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1 Avant-propos

Ce cours est une introduction au monde merveilleux des modèles exactement
solubles en deux dimensions. Il est destiné avant tout aux étudiants du niveau
M2, mais peut sans doute avoir une certaine utilité un peu avant ou après.

Une solution exacte d’un problème non trivial en physique théorique a une
importance considérable. En opposition avec une méthode approximative ou
un calcul numérique, un résultat exact est pérenne et ne saura être mis en
question ultérieurement. Son auteur entrera dans les annales et y restera
pour toujours. Très souvent, une solution exacte est rendue possible par
une avancée technique qui permettra d’ouvrir tout un nouveau domaine de
recherche.

Les solutions présentées dans ce cours sont motivées par mes propres
intérêts en physique statistique, mais très souvent des modèles similaires ou
équivalents sont étudiés dans des contextes très différents : matière con-
densée, calcul quantique, physique de hautes énergies. . . ou sous un angle
mathématique: topologie, probabilités, théorie des graphes. . . . On se rap-
pelle qu’un modèle 2D classique est toujours équivalent à un modèle 1D
quantique (châıne de spins) et nous allons souvent exploiter ce dernier point
de vue.

Quant au contenu, on commence par des solutions de nature combinatoire
(pavages de dimères et modèle d’Ising). Ces solutions permettront d’établir
un étalon pour ce qu’on veut dire par un résultat exact. Par ailleurs, elles
mettent progressivement en évidence les symétries et le contenu algébrique
qui rendent une solution exacte possible. Nous allons ensuite exposer deux
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techniques importantes pour la recherche et la classification de solutions ex-
actes en deux dimensions : l’intégrabilité (aussi connue sous le nom de dif-
fusion quantique inverse) et les théories conformes des champs. Ces tech-
niques ont des points communs importants que nous essayerons de mettre
en évidence. En cours de route, nous rencontrerons d’autres modèles qui
servent à diriger la discussion et les applications vers des questions qui sont
d’actualité dans la recherche contemporaine.

Les notes de cours sont rédigées en anglais afin de mieux permettre aux
étudiants de s’habituer à la lecture d’articles de recherche.

Des calculs intermédiaires ou facultatifs (souvent propices pour des exer-
cices de TD) apparaissent sur fond gris.
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2 Dimer coverings

The dimer problem occurs experimentally when a diatomic gas is adsorbed
onto a crystalline substrate. Given some lattice, we ask for the number of
ways that its vertices can be completely covered by non-overlapping dimers
that each occupy two neighbouring vertices. More generally, we can assign a
fugacity to each type of dimers, for instance depending on its orientation on
the lattice (or maybe even on its exact position), and the goal is to compute
the corresponding partition function.

Dimer are also known in mathematics as dominos. When the lattice is
bipartite,1 dimer coverings are known in graph theory as perfect matchings.

The dimer problem was solved in 1961, almost simultaneously and inde-
pendently by Kasteleyn [Ka61], Fisher [Fi61] and Temperley [TF61]. In all
cases it was crucial to realise that the partition function can be conveniently
expressed as a Pfaffian (whose square is an ordinary determinant). The crux
of the problem was to get all configurations counted with the same sign.

The detailed solution for the square lattice was presented in [Ka61, Fi61].
The approach of [Ka61] to deal with the sign problem appears to generalise
most easily to other lattices, and we shall follow this method with subsequent
simplifications [Ka63]. Several fine points were further discussed in chapter 4
of the book by McCoy and Wu [MW73]. Certain correlation functions were
obtained by Fisher and Stephenson [FS63] as Toeplitz determinants.

Results on other lattices, scattered throughout the literature, have been
reviewed in [Wu06]. Recent generalisations of the problem include quantum
dimer models [RK88] with applications to superconductivity, aligning inter-
actions [Al05], and the inclusion of a single monomer on the boundary. The
solution with an single monomer in an arbitrary position is a difficult open
problem. Including several monomers appears to be intractable, although
the essential physics in known in the continuum limit [Al06].

2.1 Determinant formulation

Let us first define the problem. We consider a graph G = (V,E) where V
is the set of vertices and E is the set of edges. A dimer configuration C on
G is a subset of edges which covers all the vertices, and where no overlap

1By definition a bipartite lattice is one for which the set of vertices V can be written
as a disjoint union V = A ∪B, so that any edge connects an A-vertex with a B-vertex.
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Figure 1: Dimer covering of a portion of square lattice.

occurs between two edges. An example is shown in Fig. 1. Each edge e of the
graph carries a positive weight π(e), and to each configuration C, we assign
a Boltzmann weight

π(C) :=
∏
e∈C

π(e) .

The partition function is defined as

ZG :=
∑
C

π(C) =
∑
C

∏
e∈C

π(e) , (2.1)

where the sum runs over all possible dimer configurations on G. In particular,
if we set π(e) = 1 for every edge, ZG is the number of dimer configurations
on G.

We now restrict the discussion to the case when G is bipartite. This
means that the vertices of G can be coloured in black and white, in such
a way that every white vertex is only adjacent to black vertices, and vice-
versa. Examples of bipartite graphs are the square lattice and the honeycomb
lattice. The triangular lattice is not bipartite. We denote by (w1, . . . , wN) the
white vertices, and (b1, . . . , bN) the black ones. Also, we choose an orientation
of the edges of G, and we introduce the N × N weighted adjacency matrix
K, defined by:

Kij =


π(wi, bj) if wi → bj

−π(wi, bj) if wi ← bj

0 otherwise.

(2.2)

Consider the determinant of this matrix:

detK =
∑
σ∈SN

sgn(σ)K1,σ(1) . . . KN,σ(N) ,

4



where SN is the group of permutations of N elements. The permutations σ
which contribute to detK are those which satisfy the condition

∀i ∈ {1, . . . , N} , wi is adjacent to bσ(i) .

This is equivalent to saying that the set of edges

C(σ) := {(w1, bσ(1)), . . . , (wN , bσ(N))}

is a dimer configuration! Also, the contribution of σ to detK equals the
weight π[C(σ)], up to a sign. We will now show that, if the orientation of G
is well chosen, every contribution to detK picks the same sign, and we have

ZG = | detK| . (2.3)

To show this, we take two arbitray dimer configurations C and C ′, cor-
responding to the permutations σ and σ′, and draw their superposition, as
in Fig. 2. The resulting graph is made of doubly-covered edges, together with
closed cycles of even length, and is called the transition graph. For simplic-
ity, let us assume first that there is only one closed cycle of length 2`. If we
number the vertices around this cycle (w1, b1, w2, b2, . . . , w`, b`), it is easy to
see that the permutations σ and σ′ differ by a cyclic permutation:

σ′ =

(
1 2 3 . . . `
` 1 2 . . . `− 1

)
◦ σ ,

and hence sgnσ′ = (−1)`+1 sgnσ. In order to compensate the sign (−1)`+1

with those coming from (2.2), we impose the condition:

In any cycle of length 2`,

{
# edges oriented b→ w
(`+ 1)

have the same parity.

