Quantum Hall Interferometry: Status and Outlook

Steven H. Simon

Collaborators: **Woowon Kang, Bernd Rosenow**
+ Ady Stern, Bert Halperin, Eytan Grosfeld, Curt von Keyserlingk
Realization of interesting CFTs in condensed matter

(Moore-Read, Wen, …)

2+0 dimensional Bulk Wavefunction ↔ CFT Correlator
1+1 dimensional Edge Theory ↔ CFT
Many Theoretical Predictions (mainly regarding edge properties) Are based on CFT Calculations:

Kane and Fisher (Various Edge Transport Properties)
Ludwig, Fendley, Saleur (Noise at 1/3, Exact Calculation)
Chamon, et al (Interferometry at 1/3)
Stern Halperin; Shtengel, Bonderson, Kitaev (Interferometry at 5/2)
.... + many many more...

Experimental Situation:
Much less clear than one would hope

Experiments that seem to disagree with theory*
Experiments that are disputed by other experiment(alists)*

* = To a first approximation
Par Exemple :

1984: Prediction that quasiparticles of $\nu=1/3$
 have fractional statistics
 (Halperin; Arovas Schrieffer, Wilczek)

There is general agreement that as of today
no published experiment has ever demonstrated
fractional statistics.

How would you do it in principle?
The Quantum Hall Fabry-Perot Interferometer

Hoping to prove fractional statistics

Theory: Chamon, Wen, et al 1997 + many many others

Experiment: Goldman Group; Willett Group; Kang Group; Marcus Group; Heiblum Group

interference of two partial waves
Conventional Quantum Hall States ($\nu=1/3$)

Side gate changes phase

\[B \Delta A = \frac{hc}{e^*} \]

Chamon, Wen, et al

\[e^* = \frac{e}{3} \]

Conductance G

side gate voltage
Conventional Quantum Hall States ($\nu=1/3$)

Side gate changes phase

$$B \Delta A = \frac{hc}{e^*}$$

Chamon, Wen, et al

$$e^* = e/3$$

Adding 1 quasiparticle shifts interference pattern by $2\pi / 3$

FRACTIONAL STATISTICS
VERY LONG HISTORY TO EXPERIMENTAL EFFORTS TO DEMONSTRATE FRACTIONAL STATISTICS THIS WAY

Plagued with Complications and Confusion
Complication #1: How do you know when you added a qp?
(a) Addition of flux
(b) Change of voltage

Complication #2: Can you add a qp without deforming the “dot”

Area of dot changes to accommodate qps
Electrostatics of buried LL’s matter

Aharonov-Bohm Regime vs. Coulomb Dominated Regime
(Can be very complicated)

Theory: Rosenow, Halperin; Halperin, Stern, Neder, Rosenow
Exp: Y. Zhang et al (Marcus); N. Ofek et al (Heiblum); Godfrey et al (Kang)
Telegraph Noise

Slowish time scale = caused by glassy motion of dopant impurities
Telegraph Noise

Slowish time scale = caused by glassy motion of dopant impurities
That is all I have to say about Abelian Quantum Hall Effect

(take a deep breath)

... and on to the presumed Non-Abelian $\nu=5/2$
The Fundamental Principles of 5/2 Nonabelions
(Presumed Moore-Read or AntiPfaffian)

- For each pair of e/4 qps there is a single two state system. called: a “neutral (dirac) fermion” or a “qubit”
 (i.e., each qp associated with a majorana)

- Braiding a third qp through the two flips the state of the qubit

- A phase of π is accumulated going around a neutral fermion
5/2 state interference experiment

Nayak, Wilczek; Stern, Halperin; Bonderson, Shtengel, Kitaev; Das Sarma, Nayak, Freedman

With even number of quasiparticles

Can get π phase shift
Depending on even/odd neutral fermions

Conductance G

side gate voltage
5/2 state interference experiment

Nayak, Wilczek; Stern, Halperin; Bonderson, Shtengel, Kitaev; Das Sarma, Nayak, Freedman

With odd number of quasiparticles
5/2 state interference experiment

Nayak, Wilczek; Stern, Halperin; Bonderson, Shtengel, Kitaev; Das Sarma, Nayak, Freedman

With odd number of quasiparticles

No Interference!

Conductance G

side gate voltage
5/2 state interference experiment

Nayak, Wilczek; Stern, Halperin; Bonderson, Shtengel, Kitaev; Das Sarma, Nayak, Freedman

With odd number of quasiparticles

Partial Waves are Orthogonal ⇒ No Interference!
5/2 state interference experiment

Summary of Orthodox Theory:

- If an **odd # of qps** are in the interferometer, **no interference**
- If an **even # of qps** are in the interferometer, **yes interference**

 \[
 \text{Phase} = 0 \quad \text{if even # of neutral fermions} \\
 \text{Phase} = \pi \quad \text{if odd # of neutral fermions}
 \]

plus interference of e/2 particles occurs all the time
 - half gate-voltage period
 - expect lower amplitude
Weaker $e/2$ oscillations (double frequency) show up here instead.
R. L. Willett, L. N. Pfeiffer, and K. W. West
Adding 19 Gauss of Flux (presumed 1 qh) changes even to odd
Is this validation of the “Orthodox” theory?

