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Abstract. We study the behaviour of a feedforward neural network supplied with spatially
organized data. This inner structure is taken into account by a matrix C,;, whose
coefficients equal the average correlation beiween two pixels ¢ and j of the input
pattemns. The storage capacily o is computed as a function of the required stability and
of the eigenvalues of C. We propose a geometrical transformation allowing an intuitive
interpretation of these resulls. Numerical simulations using real and binary pauemns
show a very good agreement with the theory. Finally, we analyse the synaptic couplings
correlations resulting from the training of the network with structured patterns. Focusing
on exponentially decreasing correlations in one and two dimensions, we find that they
exhibit a ‘Mexican hat’ proiile, the excitatory centre size of which depends on o.

1. Introduction

For the last few years, storage capacities of neural networks have been intensively
studied. Thanks to statistical mechanics tools developed by Gardner [1], many dif-
ferent networks have been investigated, ranging from the simple perceptron [2] to
multilayered neural nets [3]. Besides the network architecture, the nature of their
couplings (discrete or continuous) [4] and the number of activity levels of the units
[5] have been shown to influence their storage properties.

From another point of view, we may ask the following question. Considering a
particular network, how will its capacity and its synaptic weights distribution depend
on the internal structure of the data? Such internal correlations would for example
be present if we try to store binary images and their corresponding outputs in a
fixed neural network. Until now, the statistical physics analysis has been restricted to
patterns without internal correlations between the different pixels. In other words,
the notion of distance separating the input neurons was meaningless. This is the
problem which we solve in the present paper.

Here we consider a perceptron-like neural network. We introduce internal corre-
lations inside the input patterns and compute its storage capacity. It is natural that
the internal correlations in patterns in turn induce correlations in the coupling ma-
trix. We are also able to determine these induced correlations exactly. We consider
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the hetero-associative case, in which the output is chosen independently of the input
pattern.

In this paper, two main results will be derived. Firstly, the storage capacity
remains unchanged whatever the inner structure of the input patterns. Secondly,
this spatial structure induces interesting correlations between the synaptic weights:
two couplings are positively correlated when they are close enough and become anti-
correlated when the distance separating them increases. One important finding of the
calculations concerns the duality between correlations in the patterns and those in
the couplings. In fact, the calculations which we will present solve, at the same time,
the problem of correlated patterns and the case of storage with correlated couplings
(for uncorrelated patterns).

2. Presentation of the problem

21. General definitions

We consider a single-layer network including /V binary neurons S;, ¢ = 1,..., N,
and an ouput o. The couplings J; between units S; and o are continuous. The
output value is computed following the classical rule

o = sign (—\/%ZJ,-S,-) . @1

Let us now choose an N binary components vector £ and a corresponding output o.
We say that the pair (£, o) is stored by the network if £ is mapped onto o:

TG'ﬁZJﬁfE >0. 22)

We also require that noisy versions #n of & (i.6. having a Jarge overlap with £) should
be correctly classified (i.e. mapped onto o) as often as possible (see section 3.1). A
common way to incrcase this robustness i to impose a stability « > 0 [1,7]. The
formula (2.2) becomes

I T ra e e A
———Ldigf S K. j&3)
VN S
For a training set (¢#,0%), u = 1,..., P, we define its size as o = P/N. In the

large-N limit, the critical capacity o (x) is the largest size below which there exist
with probability one, couplings {J} fulfilling the condition (2.3) for each u. The

storage capacity o () is a self-averaging quantity, and thus does not depend on the

particular choice of the training set but only on its statistical dlstnbutlon

2.2. The aulo-correlation matrix

We impose a probability distribution on the input patterns as follows:
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where the bar denotes an average over this distribution. The first equation means
there is no external bias, which occurs, for example, when a pattern and its opposite
are drawn with the same probability. The Kronecker symbol in (2.4) implies that
patterns are chosen independently of each other. The matrix C contains informa-
tions about correlations inside one pattern £ and we choose it to obey the following
requirements:

~ -:-_')— -+ W Rl
Ciu=¢&=1 Vi

C depends only on the distance |7 — j| between the neurons ¢ and 7 because of
transiational and rotational invariance of the pattern §. No restriction is imposed on

the dimension of the input space, and subscripts may be considered as vectors.
C must be a positive matrix: ", @, Cyyz; = [, 2,6]° 20 Ve