An orientation satisfying this condition is called a Kasteleyn orientation.
Actually, it is sufficient to impose the above condition on the elementary
cycles, i.e. cycles which enclose a single face of G. In the determinant of
the corresponding matrix K, every contribution has the same sign, and (2.3)
follows.
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Figure 2: Superposition of two dimer configurations.
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Figure 3: A Kasteleyn orientation of the square lattice. The coordinates of
black and white vertices are indicated.
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2.2 Explicit computation on the square lattice

We consider a portion of the square lattice Gmn of size m×n. For simplicity,
we restrict to even n and m. Once a Kasteleyn orientation is found, we can
use (2.3) to compute the partition function of dimers on the square lattice.
We shall use the orientation shown in Fig. 3, and give a weight π(e) = z1

to every horizontal edge e and π(e) = z2 to every horizontal edge e. The
resulting adjacency matrix is

K(x,y),(x′,y′) = z1(δx+1,x′ − δx−1,x′)δyy′ + z2δxx′(−1)x(δy+1/2,y′ − δy−1/2,y′) ,

where (x, y) are the coordinates of a white vertex, and (x′, y′) are the coor-
dinates of a black vertex. Let us rewrite K as

K(x,y),(x′,y′) = (−1)x(z1Uxx′δyy′ + z2δxx′Vyy′) ,

with

Uxx′ := (−1)x(δx+1,x′ − δx−1,x′) , Vyy′ := (δy+1/2,y′ − δy−1/2,y′) .

Note that the two terms in the bracket correspond to two commuting opera-
tors, and hence we can diagonalise them simultaneously. One can show that
the eigenvalues λk (resp. µ`) of U (resp. V ) are

λk = 2 cos
πk

m+ 1
, k ∈ {1, 2, . . . ,m} ,

µ` = 2i cos
π`

n+ 1
, ` ∈ {1, 2, . . . , n/2}.

Using the identity λm+1−k = −λk, we have

Zmn(z1, z2) = | detK| = 2mn/2
m/2∏
k=1

n/2∏
`=1

[
z2

1 cos2

(
πk

m+ 1

)
+ z2

2 cos2

(
π`

n+ 1

)]
.

(2.4)
In particular we can find the number of ways to tile a chessboard by 32
dominos [TF61]:

12 988 816 = 24 × 172 × 532 . (2.5)
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2.3 Thermodynamical limit

The above combinatorial derivation has produced an expression (2.4) for the
partition function which is explicit and exact in finite size. This is a rather
unusual situation in statistical physics, where more often that not one can
obtain exact results only in the thermodynamical limit m,n→∞.

In that limit one is typically interested in the free energy per site

f(z1, z2) = lim
m,n→∞

1

mn
logZmn(z1, z2) (2.6)

for which one expects a finite limit. The result (2.4) needs some manipulation
in order to extract an analytical expression for f .

Replacing first

1

m

m/2∑
k=1

−→ 1

π

∫ π/2

0

dω ,

we obtain

f(z1, z2) =
1

π2

∫ π/2

0

dω

∫ π/2

0

dω′ log
[
4(z2

1 cos2 ω + z2
2 cos2 ω′)

]
. (2.7)

This expression can be simplified by using a few tricks of analysis.

To this end we first perform explicitly the integral over ω. Defining the
ratio ζ = z2

z1
we have

1

π

∫ π/2

0

dω log
[
4(z2

1 cos2 ω + z2
2 cos2 ω′)

]
=

1

2
log(2z2 cosω′)2 +

1

π

∫ π/2

0

dω log

(
1 +

cos2 ω

ζ2 cos2 ω′

)

= log z1 + log(2ζ cosω′) + log

1 +
√

1 + 1
ζ2 cos2 ω′

2


= log z1 + log

(
ζ cosω′ +

√
1 + ζ2 cos2 ω′

)
.

Renaming ω′ 7→ ω, (2.7) then becomes

f(z1, z2) =
1

2
log z1 +

1

π

∫ π/2

0

dω g(ζ cosω) (2.8)
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where we have defined

g(x) = log(x+
√

1 + x2) .

We can suppose that |z2| ≤ |z1|, since if this were not the case we could
simply exchange z1 and z2. Setting x = ζ cosω we have then |x| < 1 (except
for ω = 0, which does not matter under the integral). Therefore the integrand
g(x) can be replaced by its expansion as an entire series and we can integrate
term by term. After a little work one finds

g(x) =
∞∑
j=0

(
2j
j

)
(−1)j

(2j + 1) 22j
x2j+1 .

Using now∫ π/2

0

dω (ζ cosω)2j+1 = ζ2j+1

√
π Γ(j + 1)

2Γ(j + 3
2
)

= ζ2j+1 j! 2j

(2j + 1)!!

we arrive at∫ π/2

0

dω g(ζ cosω) =
∞∑
j=0

(
2j
j

)
(−1)j

(2j + 1)22j

j! 2j

(2j + 1)!!
ζ2j+1

=
∞∑
j=0

(−1)j

(2j + 1)2
ζ2j+1 .

This expression is reminiscent of arctan ζ. Indeed we have

arctanx =
∞∑
j=0

(−1)j

2j + 1
x2j+1

and so ∫ ζ

0

dx
arctanx

x
=
∞∑
j=0

(−1)j

(2j + 1)2
ζ2j+1 .

Putting the pieces together we obtain

f(z1, z2) =
1

2
log z1 +

1

π

∫ ζ

0

dx
arctanx

x
. (2.9)
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To simplify further we can use that

arctanx =
1

2i
log

(
1 + ix

1− ix

)
,

as is easily seen by taking tan on both sides. The integral in (2.9) can
therefore be expressed in terms of the Euler dilogarithm2

Li2(u) = −
∫ u

0

dx
log(1− x)

x
=
∞∑
k=1

uk

k2

as follows ∫ ζ

0

dx
arctanx

x
=

1

2i
(Li2(iζ)− Li2(−iζ)) ≡ Ti2(ζ) , (2.10)

where we have finally introduced the inverse tangent integral Ti2(ζ).

The final result thus reads

f(z1, z2) =
1

2
log z1 +

1

π
Ti2(ζ) , ζ =

z2

z1

. (2.11)

For the combinatorial counting problem ζ = 1. Recalling the series ex-
pansion (2.10) of Li2(u) we obtain

f(1, 1) =
1

π
Ti2(1) =

1

π

∞∑
k=0

(−1)k

(2k + 1)2
≡ G

π
, (2.12)

where we have introduced the Catalan constant G. The number of arrange-
ments per dimer (sometimes known in the theoretical chemistry literature as
the molecular freedom) is then

e2f(1,1) = exp

(
2G

π

)
' 1.791 622 · · · . (2.13)

This is of course smaller than 2, since the effective number of arrangements
of a given dimer is constrained by the other dimers.
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D++ D+− D−+ D−−

Figure 4: Four different orientations of the square lattice with toroidal bound-
ary conditions.

