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On the capacity of neural networks with binary weights
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Abstract. We studythe critical capacity (a_) of multilayered networks with binary couplings.
We show that, for any network presenting a tree-like architecture after the first hidden
layer, no fixed internal representation is required. Using Gardner's calcelations, we apply
statistical mechanics to the simplest network with two layers of adaptive weights. Following
the same approach as for the binary perceptron we find from the zero-entropy point a
critical capacity a_ = 0.92. We discuss the validity of this result in view of exhaustive search
simulations on small networks.

1. Introduction

Over the past few years, a lot of work has been devoted to the storage capacity of
neural networks. The simplest feedforward network, namely the perceptron with real
synaptic weights [1], has been studied using statistical mechanics tools developed by
Gardner (2, 3], which allow the computation of the number of independent random
patterns which can be stored in this network. Nevertheless, such a network is unable
to solve nonlinearly separable problems. Thus, one has to consider more complicated
architectures, including hidden units, which are much more interesting from both
biological and computational points of view.

Unfortunately, nobody has succeded until now in finding capacities of neural
networks which are really multilayered, i.e. with free couplings between the first hidden
layer and the output. In order to get around this problem, a useful idea has been to
choose a priori the internal representation: one freezes the weights below the first
hidden layer, building a specific decoder which matches these hidden units and the
output [4]. The computation is then reduced to the capacity of a single perceptron
(input-first hidden layer), which produces the desired internal representation in the
first hidden layer. The most studied internal representation is the parity representation,
where the output is the product of the hidden units [4-7]). In this paper we shall show
that the computation of the capacity of some really multilayered networks with binary
weights needs no arbitrary internal representation choice; this one is indeed already
imposed by the network’s architecture itself.

We propose here to consider networks with one hidden layer and binary weights.
Such weights are interesting from a practical standpoint because one can easily
implement them in elecironic circuits. They also represent the simplest way to take
into account the notion of synaptic depth (the limited accuracy of the synaptic
couplings), which is biologically motivated [8].
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We show in section 2 that, for this class of networks, the internal representations
are automatically fixed, which allows the computation of statistical quantities. We will
see that, more generally, in the case of networks presenting a tree-line architecture
after the first hidden layer, the principle of the calculations is also valid. A wide range
of neural networks is obviously dismissed by this constraint and many complicated
tasks (as for instance the encoding problem) cannot be solved by tree-like structures.
However, one hidden-layer networks are already able to implement usual Boolean
functions (for example, the parity decoder) and their study remains of interest.

We then restrict our study to the case where there are three hiddem units and
non-overlapping receptive fields. Gardner’s method allows us to compute the number
of errors made by the best possible network as a function of the size of the training
set (section 3).

We find some estimates of the critical capacity, particularly that given by the
zero-entropy point within the replica symmetric approximation [8, 10]. We show, as
in the case of the binary perceptron, that this value seems to be exact (section 4).
However, numerical simulations are not in very good agreement with it (section 5)
and lead to the conclusion that layered neural networks might exhibit richer overlap
distributions than previously thought.

2. Networks with binary weights and internal representations

In this section we consider networks with one hidden layer and binary weights. Let A
be such a network. The neurons are binary valued too, with zero thresholds.
Thus, each neuron o is updated according to

0'=sgn(z W,-Si) (2.1}

where §; = £1 are the neurons in previous layer and W, = £1 are the weights. We shall
restrict ourselves to cases where the number of neurons in each layer is odd, in order
to avoid ambiguities in (2.1).

