%] = —%/‘/Dpl---DpplP[m]---P[pml]é > eXD(/ dy v(y)

=+1

K-1 1
x In |:/R l_[ dh; p;j(h;)) exp(z(m + oy)AK_1> i|> (35)
j=1

SIS h }

]'[j:l 2 coshBh;

4.3. Self-consistency equation fBf o]

Gathering derivatives (30) and (31) together, we obtain the following saddle-point equation

/DvlC[p, v](—Incfiv] — BL[iv]) = Ao (36)

which has to be satisfied for amyh). The Lagrange multipliekg in (36) is determined
through the normalization oP[p]. It does not depend upop(k) and may be computed
for e.g. p(h) = &(h). Therefore, the saddle-point equation (36) simply means that
Q[iv] — Inc[iv] is a zero mode of the operator

Qlp, vl = Klp, v] = K[5(R), v]. (37)

The kernel of Q@ contains all constant functionals; due to the normalization op(h).
Therefore, we end up with the following saddle-point equation

Inc[v] + BL[v] = 11 (38)

wherex; can be determined for e.g(y) = 0. From (11) and (38), we obtainy = 8Q[0],
or equivalently

c[v] = exp(—p8[v] 4 AL2[0D). (39)

We now have to find the functions for which equation (39) has to be satisfief. is
a distribution of normalized probabilities(2) merely by convention. BotlP[p (k)] and
Pla(p)p(h)] must lead to the same physics independently of the irrelewdattors. This
is ensured if

/ dyv(y) = 0 (40)

that is if condition (10) is satisfied. ConsequentB],0] has to be such that equation (39)
is correct for any function(y) over the range-m < y < m with zero integralg (33).

4.4. A simple application: infinite-connectivity models

For the SK model, the self consistency equation (39) is obtained from (11) and (32) and
reads

n e
LDpP[p]eXp(/_mdyv(y)ln[Adhp(h)(ZCOSh(ﬁl)m])

2
= exp|:/32 (q0(v1)? + (g1 — 610)1)2)] (41)



522 R Monasson

for any v such thatvy = 0. Solving the above equation, one finds the SK order parameter

(42)

PK[p] = / dh wy,(h)$ [p(h) _ wggo(h — h)(2coshn)" }
R

S A Wy, g (W — h)(2 cOShBR/)™

wherew, (z) = e‘ZZ/Z”/«/Zna. In equation (42), the symbéldenotes the Dirac functional,
i.e. the product over all values afis omitted for simplicity. As expected, equations (15)
are identical to the usual self-consistent equations for the RSB ovepamsd g1, see [2,
equation (I11.41)]. Note that the expressionmin (42) is in full agreement with the cavity
derivation of the effective field distribution, see [2, equation (V.29)].

5. Application to the 3-satisfiability problem

For generic FC models, the exact resolution of the saddle-point equation (39) appears to
be extremely difficult. At zero temperature, the limit of interest for optimization problems,
some analytical simplifications take place. We shall now see on 3-SAT how quantitative
results may be obtained this way.

5.1. Presentation of th& -satisfiability problem

The satisfiability (SAT) problem is the paradigm of the class of hard (NP—complete)
computational problems arising in complexity theory [12]. A pedagogical introduction
to the K-SAT problem, a version of SAT and some of the current open issues in theoretical
computer science may be found in [13].

K-SAT is defined as follows. Let us consid®r Boolean variablegx; = 0, 1};-1._ n.
Choose randomlyk among theN possible indices and then, for each of them, a literal
that is the corresponding or its negationx; with equal probabilities of one half. A clause
C is the logical OR of theK previously chosen literals, that & will be true (or satisfied)
if and only if at least one literal is true. Next, repeat this process to oMaindependently
chosen clausefC,},—1 y and ask for all of them to be true at the same time (i.e. we
take the logical AND of theM clauses). A logical assignment of tie}'s satisfying all
clauses, if any, is called a solution of tike-satisfiability problem.

For large instances{, N — o0), K-SAT exhibits a striking threshold phenomenon as a
function of the ratiax = M /N of the number of clauses per variable. Numerical simulations
indicate that the probability of finding a solution falls abruptly from one down to zero when
« crosses a critical value (K). Above a.(K), all clauses cannot be satisfied any longer.
This scenario is rigorously established in tkie= 2 case, where,, = 1[20]. ForK > 3,
much less is knownK (> 3)-SAT belongs to the class of hard computational problems,
roughly meaning that running times of search algorithms are thought to scale exponentially
in N. Some upper and lower bounds og(K) have been derived[21] and numerical
simulations have recently allowed us to find precise estimates,d.g.a:(3) ~ 4.2 [16].