2.4 Toroidal boundary conditions

Consider now a square lattice G̃mn embedded in the torus. The results of
Sec. 2.1 do not apply directly, since the lattice is no longer planar. In par-
ticular, one cannot find a Kasteleyn orientation for this lattice. It is however
still possible to express the partition function (2.1) as a sum of four different
determinants.

Consider the four different orientations of G̃mn shown in Fig. 4. The
first orientation D++ is just the Kasteleyn orientation of Gmn endowed with
periodic boundary conditions (The other three orientations are obtained by
applying antiperiodic boundary conditions in one or both directions).

Pick an arbitrary dimer configuration C0, say the blue dimers in Fig. 2,
and construct the transition graph between C0 and the other dimer config-
urations. Orientation D++ gives the correct parity to all transition cycles
that are homotopic to a point. However, an incorrect sign is given to some
of the dimer configurations for which the transition cycles have non-trivial
homotopy. Note that since different transition cycles cannot intersect, all
non-trivial transition cycles have in fact the same homotopy, i.e., they all
wrap the horizontal and vertical directions the same number of times.

Let us divide the possible dimer configurations on G̃mn into four disjoint
classes. Class (e,e) comprises dimer configuration for which the set of transi-
tion cycles wrap both the horizontal and vertical directions an even number
of times. Similarly we define classes (o,e), (e,o) and (o,o), where e = even
and o = odd, and the first (resp. second) symbol refers to the horizontal
(resp. vertical) direction. We denote by Zee, Zoe, Zeo, Zoo the corresponding
contributions to the partition function. By examining one example per case
and arguing that local deformations of the transition cycles do not alter the
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results, one establishes that the signs with which the four different classes
of dimer configurations are counted in the four different determinants are as
follows:

detD++ = +Zee − Zoe − Zeo − Zoo ,

detD+− = +Zee − Zoe + Zeo + Zoo ,

detD−+ = +Zee + Zoe − Zeo + Zoo ,

detD−− = +Zee + Zoe + Zeo − Zoo .

It follows that

Zmn(z1, z2) =
1

2
(− detD++ + detD+− + detD−+ + detD−−) . (2.14)

The four determinants in (2.14) can be computed explicitly as before, except
the set of eigenvalues of U and V are slightly different: they are typically of
the form λk = 2 cos 2πk

m
. Explicit results are given in [Ka61].

2.5 Height mapping

To any dimer covering we can associate a height mapping on the dual lattice
which is defined as follows. First note that the square lattice is bipartite.
When encircling a white vertex in the positive (counterclockwise) direction,
the height h changes by +1/4 upon crossing an empty edge and by −3/4
upon crossing an edge that is covered by a dimer. The same rule holds when
encircling a black vertex in the negative direction. By fixing the height at the
origin, e.g., h(0, 0) = 0, these rules define the entire height function h(x, y)
uniquely. An example is shown in Fig. 5.

The height mapping provides a link with the conformal field theory (CFT)
description of dimer coverings. We briefly outline some of the essential el-
ements. In the continuum limit the height function becomes a free bosonic
field with effective action

Seff = πg

∫
dx dy

{(
∂h(x, y)

∂x

)2

+

(
∂h(x, y)

∂y

)2
}
. (2.15)

Here g is the coupling constant, which controls the stiffness of the interface
model. It is a priori unknown.
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0 1 0 1 0 1 0

−1 −2 −1 2 3 2 −1

0 1 0 1 4 1 0

−1 2 −1 2 3 2 −1

0 1 0 1 0 1 0

Figure 5: Dimer covering of the lattice G6,4 and the corresponding height
function 4h(x, y) defined on the dual lattice.

Note that the standard configuration of Fig. 2 corresponds to a flat height
interface. The central argument behind the “derivation” of (2.15) is that the
dimer configurations represent bounded fluctuations around this flat state.

The two-point correlation functions decay asymptotically—i.e., for dis-
tances r satisfying 1 � r � N on an N × N lattice, and with operator
positions far from the boundaries—as r−2X(e,m), where the critical exponent

X(e,m) =
e2

2g
+
g

2
m2 . (2.16)

Here e and m are integer valued electric and magnetic charges. Electric
charges e correspond to vertex operators Ve(r) =: exp[2πieh(r)] : appearing
in the Fourier expansion of any operator periodic in the coarse-grained height
field. Dual magnetic charges correspond to a dislocation of m in the height
field.

For example, two monomer defects on opposite sublattices correspond to
m = ±1. It is known from exact results [FS63] that X(0, 1) = 1

4
, and this

fixes g = 1
2

from (2.16). The exponents for correlation function of all possible
charges then follow from (2.16). In particular, the dimer-dimer correlation
function—i.e., the probability that two widely separated dimers have the
same orientation, after subtraction of the trivial r → ∞ limit of 1

2
—then

decays with exponent X(1, 0) = 1, and this is confirmed by the exact solution
[FS63].

Let us also note that in CFT there is a link between (2.14) and modular
invariant partition functions for the free boson on the torus.
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Figure 6: Dimers on the honeycomb lattice. The shaded region corresponds
to the action of the row-to-row transfer matrix T . The dotted line represents
the trajectory of a particle.

2.6 Transfer matrix formulation

In this section, we consider the dimer problem on the honeycomb lattice,
with edge weights z1, z2, z3 on the three different types of edges, as shown in
Fig. 6. Moreover, we assume periodic boundary conditions in the horizontal
direction, and we denote by L the number of vertical edges (type z3) in any
row.

The state of a row of vertical edges is described by the sequence α =
(α1, . . . , αL), where αj = 1 (resp. αj = 0) if the edge j is occupied by a
dimer (resp. empty). Between two rows of type α, the intermediary state
is described by β = (β1, . . . , β2L), where βj is defined similarly in terms of
occupied/empty edges.

The row-to-row transfer matrix T acts on an α state, and adds a row
to the system. More precisely, the matrix element Tα,α′ is defined as the
Boltzmann weight of all possible intermediary states from α′ to α:

Tα,α′ =
∑
β|α,α′

L∏
j=1

z
β2j−1

1 z
β2j

2 z
(αj+α

′
j)/2

3 ,

where the sum is over the possible intermediary states between configurations
α′ and α. In our conventions, T acts from bottom to top, so α is placed above
α′.
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2.6.1 Solution by free fermions

Let us now reformulate the problem in terms of a closed system of particules
evolving in the vertical direction. Consider the reference configuration C0

where all vertical edges are occupied by a dimer, and define the particules
associated to any dimer configuration C as follows: if the dimer occupation of
an edge e is the same in C as in C0, we say it carries no particle, whereas if the
dimer occupations of e are different in C and C0, we says it carries a particle.
It is easy to see that the matrix element Tα,α′ vanishes, unless α and α′ have
the same number of particles: this means that the number of particles is
conserved by the action of T . Thus, we can look for the eigenvectors and
eigenvalues of T in sectors of fixed number of particles n. A left eigenvector
ψ of T is defined by the condition∑

α

ψαTα,α′ = Λψα′ . (2.17)

For n = 0, there is only one vacuum state, with eigenvalue zL3 for T . We
shall use this to normalise our transfer matrix, and set τ := z−L3 T .