The network we study is composed of one input layer of N neurons, one hidden
layer of K neurons and one output layer. For simplicity, we restrict ourselves to the
case where there is only one neuron in the output layer. K is finite, while the results
we derive below are obtained in the large-N limit,

For I between 1 and K, we define the weights W}, between the input neuron m
(1= m=< N) and the neuron ! of the hidden layer (1</< K) and the weights W,
between the neuron ! of the hidden layer and the single output. For a given input £,
(1=m= N), the corresponding output is therefore

a({W}, §)=sgn[§! Wi sgn( %, W{’,,,g,,,)]. (2.2)

We consider here a network characterized by the couplings { W}, and we want to
compute the capacity in the case of random patterns: each pattern presented to the
network is a pair (£ o) where £=(¢,,..., £x) is a configuration of the input layer,
and o is the desired output for this configuration. This pattern will be considered as
stored if the output o({ W}, £} realized by the network coincides with the desired
output o.
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In order to compute the capacity of this network, we present to it a set of P random
patterns (£*, o*) (1 < p < P) and we define an energy which corresponds to the number
of unstored patterns among the set [3]

E(W), (&) = z o(-a({ W), £)0*) 2.3)

where 8(x) is the Heaviside function. We then introduce a Boltzmann measure in the
space of networks, characterized by the partition function

Zy= {%} exp(~BE({ W}, {£])} (2.4)

where 8 is an auxiliary parameter which plays the same role as the inverse of a
temperature. The minimum number of mistakes which can be realized by the best
possible network is the internal energy (or the free energy f) at the limit 8- .
Therefore, one wants to compute the free energy

1
—Bfa= il}_l:fgo N InZ, (2.5)

where the overbar denotes the average over the pattern distribution [3].

Due to the choice of hlnnry wplohfc to each nnfh (m ﬂ from the Iﬂp it to the

output, we can associate an effective coup]mg

T m {Wh=WiW,. (2.6)
We obtain from (2.2)
(W), D=sgn| 5 sun( T s m (Wi, | @)
A straightforward computation leads to Z, =252, with
Zo= T ewo( T 0-allial, £90)). @8

Zy is the partition function of the network B defined as follows: it has the same
architecture as A; all the weights beyond the hidden layer are fixed to unity and form
a decoder which imposes an internal representation to B; the {J} couplings between
the input and the hidden layer are binary.

As K remains finite when N - 00, A and B have exactly the same free energies and
therefore the same properties.

We have actually proved that any network with two layers of adaptative binary
weights may be related to another one with a given internal representation, whose
study is much easier.

Let us notice that the above argument may be repeated with weights equal to
—1,0, 1. This allows us to choose incompletely connected networks for A. It is thus
possible to generatize the above result to a more general class of networks, composed
of all the multilayered networkq without overlapping fields after the first hidden layer

Cannke ol o ~ o il rannactad hativaan tha innut and tha firct hiddan lnyan
OU\-H. 1|CLWU1 AD Can o lull)' \aUIIII\l\dl\fU v LYyl ul\, LS UL Gl l.u\. LI1o1 uluu\.u ja_)fcl’

and have a tree architecture between this first hidden layer and the cutput. The important
fact is that, for each cell of the hidden layer, there is one and only one synaptic path
to reach the output. They are composed of one input layer of N neurons, H —1 hidden
layers, and one single output.
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Let k. (1= h =< H) be the number of hidden cells in the hth layer. The input layer
(numbered zero) has ky= N neurons, while the output layer has k,, = 1,Each k;, (h=1)
is finite.

For the layer h= H -1, the architecture of the network defines a partition
{Ci,...,Cn..}of the k, neurons of the layer: each neuron ! (I=1,..., k;,,) of the
layer h+1 is connected to the neurons of Ch, and only to them (this is indeed
compulsory for h=1). We define as W}, the weight between the neuron m of the
layer h (me C}) and neuron ! of the layer h+1 (1<I=<k,.,). The case H =1 gives
the binary perceptron.

To each path {I} =1, 1, ..., Iy from the input to the output we can associate an
effective coupling
JUAWD =Wt Wi W (2.9)

We obtain from (2.9}

k., Ky o N
o({W}, e‘$)~=sgn{[r X lsgn{J b lSgn[---Sgn(!ZIJ({I},{W})fh)]}u- (2.10)
H-1= H-21= 0=

We see obviously that the network has the same partition function as the one where
all weights between the first hidden layer and the output are fixed to unity (with a
proportionality factor 2% where K =32/ k, is finite). We can conclude that any
binary network which has a tree architecture after the first hidden layer is equivalent
to a two-layered binary network with a particular internal representation, which is
fixed by the architecture of the initial network.