The common case with unbiased random pat
In the following we will call A, A,,... Ay th

to infinity, we note that

terns is mven hv S = d;se

e elgenvalues of C. When N tends

N
I = fim 7 37O @5)

The conditions (2.4) do not actually define the whole distribution of probabilities
P(&) from which the patterns £ are drawn. Further calculations based on the replica
method show however that one needs only the first two moments of P in order to
compute the critical capacity «, provided that the higher connected moments satisfy
clustering conditions

Z f,l o ———————— cennected - Fk N (N - 00) (26)

i1,42,.-

where the Is are some constants.
Any matrix C may be thus obtained with Gaussian patterns following the law

1 1 -
P(E) = Wexp (— 3 ’ngi(c l)s.jé,-) . 2.7

Alternatively one may choose binary patterns. For instance, a one-dimensional Ising
model at temperature 7" will lead to cquilibrium configurations distributed as in (2.4),

(2.6) with
= [ran (2)] 7" e
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23. The case of exponentially decreasing correlations

Let us first remark that inner correlations may result from a preprocessing stage.
Previous studies have shown that neurons connected to a fully random input layer but
with overlapping receptive fields will be synchronized [6]. Such induced correlations
are positive and decrease with the distance separating the processing units. They may
be taken into account as shown in section 2.2.

Moreover, the above description of the auto-correlation matnx is valid whatever
the input space dimension, and general results for any C will be derived in section 2.
Then we focus on patterns presenting patches of typical sizes L. Defining r =
exp (—1/ L), we consider the matrix

Cy; = ali=il, 2.9

The parameter z (0 § = < 1) is the correlation strength inside one input pattern.
When z equals zero, we recover the classic case of independent patterns and P (¢;) =
%6(5,- +1+ %6({,- —1). As z tends to 1, only two patterns remain present: the one
with all parts equal to one, and its opposite. The patterns are indeed drawn on a
circle (or a torus) so as to ensure periodic boundaries conditions.

In section 4.1, we apply the general theory to one-dimensional patterns verify-
ing (2.9). The more realistic case of two-dimensional inputs presenting the same
covariance matrix (but for continupus patterns) is investigated in section 4.2.

3. General theory for any correlation matrix

3.1. Analytical calculation of the critical capacity

We follow the now classic method introduced by Gardner [1]. For a training set
(€%, 0#), we define the fraction of the space of the couplings which store the patterns
with the stability «:

JdT6(I2 = N)[Tooy 0 [k — o (T - €* VN )] -
[dT6(J2— N) 3-1)

V({{er,o*)) =

where we have imposed spherical constraints on the synaptic weights. As InV is
an extensive quantity, one assumes it becomes self-averaging in the large-N limit.
We then compute its average In V over the patterns distribution using the replica-
symmetric approximation

ﬁan——qu+ss+u+—ln( w)——[

i,
20+ (25 - DA
- 3 ln(2a+ (25 - 9N, +o [ Dsln (z‘f”) ¢:2)

where

(3.3)
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and the two order parameters g, s are defined as follow. Let ({---)) be the average
over the coupling J storing perfectly the P patterns. The order parameters are
typical overlaps between these solutions:

= % 2. Cy; TN
ij
= 5 Gy T

4, 5 are Lagrange parameters enforcing constraints (3.4) and 4@ ensures the normal-
ization of J. These five parameters are found by solving the stationarity equations
associated with (3.2). In the usual uncorrelated case, C;; = §;; and s = 1. For more
complicated correlation matrices, the critical capacity will be reached in the Limit of
g equals s, i.e. when the space of suitable couplings shrinks to a ‘single point’.

The analysis of the saddle-points equations is not easy below the critical line
x(a.) when the eigenvalues distribution is not explicitly gwcn In section 4, we give
some results for the particular choice C;; = 2"~ concerning the evolution of the
order parameters ¢ and s towards their Cr|t1c31 commmon value s,

We therefore restrict our analysis to the critical line rc(ac) where the three
Lagrange parameters diverge and the stationarity equations simplify to

ol = loel,

£ AN

3.4)

(3.5)
770 v
0. —
© O H(=R[ B A+,
where v, is a function of « and s, defined by
- e—n ,';ac 36
Ve = K +"\/zn- H(-r{/5) )

and monotonously increases from 0 (x = 0) to oo (k& = o).