For n = 1, the states are specified by the position x of a single particle.
Notice that x ∈ {1, 2, . . . , L} for even rows, and x ∈ {1/2, 3/2, . . . , L− 1/2}
for odd rows. We denote by τ (1) the transfer matrix from even to odd rows,
and τ̃ (1) the transfer matrix from odd to even rows. The matrix elements of
τ read, for (x, y) ∈ (N + 1/2,N):

τ (1)
xy = (z1/z3) δx,y−1/2 + (z2/z3) δx,y+1/2 ,

and τ̃xy has the same expression, but with (x, y) ∈ (N,N + 1/2). We wish to
find the left eigenvectors of τ and τ̃ . The eigenvalue equations read

L∑
x=1

ψ(x− 1/2)τ
(1)
x−1/2,y = Λ ψ(y) , (2.18)

L∑
x=1

ψ(x)τ̃
(1)
x,y−1/2 = Λ ψ(y − 1/2) , (2.19)

where we have identified the points (L+1/2) and 1/2. for any y ∈ {1, . . . , L}.
Let us focus on (2.18) first. Since τ (1) is invariant by cyclic translations, ψ
must have the form of a plane wave:

ψk(x) := exp(ikx) , with − π < k ≤ π .
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The corresponding eigenvalue is

Λk = (z1/z3)e−ik/2 + (z2/z3)e+ik/2 .

Moreover, periodic boundary conditions impose that eikL = 1. It is easy to
see that ψk is also an eigenvector of τ̃ (1), with the same eigenvalue.

For n = 2, particle states are labelled by two positions (x1, x2), with
x1 < x2. The matrix element takes into account the avoiding constraint
between particles:

τ
(2)
(x1,x2),(y1,y2) = τ (1)

x1,y1
τ (1)
x2,y2
− (z1z2/z

2
3) δx1x2δx1,y1+1/2δx2,y2−1/2 .

If we set ψ12(x1, x2) = ψk1(x1)ψk2(x2), the left-hand side of (2.17) reads∑
x1,x2

ψ12(x1, x2)τ
(2)
(x1,x2),(y1,y2) =Λk1Λk2ψ12(y1, y2)

− (z1z2/z
2
3) δy1+1,y2ψk1(y1 + 1/2)ψk2(y1 + 1/2) .

Similarly, for ψ21(x1, x2) = ψk2(x1)ψk1(x2), we get∑
x1,x2

ψ21(x1, x2)τ
(2)
(x1,x2),(y1,y2) =Λk2Λk1ψ21(y1, y2)

− (z1z2/z
2
3) δy1+1,y2ψk2(y1 + 1/2)ψk1(y1 + 1/2) .

We can thus simply combine ψ12 and ψ21 to eliminate the δy1+1,y2 terms. We
define

ψ(x1, x2) := ψk1(x1)ψk2(x2)− ψk2(x1)ψk1(x2) , (2.20)

and we have ∑
x1,x2

ψ(x1, x2)τ
(2)
(x1,x2),(y1,y2) = Λk1Λk2ψ(y1, y2) , (2.21)

which is the eigenvalue equation in the two-particle sector. We recognise that
(2.20) is a fermionic two-body wave function. When a particle goes around
the system, the wavefunction picks a factor (−1), and hence the momenta
satisfy:

eiLk1 = eiLk2 = −1 ,

with the additional constraint that k1 6= k2. This suggests that the particles
behave like free fermions.
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For a general value of n, states are specified by the sequence x1 < · · · < xn
of particle positions. One can extend the previous discussion, and (2.20) is
replaced by

ψ(x1, . . . , xn) =
∑
σ∈Sn

sgn(σ) exp[ikσ(1)x1 + · · ·+ ikσ(n)xn] , (2.22)

where Sn is the set of permutation of n elements, and the momenta k1, . . . , kn
take n distinct values, subject to the conditions:

exp(iLkj) = (−1)n+1 . (2.23)

Again, (2.22) is a fermionic wavefunction. The corresponding eigenvalue of
τ is

Λ = Λk1 . . .Λkn , where Λk = (z1/z3)e−ik/2 + (z2/z3)e+ik/2 . (2.24)

It is important to work we left eigenvectors, for the following rea-
son. In the n = 2 sector, if we were dealing with the right eigenvector
with

∑
α′ ταα′ψ(α′) = Λψ(α), we would get unwanted terms of the form

δy1+1,y2ψk1(y1)ψk2(y1 + 1). Hence, the right eigenvector is given by ψ =
e−ik2ψ12 − e−ik1ψ21, which is not antisymmetric in the positions like (2.20).
Of course, the eigenvalues are the same, but the relation to a free Fermi
system is less obvious.

2.6.2 Dominant eigenvalues

We first restrict to the isotropic case z1 = z2 = z3. The one-particle eigen-
values then read Λk = 2 cos(k/2). The maximal eigenvalue (2.24) is obtained
when we choose the values of k for which |Λk| > 1. This corresponds to a
Fermi sea in the interval |k| < 2π/3.

Let us show how to compute the dominant eigenvalue Λmax of T as an
expansion in 1/L. For simplicity, we consider the case when L is a multiple
of 3. Then Λmax is obtained by taking n = 2L/3 particles, with momenta
kj = 2πqj/L, and

{q1, . . . , qn} = −n− 1

2
,−n− 3

2
, . . . ,

n− 1

2
. (2.25)
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To evaluate (2.24), we can use the Euler-McLaurin formula

h×

[
f(a) + f(b)

2
+

N−1∑
j=1

f(a+ jh)

]
'
∫ b

a

f(k)dk+
h2

12
[f ′(b)− f ′(a)] , (2.26)

where h := (b− a)/N . This yields the asymptotic expansion:

1

L(
√

3/2)
log Λmax '

1

π
√

3

∫ +2π/3

−2π/3

log[2 cos(k/2)]dk +
π

6L2
. (2.27)

We have normalised the left-hand side by the aspect ratio of one row. On the
right-hand side, the first term is the free energy density f for the honeycomb
lattice. The second term is a universal correction, which is predicted by
Conformal Field Theory (this will be explained in future lectures).

Proof of (2.27).

In (2.26), we set f(k) := log[2 cos(k/2)], b = −a := (n−1)2π/L and N =
n − 1. We have immediately f(±2π/3) = 0. Then, we approximate f(a) '
f ′(2π/3)h/2, f ′(a) ' f ′(2π/3) and similarly for f(b) and f ′(b). Moreover,
we write ∫ b

a

f(k)dk '
∫ 2π/3

−2π/3

f(k)dk +
h2

8
[f ′(2π/3)− f ′(−2π/3)] .