In the following, we illustrate this property on the simplest tree-like network, which
contains only one hidden layer.

3. A special case: a two-layered network with non-overlapping fields

3.1. Presentation of the network

The network we study here in more detail is given in figure 1. It has one hidden layer
of K units. Each of them is connected to N/K input neurons [5-7). Following the
idea developed in section 2 we can fix the weights between the hidden units and the
output o to +1. Thus, we obtain

K N/K .
a(§)=sgn[2 Sg“( z Jx.!ﬁ_;)] (3.1
I=1 i=1
where the J, and & are, respectively, the couplings and the input patterns of the K
disconnected perceptrons.
We define the capacity a per synapse by
P
=— 32
a= 7 (3.2)
where P is the number of presented patterns £ = (&, £4, ..., &) p=1,..., P All
¥ and ¢* are unbiased random binary variables.
One sees obviously that o is the most frequent sign among the hidden cells o,
(I=1,...,K). Any two-layered network with binary weights obeys, therefore,
a majority rule.
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Figure 1. The network which we study has one hidden layer of K units. Each of them is
connected to N/K input neurons. Notice that K is odd so that the field incoming onto
the output is not vanishing,

Using the replica method, we have to compute the nth powers of Z defined in (2.8)
and average over the patterns.

Since inputs of different hidden units are independent [4, 5], the only kind of
parameter is

K [ —
g’ =5 i -7y (3.3)

where the brackets denote a thermal average over the J weights. g{** is the typical
overlap between the couplings incoming into the hidden neuron [ in replicas a and &
{a and b are replica indices which run from 1 to n).

Introducing conjugate parameters §;*° we find

a,b 3 2aby

F

i a N
1l (———"’ 4 )exp[N(go+gJ+gﬁ)] (3.4)
La<b 2w

r

Z"=J

1 Pat el a
go=-7 X q:'bth'b

where

K la<h
] ~d. a
SJ'—‘_"IHI: b CXP( z QJ'b-’rJ?)]
K {Jf=+1) la<h
ide? dif ~a & a
g =a ln{J‘ I ('—r—) exp(z tef-8Y 8( —¥ sgn{t ))
La 27 al a !
+HT AN+ L q?‘“t‘fﬂ’)}. (3.5)
a,l lLa<th £ J

Finally, we determine the free energy f by

. Z"—1
—-Bf= Iim

n—+3,N—a0 FTN

(3.6)
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3.3. Replica symmetric and replica symmetry broken calculations

In the following we will note the two solutions as, respectively, rs and rse. We give
here the free energy of the network, up to one step of replica symmetry breaking.

We consider first the rs approximation where for all a # b, and forall I=1, ..., K,
gi"® = q. We get rid of the ! dependence since, after averaging over disorder, all units
play the same role [4-7].

We compute the above quantities g,

of (3.4): o R

o, and
of “aie

]

s and find afterwards the saddlep

- Bfrs =Max, ; [[ -34(1—gq) +j Dz In[2 cosh(z@)] +a J

Sl o

K
x!n{e‘5+(l—e*ﬁ)J’ I1 Du’ﬁ[
i=1
where
dZ —22/2

Dz=——e

o (3.8)

is the Gaussian measure.
With one step of replica symmetry breaking, one has five parameters gq, §o, 41, ¢, M
[10] and

m - -
- Bfrss = Max, soqniom |t = (IOro‘“%%{l +(m~1)q,]
2

+i J- Dz In(J’ Dx[2 cosh(Z@‘va 4 —é‘o)]m)

m

X 6( § sgn(t' —x" —y")) mH] (3.9)

X! = ’ do X! y.r= /‘Il_%yl
1-gq, l—q

4. Some estimates of the critical capacity

+£J. l"j[ Dx* ln{-[ f[ Dyj[e‘ﬁ+(1—e'5)J f} Dt

with

In this section, we try to predict the theorical critical capacity from the previous
calculations. In order to have numerical values we choose K =3, which is the lowest
possible integer allowing non-vanishing field on the output.