In order to study theK-SAT problem, we map it onto a random diluted system by
introducing some spin variable$ = +1 (a simple shift of the Boolean variables) and a
guenched (unbiased) matr®,; = 1 (resp.—1) if x; (resp.x;) belongs to the claus€,, 0
otherwise. Then the energy-cost function

M N
E[C, S]=Z5|: CZ,iSi§_Ki| (43)
=1 1

i=
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equals the number of violated clauses and therefore its GS properties describe the transition
from the SAT phasé€Egs = 0) to the UNSAT phas€Egs > 0). Note that a similar cost
function was first introduced for neural networks by Gardner and Derrida [22].

The effective Hamiltonian corresponding to the cost function (43) was given in (18).
Previous studies have shown that the RS theory was able to find back the critical threshold of
the 2-SAT problem but became wrong f&i(> 3)-SAT instances [14, 15]. In the following,
we therefore concentrate upon the most interesking- 3 case. We briefly recall the RS
solution and then present a first RSB solution.

5.2. Saddle-point equation and RS solution
Following the above-mentioned procedure, the saddle-point equatidd feads

nel] = 3 [ DprDaPloalPlol G + 16 - 1) (44)
where (fore = +1) '

&, =/ dyv(y) |n{/dh1dh2,01(h1),02(h2)
—m R

x ex erEyln 1+ er-1
2 A+ endt+edn )]

Equation (44) has to be satisfied for allof integral zero. The GS properties are obtained
by sending8 — oo.

Let us briefly recall the RS result [14]. Inserting ansatz (9) into (44), we find that the
simplest RS solution includes half-integer fields only [5, 14,;17]

> Y4
pe) = Y €7 I(y)8 (h - ) (45)

2
{=—00
wherel, is the £th modified Bessel function and is self-consistently determined through

3o
y=",0- e Io(y))% (46)

In addition to the SAT phase solution = Egs = 0, there appears a metastable solution

y > 0, Egs # 0 abovea = 4.67, see figure 1. This solution becomes thermodynamically
stable ate = 5.18, well above the ‘experimental’ threshald~ 4.2. The latter is indeed
thought to coincide with a first-order spin-glass transition [14, 15]. Moreover, the presence
of 3-spins interactions in (18) suggests that the one-step RSB solution could be exact for
3-SAT and thatn = 1 at the threshold [18] .

5.3. Simplest RSB solution

We now turn to the RSB solution. In view of (45), we first restrict to distributipfeson
half-integer fieldsh. Secondly, the cavity theory teaches us thas biased in favour of
large fields (see [2, section V.2] for a clear explanation of this point). For IC models, large
hs indeed benefit from a Boltzmann factd?"&! as can be seen in (42). We thus propose
the following form for the distributiong with a nonzero weighP[p] (for m = 1),

yASY)

14 12
o =) 3 mexp(py )o (- 3) (@7)

=0

1 The field equals half the difference between the numbers of violated clauses when flipping a Boolean variable
(see [14, section IX]). It may thus take half-integer values [17].
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Figure 1. Decay parameters (light curves—left side scale) and GS energiegheavy curves—

right side scale) for the RSB (full curves) and the RS (long-broken curves) solutions as functions
of the number of clauses per variables The RSB width parametek is shown on the upper
dotted curve. The vertical broken lines indicate the spinodal paigig = 4.45 andars = 4.67.

wherew(B) is a normalization factor and the’'s do not contain exponential terms
Identity (47) is merely the simplest hypothesis compatible with the saddle-point equation;
we shall come back to this point at the end of the letter. Sending the temperature to zero,
we find thatP[p] is a function of only two variables which are computed fragmnamely

the ends of its suppo~ and¢™). This results from the zero-temperature expression of
the order parameter

ﬁILmOC c[v/B] = Z Pa—),zw)ev’g(i)ﬂw(ﬂ (48)

L)L

whereP;- ¢+ equals the sum of the weights of thefunctions having support{~, ¢9].
Note that (48) depends anthrough

0
Vo= / dyv(y)y
N (49)

1
vy = /0 dyv(y)y
in agreement with the statement that (47) is the simplest non-RS solution to (44). After

some algebraQSAT[v] (35) can also be shown to dependian v, only. The self-consistent
equation forP[p] simplifies into an implicit equation for the matriR,- .+ which can be
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easily solved,