Inserting these approximations into (2.26), we get the above result.

We can repeat the calculation for the subdominant eigenvalue Λ1, cor-
responding to the momentum distribution (2.25), but with one particle re-
moved: n = 2L/3− 1. In terms of dimers, when superposing configurations
with n = 2L/3 and n = 2L/3 − 1, we get one transition line propagating
in the transfer direction, which is equivalent to a shift of the dimers by one
site along this line. Therefore, we can identify Λ1 to the insertion of one
monomer at each end of the transition line. The asymptotic expansion for
Λ1 is

1

L(
√

3/2)
log Λ1 '

1

π
√

3

∫ +2π/3

−2π/3

log[2 cos(k/2)]dk − π

3L2
.
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The corresponding scaling dimension Xmon can be extracted from the CFT
prediction

1

L(
√

3/2)
log

Λ1

Λmax

' −2πXmon

L2
,

and so we find Xmon = 1/4.

Exercise: use the Euler-McLaurin formula (2.26) to compute the critical
exponent corresponding to the sector n = 2L/3 − m, where m is a finite
positive integer. Introduce a second integer e, and compute the exponent
corresponding to the shift qj → qj + e in (2.25). Compare with (2.16).

Finally, suppose we take anisotropic Boltzmann weights, of the form

z1 = z2 = w1/2 , z3 = w−1/2 , where w ≥ 1

2
.

The eigenvalues for single-particle states are then Λk = 2w cos k/2. The
Fermi level kF is now defined by the relation

2 cos(kF/2) = w−1 , 0 < kF < π ,

and the free energy density is given by

f =
1

π
√

3

∫ +kF

−kF
log[2 cos(k/2)]dk .

TD: derive CFT prediction log Λ/Λmax = 2πX/L. Compute CG spectrum
from finite-size analysis.

3 Dimer appendix

3.1 Pfaffian formulation

We consider the dimer problem on an m× n square lattice Qmn. Obviously
a dimer covering exists only if mn is even, so we shall suppose m even. An
example on Q64 is shown in Fig. 1.

The number of dimer coverings will of course depend on the boundary
conditions. In this section we concentrate on free boundary conditions (i.e.,
free both along the horizontal and vertical directions). In this case the result
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can be written as the Pfaffian of an appropriate matrix. An expression in
terms of a single Pfaffian also exists for cylindrical boundary conditions (i.e.,
free along one lattice direction and periodic along the other). In Sec. 2.4 we
shall show that toroidal boundary conditions (i.e., periodic in both directions)
leads to a linear combination of four different Pfaffians. More generally, the
number of Pfaffians needed will be 4g for a lattice embedded into a surface
of genus g.

Let the fugacity of horizontal and vertical dimers be respectively z1 and
z2. The weight of the configuration shown in Fig. 1 is then (z1)4(z2)8. Let
g(N1, N2) be the number of dimer coverings of Qmn using N1 horizontal and
N2 vertical dimers. We have necessarily g(N1, N2) = 0 unless 2(N1 + N2) =
mn. The goal is then to compute the partition function

Zmn(z1, z2) =
∑
N1,N2

g(N1, N2)zN1
1 zN2

2 . (3.1)

The Pfaffian of an 2N × 2N skew-symmetric matrix A with elements
a(k, k′) = −a(k′, k) is defined by

Pf A =
′∑
P

ε(P )a(k1, k2)a(k3, k4) · · · a(k2N−1,2N) (3.2)

=
1

N ! 2N

∑
P

ε(P )a(k1, k2)a(k3, k4) · · · a(k2N−1,2N) .

Here
∑

P runs over all permutations P : (1, 2, . . . , 2N) → (k1, k2, . . . , k2N),
whereas

∑′
P is constrained to those permutations satisfying the constraint

k1 < k2 , k3 < k4 , · · · , k2N−1 < k2N

k1 < k3 < k5 < · · · < k2N−1 (3.3)

and ε(P ) = ±1 is the sign of P . It is easy to see that there are (2N)!
N ! 2N

=
(2N − 1)!! terms in the sum

∑′
P .

The constraint (3.3) is very natural from the point of view of dimers.
Suppose we assing to the vertices of the lattice (i, j), where i = 1, 2, . . . ,m
and j = 1, 2, . . . , n, some numbering, for instance

(i, j) 7→ k = (j − 1)m+ i . (3.4)

Let a configuration of dimers be denoted

C = [k1, k2] [k3, k4] · · · [k2N−1, k2N ] , (3.5)
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where [k, k′] means that there is a dimer covering vertices k and k′. Then
the constraint (3.3) expresses simply that C is considered modulo exchanges
of dimers, and modulo exchanges of the two end points within each dimer.

This suggests an obvious strategy for computing Zmn(z1, z2) as a Pfaffian.
Indeed we will have

|Pf D| = Zmn(z1, z2) (3.6)

provided that we can define a 2N × 2N skew-symmetric matrix D, with
2N = mn, that fulfills three requirements:

1. There should be a bijection between the non-vanishing contributions
to Pf D and the dimer configurations on Qmn.

2. The weight of each non-vanishing contribution to Pf D should be equal,
up to a sign, to the corresponding statistical weight in Zmn(z1, z2).

3. All contributions to Pf D should have the same sign.

Requirements 1–2 are easy to fulfill. To satisfy requirement 1, we simply
set d(k, k′) = 0 if the vertices k and k′ are not adjacent in Qmn. To satisfy
requirement 2, we set d(k, k′) = −d(k′, k) = ±zkk′ if k and k′ are adjacent,
where zkk′ is the desired fugacity of a dimer that covers k and k′. Note
that the liberty in choosing zkk′ makes it possible to tackle the most general
situation of edge-dependent fugacities; in the sequel we shall however only
need z1 and z2 as in (3.1).

3.2 Solving the sign problem

The tricky part is requirement 3: how to choose the correct sign of d(k, k′)
when k and k′ are adjacent? It is convenient to represent the signs of the
matrix elements d(k, k′) by an orientation of the edges of Qmn. If the edge
(kk′) is oriented from k to k′ (resp. from k′ to k), we take d(k, k′) = +zkk′
(resp. d(k, k′) = −zkk′).

The question is then whether a lattice orientation exists that will fulfill
requirement 3. The answer is positive, not only for Qmn but in fact for any
planar graph. The corresponding orientation is known as a Kasteleyn orien-
tation. The goal of this section is to characterise precisely this orientation.

Consider superposing two different dimer configurations C and C ′ of Qmn.
The resulting transition graph is made up of doubly occupied edges, where
the dimers of C and C ′ coincide, and of transition cycles, which are cycles
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k1 k2 k3 k4

k5 k6 k7 k8

Figure 7: Example of a transition cycle on Q42 between the standard config-
uration C (in blue) and another configuration C ′ (in red). The vertices are
labelled according to the canonical order (3.4).

of even length along which the dimers from C and C ′ alternate. This is
shown in Fig. 2. Since the length of a transition cycle is even, the number of
clockwise and anticlockwise oriented edges in the cycle is either both even,
or both odd: we call this the orientation parity.