For zero stability, the critical capacity is always equal to o, = 2, whichever
correlation matrix we choose. This is not surprising since correlations do not destroy
the linear independance of any subsct of N patterns taken among the P patterns.
They are thus in general positions and the argument of Cover [8] is still valid. The
critical value of ¢ and s is

1
= a7

which is always less than 1. A simple geometric derivation of this result will be given
in the next paragraph.

The stability appears in (3.5) only through «/./5. This may be explained by
calculating the probability that a random noisy version n of a given stored pattern
(for instance £') is mapped onto the right output (o'). This probability depends
of course on the overlap between 77 and its reference and also on the pure pattern

s
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stability A (= j’;—v.f -€') [7]). One can compute in the limit & — a_(«) the distribution
of A [7):

§(A 0 el
\/_) (a-m)+o(a - L. 3.8)

c 27s

P (A)=H (-

c

As compared with the usual uncorrelated case C;; = §;; and s, = 1, this formula
indicates that the effective stability of the training set is x/./3_ rather than = [7).
One can verify that near o, ~ 2

— = (2-a) g (3.9)

is independent of C. Thus, in the critical capacity limit, the presence of correlations
inside the training patterns should not modify the ability of the network to classify
correctly noisy versions of the stored data.

All results have been derived here under the replica-symmetric assumption It is
physically justified by the convexity of the subset of vectors sioring the P patterns
on the N-dimensional sphere. Moreover, we have analytically checked the stability
of the mean-field solution with respect to small deviations of the order parameters
4%, 8%, ¢°%, 5%, ¢%® around the symmetric saddle point (¢ < b are replica indices
running from 1 to n and the limit n — 0 is taken afterwards) [9].

Extending the analysis of the case C;; = §;; [1], we have found two types of
eigenveciors for the second-derivatives matrix of g = Finv. & turns out that
there are 5 eigenvalues related to the longitudinal fluctuations and that the 5(n — 1)
eigenvectors symmetric under interchange of all but one of the indices give five
more eigenvalues which are indeed degenerate with the longitudinal ones in the limit
n — 0,

An instability may in fact arise from the transverse fluctuations of g. They give
n

twn eiosenvalues (.ﬂm"h ong heing Ln n"ﬂ — ‘2\ fold dpnpnprafp\ whose nroduct anualg
two €1z one meing sn{n — 2300 4egenerate) whose procuct equais
gt 28?2 82
p(a,n):a( 132— 1? g13+ 12934)
(8¢'*)* 8q¢'20q dql0q
a* 2 8% 8*
9 2 d 49 Vo1, (3.10)
\qul‘).ﬁ dqludqlﬂ dql.ﬁd J‘k}

The stability of the replica-symmetric solution requires that no sign change of the
eigenvalues occurs between o = 0 and o = a,(«). Using definition (3.6), we find
p(0,x) = —1 and

plag(n)yk) = - <0 @3.11)

proving that the critical line o () lies in the domain of stability of the symmetric
saddle point.
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3.2. Geometrical interpretation

Reaching a geometrical understanding of the previous analytical calculations is not
obvious, since correlations involved here cannot be interpreted as easily as in the
uniform-bias case. Tb cope with this difficulty, we eliminate the self-correlations inside
each pattern by diagonalizing the C matrix and apply the inverse transformation to
the couplings vector so as 1o leave the storing prescriptions (2.3) unchanged. We are
thus led to a strictly equivalent problem where we have P = o N unbiased random
patterns (£*,c®) in a perceptron whose synaptic vector J is constrained to lie on
the N-dimensional ellipsoid £:

J2
> A_“f =N. (3.12)
T Y

We seek the critical capacity of this network and compute the fraction of couplings
storing all the (£#,o#) with a stability « defined as

. J-EH
—_— i
K= mjggc [12};1213 (a ~ )] . (3.13)

Calculations with the replica method on this model can be done easily and lead of
course to the same result as before. Let us now relate this problem to the usual
Gardner analysis.