4.1. Bounds on o,
Since the number of binary synapses is N, the information theory tells us that

a.=1. (4.1)
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This upper bound can eis_ily be obtained from the annealed approximation [10], which
consists of calculating In Z =In 2,

One can also look for lower bounds of «.

Let us consider the binary perceptron {W}, including N input neurons and fed
with P = aN random patterns £“. As N grows to infinity we define f (a) as the highest
fraction of the P patterns which can be stored.

With the notation of section 2

f(@)= 1= g mingu(EQW), ). (42)

Obviously, if a < aq (ay is the capacity of the binary perceptron [10] and is assumed
to be nearly equal to 0.83), one obtains f{a)=1.

For a > a,, there exists { W,} storing exactly all the £*s (i < a,N). Since the pattern
distribution is random, half of the remaining £”s (u > @, N) are stored by {W,}. This
algorithm leads to

a0N+%(P—a0N)_a+a0

fla)=pla)= P = e (4.3)

Moreover, choosing « and a’ such that a¢'<s a;<
storable fraction of the P=aN patterns when !mpOSiﬂ

patterns must be stored. We have

a, we define g(a, a’) as the highest
ion that the a' N first

r

f@)=gla, o) pla)=—. (4.4)

Now, we are looking to store P = ¢ N patterns in our two-layered network. We number

as A;, A, and A, the three perceptrons of N/3 inputs, whose outputs o,, o, and o,

are the three hidden cells. One pattern o*§* is stored if at least two ;s are equal to +1.
Renumbering the patterns, A, stores the &s, u< P, = a, N where P, = f (3a) P. Thus,

a,=af (3a). (4.5)
As a consequence, A; must store the patterns ¢ > P,. This is possible if P — P, < agN/3:

= ] —— 4 63
1 . [ B3

When this condition is satisfied, all patterns g > P,= a, N may be stored by A, with
P—P,=g(3a,3a¢—3a,)P and

ay=a(l-g(3a, 3a—3a,)). (4.7)
We see in figure 2 that A, can store the patterns w=< P, and p> P,, provided that
P,+(P—-P,)=< a,N/3. Using {4.5} and (4.7),

fBa)+g[3e, 3a(l —f(3a)]22—3"‘7‘:. (4.8)

First, we notice that, for a <a,, p(3a)=1-a,/3a. From (4.3) we conclude that

condition (4.6) is verified up to a = a,.

Cistharmnnns safarning ta (4 2) and (A AV ac
rurnerimore, reierting 10 (4.7 dand (4.4), as

p(3a)+p(3a)az—§§ (49)

condition (4.8) will be true. Solving (4.9), we find a <3a,.
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Figure 2. The outputs o; of the three perceptrons A, for the patterns o*£* (u=1... aN).
Since our network obeys a majority rule at Jeast two outputs must be positive for each u.
One easily sees conditions (4.6} and (4.8) on the diagram. Notice that, as o, is random
between o, and a,, our algorithm cannot reach the highest capacity a,.

The lower bound of a, is therefore

a.=2a,=0.55. (4.10)

4.2. Analysis bf the RS approximation

Starting from the free energy given in (3.7), we see that the zero-temperature energy
(i.e. the number of unstored patterns) is zero as long as g <1. A possible critical
capacity is thus ag, the lowest a for which g reaches 1.

We find

16

=m=2.56. (4.11)

Qg

This value being inconsistent with (4.1), the rs solution surely becomes wrong below
ap. We have studied its local stability with regard to transverse fluctuations [2, 3, 11]
(longitudinal stability is always verified up to az). We have found that the rs solution
is locally stable up to

aM—=l.3. ’ (412)

We can look for the zero-temperature entropy Sgs, which is the logarithm of the
number of couplings storing all the patterns. As soon as it becomes negative, the rs
solution is wrong. This occurs for @ > ag where

as=0.92. (4-13)

The curves g{e) and Sys{a) are shown in figures 3(a) and 3(b).