To turn configuration C into C ′ one needs to shift the dimers one unit
along each transition cycle. The factor ε(P ) appearing in (3.2) can then be
shown (see below) to produce a minus sign for each transition cycle. This
sign must be cancelled by another one coming from the signs of the entries
d(k, k′) = ±zkk′ . The terms representing C and C ′ will therefore have equal
signs if the orientation parity of all transition cycles is odd.3 If we can find
an orientation of Qmn satisfying this requirement, the sign problem is solved.

For the sake of definiteness, let us consider the case where C is the stan-
dard configuration shown in blue in Fig. 2, and C ′ is another arbitrary dimer
configuration. We focus on the contribution to ε(P ) of a single transition
cycle in C ∪ C ′.

Orient the transition cycle in the counterclockwise direction. It will then
pass through the edges of C in any fixed column exactly as many times in
the right direction (i.e., in the direction of increasing lablling k) as in the
left direction (i.e., in the direction of decreasing labelling k), since otherwise
the cycle would not be a closed polygon. So a fortiori this is true for the
passages through any edge of C. Let r be the number of right (and hence
left) passages.

Let us now describe a 5-stage process that permutes the C-term into
the C ′-term. To follow the argument, it is useful to consider in parallel an

3Indeed, if the product of all the signs around the cycle is −1, then the products of the
subsets of signs corresponding to C and to C ′ must be opposite.
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example with r = 2 on Q42, i.e., with a single transition cycle of length 4r = 8
(see Fig. 7). The initial configuration C is then

[k1, k2] [k3, k4] [k5, k6] [k7, k8] . (3.7)

The stages are as follows:

1. Reverse the r pairs of points within each doublet that correspond to a
left passage, so that the order within each pair now corresponds to the
cyclical rather than the canonical order (3.4):

[k1, k2] [k3, k4] [k6, k5] [k8, k7] . (3.8)

This produces a factor (−1)r.

2. Permute the doublets as required to produce the perfect cyclic order:

[k1, k2] [k3, k4] [k8, k7] [k6, k5] . (3.9)

Since only doublets are permuted, this results in a factor +1.

3. Permute all 4r points cyclically:

[k2, k3] [k4, k8] [k7, k6] [k5, k1] . (3.10)

This produces a factor (−1)4r−1. We now have the C ′-term as desired,
but the rules (3.3) are violated.

4. Permute the doublets so as to respect the second part of rule (3.3):

[k5, k1] [k2, k3] [k4, k8] [k7, k6] . (3.11)

This is the “opposite of stage 2” and gives a factor +1.

5. Reverse r pairs of points within each doublet so as to respect the first
part of rule (3.2):

[k1, k5] [k2, k3] [k4, k8] [k6, k7] . (3.12)

This is the “opposite of stage 1” and gives a factor (−1)r.

The total sign change is then

(−1)r × (−1)4r−1 × (−1)r = −1 (3.13)

as claimed.
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This correct choice of orientation parity can indeed be made for any planar
graph. This relies on a number of properties that can rather easily be proved
by induction in the size of the graph. Let us call a cycle that surrounds a
single face of the lattice a mesh cycle. The relevant properties are then:

1. A planar graph can be oriented such that the orientation parity off all
even mesh cycles is odd.

2. For a planar graph with such an orientation, the orientation parity of
any even cycle whose interior contains an even (resp. odd) number of
vertices is odd (resp. even).

3. In a planar graph the interior of any transition cycle contains an even
number of vertices.

Leaving this generality and returning to the square lattice Qmn, a possible
Kasteleyn orientation is shown in Fig. 3.

Let us finally remark, that it is relatively easy to find a Kasteleyn orien-
tation for any regular (Archimedian) lattice. However, despite of the above
existence result, there does not seem to be a simple constructive approach
for an arbitrary planar graph.

3.3 Evaluation of the Pfaffian

We have now established (3.6) when the matrix D is chosen according to re-
quirements 1–2 and the Kasteleyn orientation of Fig. 3. This reads explicitly

d(i, j; i′, j′) = z1 (δi+1,i′ − δi−1,i′) δj,j′ + (−1)iz2 (δj+1,j′ − δj−1,j′) δi,i′ , (3.14)

where the subtractions guarantee the proper antisymmetrisation. All of this
would be of little avail if the Pfaffian were difficult to compute. Fortunately
its square is just a standard determinant. Thus

[Zmn(z1, z2)]2 = [Pf D]2 = detD . (3.15)

Proving this relation is a little lengthy, and we only give a short outline (full
details are provided in [MW73]). Introducing the cofactors Djk, one first
applies the Jacobi theorem DjjDkk − DjkDkj = Djk,jk detD to the skew-
symmetric matrix D. An induction argument then shows that (detD)1/2 is a
rational function—and actually even a polynomial—of the matrix elements.
Exploiting this finally leads to the desired relation with Pf D.
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Let us illustrate the main points on a trivial example on Q22. We first
choose to orient the edges anticlockwise (1 → 2 → 4 → 3 → 1). Note that
this is not a Kasteleyn orientation. We choose the most general position-
dependent edge weights:

det


0 z12 −z13 0

−z12 0 0 z24

z13 0 0 −z34

0 −z24 z34 0

 = (z13z24 − z12z34)2 . (3.16)

Changing the orientation of any one edge turns this into a Kasteleyn orien-
tation and makes the two terms have the same sign.

The goal is therefore to compute detD. If D were a cyclic matrix (i.e.,
with entries that depended on the indices i and j in a periodic fashion) this
could be rather easily accomplished by bringing it into diagonal form via a
Fourier transformation (see Sec. 2.4 for such a computation). In the present
case there exists a slightly more complicated transformation that will turn
D into a direct sum of 2× 2 matrices.

Let us write D as a direct product of m × m and n × n matrices that
describe the dependence of the weight on the horizontal and vertical coordi-
nates respectively:

D = z1(Qm ⊗ In) + z2(Fm ⊗Qn) (3.17)
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Here In is the n× n unit matrix, whereas

Qm(i, i′) = δi+1,i′ − δi−1,i′ =



0 1 0 · · · 0 0
−1 0 1 · · · 0 0

0 −1 0
. . . 0 0

...
. . . . . .

...
0 0 0 · · · 0 1
0 0 0 · · · −1 0


,

Fm(i, i′) = (−1)iδi,i′ =



−1 0 0 · · · 0 0
0 1 0 · · · 0 0

0 0 −1
. . . 0 0

...
. . . . . .

...
0 0 0 · · · −1 0
0 0 0 · · · 0 1


. (3.18)

Note that the matrix Q is only almost cyclic, since the elements in its upper-
right and lower-left corners are zero.