To each vector J belonging to £, we associate the vector J/ pointing in the same
direction and lying on the sphere $ with radius v N by

1
J = e T, (3.14)

NESN

Reciprocally, any .JJ' on S defines one single vector .J on £ by

J=e—t e (3.15)
"Jlif z'r —rf
The zero stability case is easily solved thanks to this very simple bijection between
S and £. Let us indeed consider P = a/N random unbiased patterns n* = g#¢#
on §. Since proportionality factors in (3.14) and (3.15) are always strictly positive,
finding J on £ storing all the patterns is equivalent to finding J’ on S satisfying the
same property. Therefore the storage capacity is always o, = 2 [1, 8], regardless of
the matrix C, ie. the shape of the ellipsoid. When « reaches a, there remains,
to leading order in N, only one vector Jg verifying Jj - n* > 0 Vu. Then (3.15)
defines ‘one single’ J; on £, whose squared norm is the critical parameter s.. When
averaging over the training set, Jj is an isotropic distribution on § and we recover
3.7).
( 2.’Ve now analyse the positive stability case. Let us assume as before that we have
drawn lots for P = /N unbiased patterns ¥ = o*£* on the sphere § with o < 2.
There exists J; on S maximizing the stability «;(«) of the patterns:

_ ) JoentN] J{,-n“)
o) =g L (TF)] = o (OFF) o

Ve
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which is given by [1]. The vector .J, on £ obtained from (3.15) leads to a stability
rgla)

. J e
Ko = min ( Ur_n )
ek N '\/ Z‘y(JO /A

Unfortunately, «, is lower than the optimal stability « defined in (3.13). Let us indeed
consider a small shifting dJ on the surface of £ from J, (see figure 1). Constraint
(3.12) is described by

}: o )"dJ (3.18)

During this shght movement, the stability has increased by dx from its initial value
Ko with

(3.17)

K= (;7 > (Jp)dd, - (3.19)

We see that d« may be strictly positive provided that the auto-correlation matrix is
not proportional to the identity. So knowning (o) provides us only with a lower
bound for « when averaging (3.17) over training data:

K> —Tl/KSNG(a) . (3.20)

and 1% rely on the cone of siablhly £ whose axis is the optimal vector Jj. A small
shifting dJ from the prolonged vector Jo may improve the stability of 3 though the
angle between Jo + dJ and n! increases.

Elgn_n;-g 1. The sphere & and the elhmmd £ are drawn in the case N = 2. Patterns _ql

These arguments may be extended to the case £; # 0. If the inputs are biased with

a uniform bias mm, the connccted self-correlation matrix becomes C; = (1- m2)6,-_,..

£ is now a sphere, obtained from & thanks to a homothetic reduction of ratio equal
to VX = /1 = m?. Condition (3.18) implies that dx = 0 and we find [1]

. = ﬁr;c(a) = V1-mE kgla). (3.21)
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3.3. Study of the induced synaplic structure

We analyse here the influence of the data spatial structure on the synaptic vectors
storing perfectly P = a_ N inputs patterns (« > 0). We restrict ourselves to the crit-
ical stability line since calculations become simpler: all quantities no longer fluctuate
around their mean values ((---}). As we deal in this paper with hetero-associative
storage, we have obviously

{y=o0. 3.22)

However, inside one pattern, the pixels £; and ¢; are not independent and lead
to correlations between the couplings J; and J;. One easily gets (for instance by

inserting an infinitesimal external field A acting on J in (3.1) and differentiating In V'
with respect to A; and h;)

— [c(C+ VCI)'Q]I_J_
Wil = TeeT v 1)~

(3.23)

where the coefficient v is given by (3.6).
Thus, for a small number of patterns, the correlations between synaptic weights
reflect the internal structure of the patterns

((J:'Jj)) =Cy

i (a—0). (3.24)

On the other hand, in the saturation limit, the structure of the couplings is given by
the inverse matrix

(LT =8, (C7);  (ag—2) (3.25)

whereas (3.23) interpolates continuously between these two behaviours in the finite
stability range.

These results are applied to exponentially decreasing correlations in one- and
two-dimensional patterns in the following parts.