4.3. The one-step RSB solution

We proceed exactly as in the binary perceptron case and look for solution for (3.5)
with one stage of replica symmetry breaking in the hierarchical scheme of Parisi [9].
As we seek for the critical capacity, we consider the case g, 1 where

q=n 7] (4.14)
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Figure 3. Evolution with « of (a) the order parameter ¢ and (b} the entropy within the
RS approximation. The entropy vanishes for ag =0.92 and we obtain ¢{ag)=0.38.

is the overlap inside one pure state ¥ and look for the saddiepoint over
K___
Q=3 (D)o {Js (4.15)

which is the overlap between the average solutions of two different valleys y and é.
The saddlepoint condition over §, gives §,~ o when g, ~ 1 and, from (3.9), we
obtain

" 1 “
Jrsuldo, go, 1,00, m, 3)="m”fks(%, mz%, Bm). (4.16)

We deduce from this equality a phase diagram, shown in figure 4. It indicates that the
(e, T) plane is divided into two parts separated by the line T,(e) defined by
Srs(a, Te(a)) = 0. (4.17)
In the first area Sgg>> 0 and the rs solution seems to be correct. In the second area
one needs one step of breaking, We get Spgp(a, T)=0 and
T
Ta)

where P, is the weight of the pure state numbered +. This analysis (see [6, 7, 10]) leads
us to believe that the critical capacity is ag given in (4.13).

m=1-% P> = (4.18)
L

5. Numerical simulations

From a numerical point of view, dealing with binary networks is much harder than
for continuous ones. Already in the perceptron case there is no reliable algorithm
(guaranteed to converge if there exists a solution). We have therefore decided to use
exact enumeration methods. But such exhaustive scannings forbid large-size systems
and N =25 is a typical upper limit for the number of input neurons {12, 13]. In the
present case, the number of neurons connected to each hidden unit must be odd. Only
simulations with N =9, 15 or 21 are allowed, if one wants to average the results over
a reasonable number of samples.
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Figure 4. Phase diagram (a, T). The plane is divided into two parts separated by the line
T.(a). Beyond T, the rS solution seems to be exact while, below, one needs one step of
replica symmetry breaking.

5.1. First simulation

The first approach we resort to is the one given in [6]. Choosing randomly Q samples
of P=aN patterns, one counts the fraction fy(e, Q) which can be stored (i.e. for
which there exist suitable couplings). As a function of a, fy(a) {obtained with large
Q) decreases from 1 (& =0) to 0 {large «). In the large- N limit one expects

,Liggof;v(a)=ﬁ(ac—a)- (5.1)

A simple estimate of the critical capacity «, is thus given by ay defined by fy(ay) =4,

The simulations we did with binary patterns exhibit big fluctuations for N =21.
However, we checked that the slopes of f, were increasingly sharper and a,, decreased
with N. After averaging over Q samples equal respectively te 10000, 1000 and 100,
we found

ap=0.93 £0.004
a5 = 0.90£0.006 (5.2)
ay =0.87£0.015.

Although these values are not in good agreement with the prediction a.=0.92, one
must consider finite-size effects, which might be important. Even in the binary percep-
tron case, data obtained from simulations with binary patterns up to N =21 extrapolate
to a value lower than 0.83 [13].
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5.2. Second simulation

In order to reduce finite-size effects, we now choose Gaussian patterns, for which
better results have been obtained for the perceptron [12, 13] {from the replica method
one expects that Gaussian or binary patterns lead to the same values of the storage
capacity a.). For one pattern £=(£,, &, £;), and one network J=(J,, J,, J3), we
compute the stabilities of the three independent inputs

jl ) ft
K=—"12— 1=1,2,3 (5.3)
I - &l
Ordering the K, so as to obtain K, < K, = K, we define
K(J, §)=K,. (5.4)

As our network follows a majority rule, we see that J stores the pattern £ (i.e. J- £>0)
if and only if K(J, £)> 0. For one sample §={£*} (u=1,..., P) consider the optimal
stability K,,(5), which is positive if there exists one set of couplings suitable for the
whole sample:

K (8)=max;[min, (K(J, £))]. (5.5)

using an exact enumeration based on the Gray code [12], we plot the distribution of
K ((S) for fixed @ and N.