(1) Is the data convincing?

(2) Why is e/2 so strong?
 Why does it come and go?

(3) Why does this appear to be Aharonov-Bohm and not Coulomb Dominated?

(4) How reproducible is it?

(5) Why does no other group observe this.

....

LET’S BELIEVE THE EVEN-ODD EFFECT HAS BEEN SEEN

PROBLEM:

ORTHODOX THEORY SHOULD NOT HOLD!
PROBLEM = DEVICE IS SMALL….

qps (qubits) in the dot must be strongly coupled to each other, and to the edge… By majorana hopping!

VERY UNLIKE ORTHODOX THEORY
Energy Scales

(1) $T \approx V \approx 10 \text{ mK} \approx 200 \text{ MHz}$

(2) qp-qp majorana coupling

(3) qp-edge majorana coupling

All Potentially Similar Order
Estimate from Trial Wavefunction Monte-Carlo for tunneling
(Baraban, Zikos, Bonesteel, Simon):

Two qps a distance d apart (4 qps in the calculation=2 fusion channels)

$1K \approx E_{gap}$

Assume Fairly Big Error Bars

$E_{splitting} = \text{Oscillatory} \times e^{-d/\xi}$

$\xi \approx 2.3\ell_0 \approx 230\text{Å}$
PROBLEM = DEVICE IS SMALL…. qps (qubits) in the dot must be strongly coupled to each other, and to the edge… By majorana hopping!

VERY UNLIKE ORTHODOX THEORY
Energy Scales

1. \(T \approx V \approx 10 \text{ mK} \approx 200 \text{ MHz} \)
2. qp-qp majorana coupling
3. qp-edge majorana coupling
4. \(1/(\text{Time of Experiment}) = \text{Hz} = \text{Tiny.} \)

All Potentially Similar Order

For orthodox interpretation to hold, need

qp-edge coupling \(<<\) \(1 / (\text{Time Scale of Experiment}) \)
Why is edge-qp coupling a problem

Overbosch and Wen; Rosenow, Halperin, Simon, Stern; Bishara and Nayak

“Fast” tunneling of neutral fermions to the edge kills interference!!

Conductance G

| Even # of qps with even # of neutral fermions |
| Even # of qps with odd # of neutral fermions |

Path length (side gate voltage)
Energy Scales

1. $T \approx V \approx 10 \text{ mK} \approx 200 \text{ MHz}$

2. qp-qp majorana coupling

3. qp-edge majorana coupling

4. $1/(\text{Time of Experiment}) = \text{Hz} = \text{Tiny}.$

All Potentially Similar Order

for orthodox interpretation to hold, need

qp-edge coupling $<< 1 / (\text{Time Scale of Experiment})$

Modified (reform) interpretation, can save even-odd effect if

qp-qp coupling $> T$
Why does qp-qp coupling help?

Energy of $|0\rangle$ and $|1\rangle$ are split by E (qp-qp coupling)

If $T < E$, qubit freezes into a single state. Does not fluctuate between two out of phase signals

Interference is then seen!...and even-odd effect!

... but not a good “qubit”

(actually need $T < E_{\text{min}}$ of band of majoranas)
Energy Scales

1. \(T \approx V \approx 10 \text{ mK} \approx 200 \text{ MHz} \)
2. qp-qp majorana coupling
3. qp-edge majorana coupling
4. \(1/(\text{Time of Experiment}) = \text{Hz} = \text{Tiny} \)

For orthodox interpretation to hold, need

\[\text{qp-edge coupling} \ll \frac{1}{(\text{Time Scale of Experiment})} \]

Modified (reform) interpretation, can save even-odd effect if

\[\text{qp-qp coupling} > T \]
How can qp-edge coupling stop even-odd?

For "odd" to kill interference, lone qp must be decoupled from edge

Need:

qp-edge coupling $\ll e^*V \approx T$

If a qp is coupled strongly to the edge,

it becomes part of the edge \Rightarrow Nothing encircles it
\[\mathcal{L}_{\text{charge}} = \frac{1}{4\pi\nu} \partial_x \varphi (v_c \partial_x \pm i \partial_\tau) \varphi \]
\[\mathcal{L}_{\text{neutral}} = \psi (v_n \partial_x \pm \partial_t) \psi \]
\[\mathcal{L}_{\text{qps}} = \Gamma_\alpha \partial_\tau \Gamma_\alpha \]
\[\mathcal{L}_{\text{edge-qp}} = \lambda \Gamma_\alpha \psi (x_\alpha) \]
\[\hat{T}(x) = t \sigma_u(x) \sigma_d(x) \left[e^{\frac{i}{\sqrt{8}} (\phi_u - \phi_d)} + \text{h.c.} \right] \]

Edge charge mode (bosons)

Edge neutral (majorana) fermi mode

Vortex core (majorana) zero modes

Edge to bulk coupling

Point Contacts

Moves charge across

Interference Term \(= \) \(\text{Re} \int e^{iV_\tau} \langle \hat{T}_1(\tau) \hat{T}_2(0) \rangle \)

1. Perturbative
2. Exact
Rosenow, Halperin, Simon, Stern : Non-CFT Solution
(Majorana theories are quadratic Hamiltonians)
How can qp-edge coupling stop even-odd?