3.4, Modified Hebb rule for self-correiated patterns

For uncorrelated patterns and small enough training sets (o, £#), an efficient storage
rule is the Hebb rule, corresponding to the synaptic vector

1 s
= E ) 3.26
L \/._“zla £ ( )

L, is nothing but the average over the training set of o#¢¥, namely the ith com-
ponent of pattern x. However, in our present case, correlations between different
components of the input data suggest us that a given coupling J; should take into
account not only the :th pixel of each input pattern but also its neighbours. We are
thus led to change rule (3.26) into

J; = Z K L (3.27)
J

Ve
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where K is a linear kernel assumed to be translationally invariant. As a result, this
simple transformation also modifies the correlations among the components of the
synaptic vector

e (KCK)
Sy = TRy,

(3.28)
ensuring the correct normalization J? = 1,
We choose K optimally thanks to a signal-over-noise analysis [11]. With Gaussian

inputs, the distribution of the stability o'J. €' /v/J? of a training pattern follows a
normal law whose mean m and variance v are

__ (KC)y

T Vo (KCK);
_(KCKQ),
T (KCK);

(3.29)

The probability f{ i) that this
I A RN r

pattern is stored (ie. has a positive stability) equals
m/f+/v and is of course all the more important when this signal-over-noise ratio is
large [11}. It is maximal for K = C~! and f(C~!) = H(-1/\/&) is independent
of C as the critical capacity o, = 2 obtained in section 3.1.

Instead of optimizing the above quantity f(J'), let us restrict our attention now
to matrices K ensuring only

f(K)=g (3.30)

where g is a given positive number lower than H(—1/,/a). But we seek the largest
possible mean stability m for our given pattern. Maximizing m under the constraint
(3.30) gives

K=(C+vD™ (3.31)

where v is obtained when inserting the above result into condition (3.30). From
formulae (3.28) and (3.31), we recover the behaviour contained in (3.23). It is quite
remarkable that the simple storage prescription described here agrees qualitatively

P w naskson Y

el thin sea s mmsiemlinntnd snmlicn anlailatlimeas dmon tmoa L)
WILLL UIGC Juuen HIuIT LUIIIPIIWIQU IC}JII\—G LAlLUIA LIV UJUIC ML DALV D0,

4. Application to exponentially decreasing correlations

We now apply the previous theory to some particular cases of correlation matrices
(see section 2.3). The simple choice of exponentially decreasing correlations is also in
good agreement with some experimental fits of natural images [13]. We consider one-
dimensional patterns for which all calculations can be done analytically and lead to
interesting features, mainly concerning the synaptic correlations. The bidimensional
case is more realistic and gives roughly the same results.
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4.1. One-dimensional patterns

According to section 2.3, we consider the correlation matrix (2.9). When N grows
to infinity, the distribution of its eigenvalues become a continuous function of ¢ €
[0,2x]:

1—z?

1-2rcosgp+x2’

Ale) = 4.1)

Following notation of (2.5), the average of any function f over the eigenvalues is

UL == [ de 11x6) “2)
0
and we have for instance
D=1 [\, = [.;.L =E5. @3)

At the saturation limit (e, = 2), the couplings correlations are related to the
inverse matrix

_ 1+ z2 T
(CHy, = T~ T:';E‘(‘Si,j—l 6 ;41) 4.4)

which exhibits one positive centre (¢ = j) surrounded by two negative peaks (i =
7 £ 1). The surprising existence of anti-correlations between the synaptic weights
appears clearly in the finite-stability range (0 < «, < 2). From (3.23), we get

TTT = li-il {1 _ 1i= 3l
QT = x '(1 . ) @5)

where

[+

14 x? 14+ x?
= 2 7 2 - .
‘ JLF%(l—ﬁ)+% 1-x?

Thus, two couplings are positively correlated if the distance separating them is lower
than a characteristic length ¢ and negatively correlated otherwise (see figure 2).
Synaptic correlations Jook like the well known ‘Mexican-hat’ profile, including a pos-
itive excitatory centre and negative inhibitory flanks. We will comment on this point
in section 4.3.

Using the eigenvalue function (4.1), the saddle-point equations (3.5) may be solved
numerically. The evolution of the optimal stability « as a function of « is shown on
figure 3. We see it is a decreasing function of x for fixed a. It vanishes for r = 1
since the two remaining patterns (+ - - -+) and (— - .- ~) are opposite and thus cannot
be mapped independently onto random outputs.