The transformation that we need is

D̃ = U−1DU ,

U = Um ⊗ Un , (3.19)

where

Un(l, l′) =

√
2

n+ 1
il sin

(
ll′π

n+ 1

)
. (3.20)

Let us use this transformation to find an explicit formula for Zmn(z1, z2).
First we note the following orthogonality identity:

2

n+ 1

n∑
l′′=1

sin

(
ll′′π

n+ 1

)
sin

(
l′′l′π

n+ 1

)
= δl,l′ , (3.21)

which can be easily proved by writing out the sines in terms of complex
exponentials, multiplying out, and summing up the resulting geometrical
series. This implies that the corresponding inverse matrix is

U−1
n (l, l′) =

√
2

n+ 1
(−i)l sin

(
ll′π

n+ 1

)
. (3.22)
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Using this we first diagonalise the matrix Q. We have

(QU)(l, l′) =
n∑

l′′=1

Q(l, l′′)U(l′′, l′) = U(l + 1, l′)− U(l − 1, l′)

and further

(U−1QU)(l, l′) =
n∑

l′′=1

U−1(l, l′′)(QU)(l′′, l′)

=
n∑

l′′=1

{
U−1(l, l′′)U(l′′ + 1, l′)− U−1(l, l′′)U(l′′ − 1, l′)

}
.

Inserting (3.20) and (3.22) this becomes

. . . =
2i

n+ 1

n∑
l′′=1

sin

(
ll′′π

n+ 1

){
sin

(
l′(l′′ + 1)π

n+ 1

)
+ sin

(
l′(l′′ − 1)π

n+ 1

)}
=

4i

n+ 1

n∑
l′′=1

sin

(
ll′′π

n+ 1

)
cos

(
l′π

n+ 1

)
sin

(
l′l′′π

n+ 1

)
= 2i cos

(
lπ

n+ 1

)
δl,l′ , (3.23)

where we have first used an addition formula and then the orthogonality
relation (3.21).

Another identity that can be proved in the same way as (3.21) is the
following:

2

n+ 1

n∑
l′′=1

(−1)l
′′

sin

(
ll′′π

n+ 1

)
sin

(
l′′l′π

n+ 1

)
= δl+l′,n+1 , (3.24)

where the right-hand side is the “mirrored” identity matrix. This can be
used to diagonalise the matrix F . We find:

(U−1FU)(l, l′) = δl+l′,n+1 . (3.25)

The “diagonalised” D-matrix now reads4, using (3.23) and (3.25),

D̃(k, l; k′, l′) = 2iz1δk,k′δl,l′ cos

(
kπ

m+ 1

)
+ 2iz2δk+k′,m+1δl,l′ cos

(
lπ

n+ 1

)
. (3.26)
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This is indeed diagonal in l-space, but not quite in k-space. Rather we have
a matrix with the shape

w w′

w w′

. . .

w′ w
w′ w

 .

By changing the labelling 1, 2, 3, 4, 5, 6, . . . ,m of both rows and columns into
1,m, 2,m−1, 3,m−2, . . . ,m/2,m/2+1 (recall that m is even) this is turned
into the block-diagonal matrix

w w′

w′ w̃
. . .

w w′

w′ w̃

 .

Note that in this process some of the entries change sign (w̃ = −w), since
when k 7→ k′ ≡ m+ 1− k we get

cos

(
k′π

m+ 1

)
= − cos

(
kπ

m+ 1

)
.

Therefore we obtain the result

detD = det D̃ =

m/2∏
k=1

n∏
l=1

∣∣∣∣ 2iz1 cos
(
kπ
m+1

)
2iz2 cos

(
lπ
n+1

)
2iz2 cos

(
lπ
n+1

)
−2iz1 cos

(
kπ
m+1

) ∣∣∣∣ . (3.27)

Using finally (3.15) we arrive at

Zmn(z1, z2) = 2
mn
2

m/2∏
k=1

n∏
l=1

√
z2

1 cos2

(
kπ

m+ 1

)
+ z2

2 cos2

(
lπ

n+ 1

)
. (3.28)

In particular we can find the number of ways to tile a chessboard by 32
dominos [TF61]:

12 988 816 = 24 × 172 × 532 . (3.29)
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Figure 8: A particular dimer configuration C0 in which all dimers sit on even
vertical edges.

XOR =

Figure 9: Conserved strings in a dimer configuration on Q6,4.

3.4 Transfer matrix for the square lattice

On the square lattice one can assign a definite parity to the vertical edges
by alternating even and odd edges throughout a given row, and alternating
the convention between even and odd rows. Fig. 8 shows a particular dimer
configuration C0 in which all dimers sit on even vertical edges. Note that this
corresponds to a maximal height gradient between the left and right rims of
the lattice.

Consider now superposing a generic dimer configuration C with C0 by
means of an exclusive or (XOR) operation. For example, when C is the
configuration of Fig. 1 the resulting superposition is shown in Fig. 9.

This superposition consists in a certain number s of strings (here s = 3)
along which dimers from C and C0 alternate. The dynamics under which
these strings propagate in the vertical direction has interesting properties:

1. The number of strings is conserved, and

2. When moving from one horizontal layer to the next, a string can either
go straight or move exactly one step to the left or to the right.

These properties follow directly from the definition of the XOR operation
and from the definition of a valid dimer covering C.
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α1

µ1

β1

α2

µ2

β2

α3

µ3

β3

α4

µ4

β4

· · · αm

· · · µm µm+1

· · · βm

Figure 10: Labelling of edges used to define the row-to-row transfer matrix.

The properties of strings suggest to view dimer configurations as a discrete
time evolution process, where the time increases along the vertical direction.
In what follows it is convenient to refer to the horizontal (resp. vertical)
direction as space (resp. time). The time evolution is then accomplished by
a linear operator, called the row-to-row transfer matrix Tβα, that we now
define.

Let us label the edges of two consecutive rows of vertical edges, as well
as the intermediate row of horizontal edges, as shown in Fig. 10. The state
of a row is specified by the occupation numbers α = (α1, α2, . . . , αm), where
αi = 0 (resp. αi = 1) means that the ith vertical edge is empty (resp. occupied
by a dimer). Given the states α and β of two consecutive rows, the transfer
matrix element Tβα is the part of the Boltzmann weight in (2.1) seen locally,
summed over all possible intermediate states µ compatible with α and β.
Thus

Tβα =
∑
µ|(α,β)

(z1)
∑
i µi(z2)

1
2

∑
i(αi+βi) . (3.30)

The compatibility criterion µ|(α, β) can be expressed formally as

∀i ∈ {1, . . . ,m} : µi + αi + βi + µi+1 = 1 , (3.31)

meaning simply that the sum of occupation numbers around any one vertex
is one.