(g

_A A e_ylz(V)
P{(—Lem =€ <2> K;H (KH) Ol — E(f))! . (50)
As in the RS solution (45)y controls the decay of the probability weights of large fields.
The new parametet sets the width of the supports of thés, that is the magnitude of the
fluctuations of the effective fields from state to state. Wies: 0, the supports of the’s
shrink to single points and the RS solution (45) is recovered, in agreement with (9). The
two self-consistent equations gnand A as well as the expression of the corresponding
GS energyEgs are given in appendix C. The results are displayed figure 1. In addition
to the trivial solutiony = A = Egs = 0, there appears another solution for> 4.45

with 0 < ¥y < A and a metastable, i.e. negative, GS energy. This solution becomes
thermodynamically stable at = 4.82.

6. Conclusion

The formalism we have presented in this article has permitted us to find an explicit RSB
solution improving the RS saddle-point. Yet, the predicted threshple- 4.82 exceeds

the ‘experimental’ value. This discrepancy may stem from assumption (47). In contrast to
the IC case, the pay-off for large fields appearingoimight be a nonlinear function of

|h]. If so, an inspection of the saddle-point equation (44) shows/thatnot constrained

to take half-integer values anymore. This refinement scheme is reminiscent of the iterative
procedure used in the RS theory to improve the simplest solution (45). By increasing the
resolution on the fields, the RS thresholds decreased frag down to 460 [15].

However, the meaning of nonhalf-integer fields is far from being clear. From a physical
point of view, the effective fields should be half-integer valued at zero temperature. Previous
studies performed for the Viana—Bray model have nevertheless shown that the half-integer
field distribution is unstable with respect to longitudinal (within the RS sector) fluctuations
[8]. Then, we face the following dilemna. The RS saddle-point equation admits a physically
sensible but unstable solution and many other ones, whose significances are dubious. In this
context, the RSB solution presented in the last Section has a remarkable property. While
the supports of th@s with nonzero weights contain physical (i.e. half-integer) values only,
the resulting effective distributio® (k) (25) includes Dirac peaks on the integer multiples
of a quarter! More precisely, the RSB GS energy is equal to the GS energy of the RS
solution with fields which are integer multiples of a quarter [15]. Work is in progress to
reach a better understanding of this puzzling coincidence[23].
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Appendix A. Calculation of the RSB entropy

Clearly, the analytical continuation of th&,’s to real ¢ in the vicinity of the unity will
allow us to compute the entropy (20),

d

S=—-——
d£ =1

Cy. (A1)
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For integer¢, the moments”, are easily expressed from (8) @8 ~ 1+ nI'; in the small
n limit with

Iy = / Dp1...DpePlpi] ... Plod
14

(A2)

2coshp Y ;1 hy) )’"]
[1;_, 2 coshh; '

In order to achieve an analytical continuationl®f we proceed in two steps. First, consider
the argumentA of the logarithm in (A2). Defining

1
x—In |:/ dhy...dh, pl(hl)...pg(hg)(
m R

4 gbhy
D(y; p1s - - =>» | i(h) A
D(yi 1. p2) ; n[ /R dh p; (h) (Zcosmh)m] (A3)
the latter may be rewritten as
. dedy ;.. .
A[D(y; p1, ..., p)] = / ?ye " (2 cosh)™ expd(iy; p1. - .., pe) (A4)
R
dx m —| ) s
=/—/ dy e (2 cosx)" expi(y; p1, - - -, Pe) (AS)
R 2n —m

where the last expression has been obtained through the rotatioh — (ix, —iy). Note
that the range of integration overin (A5) makes the integral ovér in (A3) convergent.
We now introduce the probability distributio@,[¢] of the functionsg(y; p1, ..., pe),

Q[V] = / Dp1...DpPlpa] ... Plpdd[D(y) — D(y; p1, - .-, po)] (A6)
\%4

and rewritel’, as a functional integral over all possibgefunctions (with supportfm, m])
weighted with measur€;,

r - / DIQ[E] I ATO (], (A7)

The second step of the calculation lies in the analytical continuation of the me@suce
real £. This may be achieved through an exponential representation of the functional Dirac
in (A6). We thus obtain

d

de

otil = [Dve( =i [ dyiue )eblinep (A8)

=1 —m

where the functionat[v] is given in (11). In equation (A8), the measur® ensures the
correct normalization of the Dirac functional, that is factof@-4 have to be included when
discretising the path integral ovér The resulting expression of the entropy is given in
(22).