1+a2* 1-2° 1+ x? .
X= "9z + 2z, [1—\/1+2Vc(1_£2)+%

(4.6)

s
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Figure 2. One-dimensional case: synaptic
profiles {(J;.J;}} as a (unction of the dis-
tance i — j for x = 0.8, The sizes o of the
training set are equal to 0.05, 0.3 and 1.75
and the corresponding values of v are 16.64,
1.49 and 0.016 respectively (see (3.24)). As
o incteases, the correlations curves interpo-
late smoothly between Cyj (e = 0) and
(C™1)i; (ae = 2).
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oplimal stability

[1!||J1; Lo

0.0 =ttt

alpha

Figure 3. The aptimal stability x as a function of the size o for z = O ( )

04 (o), 06 (— - —), 08 (----) and 0.9 (— — —). Note that all curves end in
ac = 2 for zero stability and that « is a decreasing function of = for given o (see
figure 6).

We have also studied the evolution of ¢ and s as functions of the size o for
different = and zero stability. In this case, the three Lagrange parameters g, 8,1
appearing in (3.2) may be eliminated and we find two implicit equations for g and s

2(;&)3/2(%) _ as +ooDzz e—‘;i(.—ﬂ;) @
141+ 5% (155) V2 oo H (a5

and

1 4q 1~a2 _ 1-z2\’
'2_[1+\/H_s(s-q):’(1+a:2>](1+$2)-\/4m2+ (s—q> ) ¢

The critical parameter s, = (1 - z?)/(1+ z?) is obtained when o — 2. For z = 0,
(4.8) gives s = 1 and we recover the classical saddle point equation for g in (4.7).
Figure 4 displays the curves s(a),g() for several values of =. The parameter
g(a) may have a maximum at o < 2 but s — g always decreases with . This may
be explained thanks to geometrical arguments exposed in section 3.2, Formula (3.4)
tells us that g is nothing but the mean overlap between two synaptic vectors storing a
given training set. When increasing «, the volume of suitable couplings shrinks and
the typical angle between the two solutions decreases, However, the variations of s
prove that their norms decrease too. Thus, if the ellipsoid is flat enough, ie. if z is
sufficiently large, one can get non-monotonous g-functions as shown on figure 4.

4.1.1. Numerical simulations. We have checked our analytical predictions in one
dimension with Gaussian patterns following the distribution law (2.7). Since we are

e
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Figure 4. The curves g(a) and s(a) for several values of the correlation strength x = 0
(—» 03¢ ), 0.5 (— - ~) and 0.8 (- - -). Noie the presence of a maximum at
a < 2 for ¢ at sufficiently large . The quanlity s — ¢ is a decreasing function of a.
Al critical capacity o, = 2, s and g are both equal to (1 — ?) /(1 + z2).

interested in evaluating the optimal stability x(«, x) of a single-layered perceptron,
we have resorted to the so-called Minover algorithm. According to the notations of
reference [10], there arc three relevant parameters:

(i) The lower stability c: when updating J, the algorithm does not care about the
norm of the synaptic vector. It stops as soon as the scalar product between J and
each pattern becomes greater than an arbitrary bound c. Thus the optimal stability
is reached in the limit ¢ — oo and the errors due to finite ¢ are larger since o
approaches 2. A good estimate of the accuracy of finite ¢ results is given by the
performance guarantee factor A (see [10]} which satisfies k() € w(o0) € Ar(c)
for each sample. A is casily computed {rom the norm of the synaptic vector and the
number of running steps.

(i) The number T of samples: the algorithm runs for one given training set and
we must average the resulting stabilitics over the statistical distribution of the sclf-
correlated patterns. All the data we present here have been obtained with 100 < T <
1000. The error bars take into account these statistical errors and the uncertainty
related to A.

(iii) The size of the input layer N: this parameter influences upon the mean value
% and the width of the distribution of the stabilities «{e«,x) for different training
sets. Attempts with different sizes (N = 100, 200, 300) show a weak dependence of
K with tespect to V' (less than the error bars due to finite ¢) for Gaussian patterns.
We present here results obtained with N = 300.