For “odd” to kill interference, lone qp must be decoupled from edge

Need: \[\text{qp-edge coupling} \ll e^*V \approx T \]

If a qp is coupled strongly to the edge, it becomes part of the edge \(\Rightarrow \text{Nothing encircles it} \)

But also need to freeze qubit

\[T < \text{qp-qp coupling} \]

probably impossible
Detailed Electrostatic Simulation (w/ von Keyserlingk)

15 qps in dot
- too far
- (\(E_{qp-qp}\) too low)

1 \(\mu m\)

20 qps in dot
- (bulk-edge too strong)
- too small

0.2 \(\mu m\)
Energy Scales

(1) \(T \approx V \approx 10 \text{ mK} \approx 200 \text{ MHz} \)

(2) qp-qp coupling

(3) qp-edge coupling

(4) \(1/(\text{Time of Experiment}) = \text{Hz} = \text{Tiny} \)

All Potentially Similar Order

For orthodox interpretation to hold, need

\[
\text{qp-edge coupling} \ll 1 / (\text{Time Scale of Experiment})
\]

Modified (reform) interpretation, can save even-odd effect if

\[
\text{qp-qp coupling} > T \approx V \text{ and qp-edge coupling} \ll T \approx V
\]
Energy Scales

1. \(T \approx V \approx 10 \text{ mK} \approx 200 \text{ MHz} \)
2. qp-qp coupling
3. qp-edge coupling

Prediction 1:
No Even-Odd Effect.

Always Have Interference

Never Mind the Experimental Data:
Assume couplings are strong (small dot limit)

\[\text{qp-qp coupling} \gg \text{qp-edge coupling} \gg T \approx V \]

Modified (reform) interpretation, can save even-odd effect if

\[\text{qp-qp coupling} > T \approx V \]
and
\[\text{qp-edge coupling} \ll T \approx V \]
Prediction 2

Expect \(\pi \) phase slips !!

– can occur without adding a qp

Which is lower energy (\(|0\rangle\) or \(|1\rangle\)) depends on the detailed configuration of qps in the dot.

Interference signals can flip by \(\pi \) if a qp moves

“Friedel” oscillations in splitting as a function of distance
Estimate from Trial Wavefunction Monte-Carlo for tunneling (Baraban, Zikos, Bonesteel, Simon):

Two qps a distance d apart (4 qps in the calculation=2 fusion channels)

\[1K \approx E_{gap} \]

\[\approx 100 \text{mK at } d = 0.1 \mu \text{m} \]
Prediction 3

\[\pm \pi/4 \text{ phase slips – occur with qp/qh addition} \]

Going from even to odd,

if \(E_{\text{edge-bulk}} >> e^*V \), zero-mode majorana absorbed into edge

Only see phase slip \((\pm \pi / 4)\) from abelian piece of the qp.

\[\psi_{qh/qp} = \sigma e^{\pm i\phi/(2\sqrt{2})} \]

\(E_{\text{edge-bulk}} \sim e^*V, \ T \) gives not quite \(\pi / 4 \)

and less than full visibility of interference

Overbosch and Wen; Rosenow, Halperin, Simon, Stern; Bishara and Nayak
Expected signatures:

Phase slips of π, $\pi/4$, $5\pi/4$,

Simulated data

$\pi/4$ slip

π slip
Expected signatures:

Phase slips of π, $\pi/4$, $5\pi/4$,
With (in-) appropriate filtering, one might obtain multiple periods that look a bit like $e/2$ and $e/4$.

Willett’s low pass filter has a time constant of 100 seconds

(This is not a complete explanation of Willett’s data)
Summary

• “Orthodox” explanation of the even-odd effect for 5/2 interferometer seems impossible

• “Reformed” theory (freezing qubit state) still looks unlikely – coupling to edge too strong.

• Likely in a regime where all couplings are large
 Expect to always see interference (no even-odd).
 Expect slips of π (qubit flips)
 Expect slips $\approx \pm \pi/4$ ($\pm 5 \pi/4$) for qp/qh addition

• Low pass filtering may obscure data

Phase slip measurements may be the cleanest way to demonstrate braiding statistics (7/3 and/or 5/2)
Quantum Hall Interferometry: Status and Outlook

Steven H. Simon

Thank You For Listening

Collaborators: *Woowon Kang, Bernd Rosenow*
 + Ady Stern, Bert Halperin, Eytan Grosfeld, Curt von Keyserlingk