Appendix B. RS entropy and them = 0, 1 cases

In this appendix, we first derive the RS expression of the entropy (22). We then show how
the latter is recovered when = 0 orm = 1.
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B.1. Calculation of the RS entropy
Consider the RS expression (9) fB8fp]. The functionalc[v] (11) simplifies to

c(vg, v1) = /Rdh Prs(h) exp(—ivem In(2 coshBh) + iv18h). (B1)

It depends on through the two momentg, v; only, see (33). We now introduce the series
expansion ofb(y) aroundy = 0,

Dy = Hyl. (B2)
j=0

Combining the coefficients definitions (33) and (B2), we rewrite the coupling term between
v andv in (22) as follows

exp( —i / dy a(y)u(y)) = exp( —i Za,-vj). (B3)
. =

The integration over all coefficients with j > 2 gives); = 0, Vj > 2. Therefore, only
the 7’s that are linear functions of their argumenturvive. We obtain
1 / dlA)o dvo df)l dv1
S = —

R 2 2

c(vo, v1) Inc(vo, Ul)e*i(ﬁOVoJrﬁlvl)
n

T

1 .

x—In [/ M %Y (2 coshe)™ exp(vg + ﬁliy)]. (B4)
m R 27

The argument of the logarithm in (B4) simply reads(2 coshd;)”. The remaining integrals
on vy, Vg, V1, v1 May then be carried out and the final result is given in (27).

B.2. Casen =0
We expand the logarithm in (22) and find

1 In [/ dX—dye“"y(z coshx)” expﬁ(iy)]
R 27

m
O +/ Me‘i~yy In(2 coshy)e’ =@ 4 O(m) (B5)
m R 2

in the smallm limit. We now consider the first term on the r.h.s. of (B5) and integrate out
all modesi(y # 0) in (22). The resulting:[v] reads, for smalk,

c[v] = 1+ imv(0) f dh po(h) In(2 coshBh) 4+ O(m?) (B6)
R

where pg has been defined in (23). Integratip), v(0) out, we obtain a first contribution
to the entropy (22),

%Sl = / dh po(h) In(2 coshBh). (B7)
R

We now focus on the second part of the r.h.s. of (B5). By integrating$haut, we obtain
v(y) = 0 exceptv(iy) = —v(0) = i. The corresponding functional (11) reads

o] = c(§) = f dh po(h)e™s (88)
R
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giving rise to the following entropy

}Sz = —/ Me“”’ In(2 coshy)c($) Inc(). (B9)
n R 21

Summing upS; and Sy, the RS entropy (27) is recovered withs = po.

B.3. Casen =1

Form = 1, the argument of the logarithm in (22) reads ¢ €’-, with 7. = d(ie), € = +1.
For all y # +1, the integration oved(y) givesv(y) = 0. The entropy then reads

1o~ / o dve d-dv- L Y inev,, v )d@H) el 4 6] (B10)

n R 27 2

where, using definition (25),

c(y,v) = / dh p1(h) exp(i(vy + v_) In(2 coshBh) — i(vy — v_)Bh). (B11)
R

We make the following unitary change of variables
Do = 3Dy + D)
Vo= Vy +Vv_
ARV (812)
vy =5y — V)
V1 =Vy —V_
and find the RS expression (B4). Therefore, wheg- 1, the RS entropy is recovered with
Prs = P1.

Appendix C. Self-consistency equations fory, A and ground-state energyE

The self-consistent equations fprand A read

1 ro 2

=22 n) -
1 ro 2

Azw(2_2>-y (C2)

where

ro= Y €7 () Ixn(A)
z:—: (C3)
r=3 ) e AL a-1(A) + Lasa(A)].

{=—00
To compute the GS energlf, we insert the saddle-point solution foto) into the
free-energy (3) and keep the linear termmironly. We then sen@ — oo and find

S (ARl (CY Rl

A
—Z(ro +7r1) — %(ro 47124+ 2r1) (C4)

ro = % Z e_y_AIe(V)[IZZ—Z(A) + Loe2(A)].

{=—00
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Note thatA = 0 is always a solution of the self-consistent equation (C2); equation (C1)
then gives back the RS saddle-point constraintyo(6). In this case, the GS energdy
(C4) simplifies to

Ers = %(1 — € lo(y) — 37 1(y)) (C5)

in agreement with the findings of [14, 15].
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