In figure 5, we show the result of the simulation x(«) for = = 0.8 and compare
it with the usual 2 = O case. In figure 6, we display the optimal stability « at o = 0.5
(full curve). Simulations have been performed for different correlation strengths
z = 0.2, 0.4, 0.6, 0.8 and 0.9. There is an excellent agrecment with the theoretical
predictions.
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2.0 —
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=]
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0.0 0.5 1.0 1.5 20
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Figure 5 The optimal stability as obtained from numerical simulations with the Minover
algorithm. The broken curve is the usual stability obtained with uncorrelated patterns
(x = 0). The full curves are theoretical predictions for z = 0.5 and = = 0.8. The
points assoriated with the two curves indicate the results found with Ising and Gausssian
paiterns respectively,
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Figure 6. The optimal stability at fixed & = 0.5 as a function of the correlation strength
- and the results of the numerical simulations with Gaussian patterns (see text for details).

The full curve shows theoretical predictions. The broken curve is the lower bound

obtained from (3.20). The points indicate the results of the numerical simulations.

Another theoretical provision, the importance of which has becn already stressed
in section 2.2 is that the storage properties depend only on the first two moments of
the patterns distribution. This remark stems from replica method calculations and is a
generalization of the well known equivalence between Gaussian and binary patterns,
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for instance it the Hopfield model [12].
To verify this statement, we have simulated the storage of non-Gaussian patterns.

From a practical point of view, we have considered a one-dimensional Ising lattice
with N spins described by the Hamiltonian

N
H(¢) =- ‘ Ei§i+1 (EN+1 = fl) . 4.9)

Equilibrium configurations at temperature T will satisfy the law (2.8). We gen-
erate the patterns through a Monte Carlo simulation of this Ising model. We have
carried out simulations with the Minover algorithm for = = 0.5, Figure 5 displays the
numerical results and their very good agreement with the theoretical curve. More-
over, we have seen that important finite-size effects are present up to sizes equal to
N = 500 as soon as z increases. They are due to the corrective terms (2.6) which
diverge quickly when = - 1.

4.2. Bidimensional patterns

We now consider bidimensional images §; where the vector ¢ is taken continuous for
simplicity of calculation. Considering two pixels ¢ and j, they are spatially correlated
with
= 1 lidlE
A . (4.10)

L is the characteristic length of the inner correlations and the right-hand side coef-
ficient ensures that C;; tends to §(i — j) when L vanishes, However, as soon as L
is strictly positive, it only defines a unit of distance for the continuous input patterns.
Without loss of generality, we choose L =1 in the following.

The matrix (4.10) is easily diagonalized by means of a Fourier transform, and in
the momentum space g the corresponding eigenvalues are

1
Alg) = Er e (4.11)

Inserting this ‘eigenvalue distribution in (3.23), we obtain the correlation function
between two synaptic weights separated by a vector z:

Ty = Joda a4 @[ + w1 + 6] 2 Jo(al=)
e I da q(1 4 ¢2)32[1 + v (1 + ¢*)3/?]-2

(4.12)

where J, is the first-kind Bessel function of order zero. We show in figure 7 some
typical curves given by (4.12).

Our analytical results applied to other types of spatial correlations may lead to
the same ‘Mexican-hat’ profile. For instance, let us replace (4.11) by

1
L 2P S [4.13\
Aiq)_qz_l_l/LQ \ J
where L is a cut-off length. The corresponding spatial correlations are given by
Cy = Crlli—J) = Ko (li- 41/ L) (4.14)
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Figure 7. Bidimensional case: correlations between two couplings for two sizes o plotted
as a function of the distance separaling them. The corresponding values of v are 0.1
and 10 (see (3.6)). The characteristic length of the spalial correlations is iaken equal to
one.

where K,(r) is a Hankel function decreasing as »—'/2e~" at large distance r. For
short distances, the eigenvalues (4.13) scale approximatively as 1/q® which agrees
with recent measures of corrclations inside natural images [14,15]. As before, we
compute the synaptic correlation function using formula (3.23). W need to define
the characteristic length L_ of these correlations which is related to L by

1
L

3

11
=t (4.15)

LR %]

We remark that L, < L, which is similar to the unidimensional case where x defined
in (4.6) is lower than z: the synaptic correlations always decrease faster than the

o
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input ones. Thus the correlations between the couplings are given by

@eTal) = (Cu, = G, €, ) el @)

where the symbol + denotes the convolution product. The right-hand side includes
two terms. The first one is responsible for the positive centre of the synaptic profile,
whereas the second one ensures that the flanks will be negative.