The curves corresponding to N =9, 15 and 21 are given in figure 5. The numbers
of samples are, respectively, equal to 10°, 10* and 1500.

First, we notice that K,,(S) may be relatively well fitted by a Gaussian, whose
variance scales roughly as 1/ N. This strongly indicates that, in the large- N limit, one
obtains sharply peaked distributions and thus provides a good indication for the critical
capacity [13].

We show in figure 6 the fitted curves K, (a) (i.e. the average of K, (S) over §)
for the three values of N under study. Their intersections with the axis give us new

estimates a5 of a.. We find N
oy = 0.902+0.001
a5 = 0.896 £0.002 (5.6)

Ay = 0-898 + 0.003

As for the binary perceptron, these values are higher than the ones given by binary
patterns. In fact, no rigorous proof of the equality of the critical capacities obtained
with Gaussian and Ising inputs is available.

One sees that the numerical results are slightly lower than the expected value.
However, the relative error over a5, does not allow us to conclude whether critical
capacities obtained for finite N are decreasing or not. In the first case, which would
be similar to the perceptron one [12, 13], this would indicate that the storage capacity
is not 0.92. In the second case, one could expect important finite-size effects in
multilayered networks, even with Gaussian patterns.

6. Conclusion

In this paper we have focused on the storage capacity of multilayered networks with
binary weights. We have shown that all networks with tree-like structures after the first
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Figure 5. The distribution of K, (S): (a) for N =9; (b} for N =15; (¢} for N =21. For
each size N, the values of o we have chosen are as close as possible to 0.92.
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Figure 6. Evolution of X, with the size of the training set «, for N =9 {chain line), 15
(dotted line) and 21 (broken line). These curves are the best quadratic fits obtained from
the numerical results.

hidden layer may be exactly studied, without fixing an internal representation a priori.
We have illustrated this property for the simplest two-layered network with non-
overlapping receptive fields, which works as a majority decoder (calculations are indeed
feasible for any tree-like network: one will obtain more complicated decoders).

Applying statistical mechanics tools developed recently [2, 1¢] we found that this
network exhibits the same behaviour as the binary perceptron. Its zero-temperature
entropy computed within the rs approximation vanishes for as=0.92 and a complete
freezing occurs, described by one step of replica symmetry breaking. This result is
interesting since it suggests that a small modification of the architecture (three added
neurons) may lead to a substantial improvement of the storage capacity per synapse
of the network (a.=0.83 for the perceptron).

In order to check this estimate, numerical simulations have been carried out, Up
to N, the number of input neurons, equal to 21 they give values which are lower than

0.92. So as to elucidate this situation, one must take into account finite-size effects.
Recent studies [13] have stressed their importance, especially in the case of binary
patterns. When dealmg with Gaussian patterns, however, all the results obtained for
the perceptron may be extrapolated to the zero-entropy point with good accuracy
[12, 13]. We have shown this not to be the case for our majority network. But one
cannot exclude that, for N> 21, the a, values increase up to 0.92 (non-monotonous
variations with Gaussian patterns may occur in other problems like the generalization
for the binary perceptron [13]). So, without asserting that 0.92 is a wrong value, we
may doubt that the zero-entropy point provides us with the correct a.. If this were
the case the solution with one step of replica symmetry breaking would be wrong. One
should thus attempt to compute up to two steps of breaking, i.e. to look for a more
complicated saddlepoint.
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