4.3. Discussion

Such a curve including negative surrounding flanks reminds us strikingly of experi-
mental measures of synaptic sensitivities “n vivo’. Ganglion cells of mammals’ retinas
may indeed present this centre-on organization with lateral inhibition (see [13,15]
and references therein). Recent studies based on information theory have recovered
those synaptic profiles [15]. Two assumptions were made: first, neurons were linear
units, computing a weighted average of their inputs. Secondly, the synaptic struc-
ture was derived following a redundancy-reduction principle in presence of intrinsic
noise inside the input signal. The optimal couplings matrix depends on the ratio
L signal/noise which is related to the incident luminosity. For large £, the system
essentially uses prediction techniques, estimating the activity of each input cell from
its neighbours. On the contrary, when. £ is small, the processing neurons perform a
smoothing stage aiming at reducing noise by means of the spatial correlations of the
input signal.

We remark that there is a strong qualitative analogy between these synaptic pro-
files varying with £ and the couplings correlations plotted on figures 2 and 7 as a
function of the size of the training set «. It is all the more interesting that this fea-
ture apparently does not depend on the input space dimension and on the partncular
choice of (reasonable) spatial correlations.

From a mathematical standpoint, (3.23) is strictly equivalent to the so-calleJ SPI
hypothesis (smoothing-prediction interpolation [15]) but we must emphasize several
differences concerning the conditions under which they have been derived. First,
we have computed here correlations inside the synaptic couplings, whereas biologi-
cal experiments focus on the synaptic weights themselves. Secondly, one must not
forget that the problem we have concentrated upon is not related to some optimiza-
tion principle. We are only interested here in storage properties of neural networks.
Nevertheless, hetero-association enables us to consider this problem as a mapping of
spatially organized inputs onto corresponding representations within a deeper pro-
cessing layer. This formulation seems closer to the point of view of optimal encoding
exposed in [15]). Last of all, neurons we have used in this paper are nonlinear and
have binary outputs.

5. Conclusion

In this paper, we have focused on the capacity of a perceptron storing independent
random patterns (£#,o#) presenting internal correlations described by a matrix C.
The generic term Cy; gives the correlation between the components i and j of
€4. The matrix is symmemc positive, and presents the property of rotational and
translational invariance,
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We have shown that the computation initiated by Gardner can be reproduced for
any matrix C, and that the storage properties of the neural network depend only
on its eigenvalues. In particular, the critical capacity at zero stability always equals
o = 2 regardless of the inner structure of the patterns. Numerical simulations have
been performed with Gaussian and Ising patterns and are in excellent agreement with
the theoretical predictions.

In order to obhtain a oenmetri
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a second problem, conjugated to the initial one, has been introduced, It is indeed
equivalent to considering self-correlated patterns stored by spherical synaptic vectors
or patterns without internal correlations stored by synaptic vectors constrained to rely
on an ellipsoid, the form of which depends only on the initial correlation matrix.
Qualitative estimates are then possible for any correlation matrix.

Finally, the corrclations between synaptic weights were investigated and general
results valid for any matrix C derived. In the particular case of exponentially decreas-
ing correlations inside one- or two-dimensional input patterns, the couplings profile
looks like the so-called ‘Mexican hat” distribution, including a excitatory centre and
inhibitory flanks, Such an analogy with biological measures concerning centre-on cells
in mammals’ retina is outstanding but remains unexplained. We have also seen that
a similar synaptic behaviour may be obtained from a simple modified Hebbian rule.

However, this paper deals only with hetero-associative mapping in feedfoward
networks. It is of interest to see how the above propertics are changed when we
consider a fully connected neural network and try to store self-correlated patterns
from an auto-associative standpoint. Preliminary results indicate that the critical
capacity « is now an increasing function of the amount of spatial correlations and
that the nature of couplings is deeply different since weights show ferromagnetic
means. Detailed results will be reported elsewhere.
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