Boundary conditions in the space direction can be specified through an
additional constraint on the µ variables. Free boundary conditions mean
µ1 = µm+1 = 0; periodic boundary conditions are obtained by identifying
µm+1 ≡ µ1. This implies of course that the transfer matrix is different in the
two cases.
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Boundary conditions in the time direction are specified by constraints
on the first and last row states. Let |0〉 denote the empty row state, i.e.,
such that ∀i ∈ {1, . . . ,m} : αi = 0. The partition function (2.1) with free
boundary conditions in the time direction is then

Zmn(z1, z2) = 〈0|T n|0〉 , (3.32)

whereas periodic boundary conditions in the time direction lead to

Zmn(z1, z2) = Tr T n . (3.33)

In all cases, the free energy per site can be related to the leading eigen-
value of T , and critical exponents can be inferred from various subleading
eigenvalues. The eigenvalues can be found either by numerical diagonalisa-
tion, or analytically through the Bethe Ansatz technique. For both purposes
it is useful to discuss more closely the structure of the transfer matrix.

3.5 Sparse matrix factorisation

For all but the smallest m it is inefficient (both in analytical and numerical
calculations) to write down the whole transfer matrix in a single go. It is
preferable to write Tβα as a product of matrices Rβi,µi+1;µi,αi that act locally
by adding only the ith vertex in a given row. Organising the pairs of index
values in binary order (00, 01, 10, 11) this reads explicitly

R = I ⊗ · · · I ⊗


0
√
z2
√
z1 0√

z1 0 0 0√
z2 0 0 0
0 0 0 0

⊗ I · · · ⊗ I , (3.34)

where the identity matrices mean that the action elsewhere in the tensor
product of states is trivial.

Before building a row of the lattice, one needs to insert the leftmost hor-
izontal space—sometimes called auxiliary space—corresponding to the vari-
able µ1. Then follows the action of m factors of Rβi,µi+1;µi,αi , each propagat-
ing an αi to a βi, starting by i = 1 and ending by i = m. And finally the
rightmost horizontal space, corresponding to µm+1, must be removed. For
free boundary conditions in the space direction the insertion and removal of
the auxiliary space simply amounts to enforcing µ1 = µm+1 = 0. Periodic
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boundary conditions are slightly more tricky, and require allowing for both
possibilities µ1 = 0, 1 in the insertion, keeping a copy of µ1 when acting
with the factors of R, and finally enforcing µ1 = µm+1 upon removal of the
auxiliary space. To say it shortly, one “traces over the auxiliary space”.

The advantage of this procedure in numerical calculations is that each
application of R generates at most 2 out-states for each in-state, and hence
takes time proportional to the dimension of the state space. If the entire T
were applied at once, each in-state would produce an exponentially large (in
m) number of out-states.

3.6 Sector decomposition

Naively it appears that dim T = 2m. The effective dimension is however
greatly reduced by exploiting the conservation of strings. Let the number
of strings be s = m/2 + Q, with Q = −m/2, . . . ,m/2, and denote the
corresponding block in the transfer matrix by T (Q). We have then

T =

m
2⊕

Q=−m
2

T (Q) . (3.35)

Diagonalising T amounts to diagonalising separately each term T (Q)—sometimes
called a sector—in the direct sum. The states contributing to T (Q) can be
specified by giving the position of the strings, whence

dim T (Q) =

(
m

m/2 +Q

)
. (3.36)

An explicit characterisation of the row states follows by noting that that

Q =
∑
i odd

αi −
∑
i even

αi . (3.37)

In terms of the height mapping, the meaning of the conserved “charge”
Q is the height difference ∆h between the left and right rims of the lattice.
Obviously for free time-like boundary conditions only the Q = 0 sector will
contribute to Zmn(z1, z2), whereas for periodic time-like boundary conditions
all sectors participate.

The sectors with Q 6= 0 can be used to define correlation functions. For
instance, a monomer defect leads to ∆h = 1. The exponential decay of the
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monomer-monomer correlation function C(n) in a cylinder geometry (m fixed
and n→∞) is given by the ratio of the largest eigenvalues

C(n) ∼

(
Λ

(Q=1)
max

Λ
(Q=0)
max

)n

(3.38)

of the transfer matrix sectors T (1) and T (0). Using a standard CFT result
(viz., conformally mapping the cylinder to the complex plane) this can be
used to infer the corresponding critical exponent X(0, 1) as in (2.16). This
requires obviously finding the m→∞ limit of the participating eigenvalues,
which can be achieved by using Bethe Ansatz techniques.

It is a useful exercise at this point to write down explicitly the row states
contributing to the sector Q = 0 for a moderately small system, say m = 4.

The six possible row states (α1, α2, α3, α4) of T (0) read:

(0, 0, 0, 0) (1, 1, 0, 0) (0, 0, 1, 1) (1, 0, 0, 1) (0, 1, 1, 0) (1, 1, 1, 1)

and the transfer matrix is

T (0) =


z2

1 z1z2 z1z2 z1z2 0 z2
2

z1z2 0 z2
2 0 0 0

z1z2 z2
2 0 0 0 0

z1z2 0 0 0 z2
2 0

0 0 0 z2
2 0 0

z2
2 0 0 0 0 0

 .

We can use (3.32) to compute Z44(1, 1). The result is

Z4,4(z1, z2) = z8
1 + 9z6

1z
2
2 + 16z4

1z
4
2 + 9z2

1z
6
2 + z8

2 .

and this agrees with the exact result (2.4). In particular Z44(1, 1) = 36.
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4 Ising model

The so-called Ising model was suggested by Wilhelm Lenz in 1920 [Le20] as
a simple model of ferromagnetism. The one-dimensional case was studied in
detail by Lenz’ Ph.D. student Ernst Ising in 1925 [Is25], who found that it
exhibits no phase transition5 at T > 0.

The situation is two dimensions is however much richer. The exact tran-
sition temperature on the square lattice was found in 1941 through a duality
argument by Hendrik Kramers and Gregory Wannier [KW41]. This was fol-
lowed by the exact solution for the free energy in 1944 by Lars Onsanger
[On44]. The expression for the spontaneous magnetisation

M =
(
1− (sinh(2βJ1) sinh(2βJ2))−2

) 1
8 (4.1)

and hence the exact value of the critical exponent β = 1
8

was announced by
Onsager in sibylline form in the discussion section at a conference in 1949
[On49], but a proof by Chen Ning Yang only appeared in written form in
1952 [Ya52].

Onsager’s solution in terms of quaternion algebras is not easy reading,
and it took researchers many years to extract from it the simplest and most
convenient formulation of the algebraic facts that make an exact solution
possible.6 Also, it was not easy to see if there was any hope of generalising
the solution to the experimentally most relevant case of three dimensions, or
to solve more general classes of models (such as the Potts model).

For these reason, many alternative—and simpler—solutions appeared
subsequently. Among the most influential and useful we can mention the
derivation of correlation functions in terms of Pfaffians by Montroll, Potts
and Ward [MPW63], and the formulation of the Ising model as a quantum
spin chain involving fermion operators

aa† + a†a = 1 (4.2)

by Schultz, Mattis and Lieb [SML64]. It is this latter work that most clearly
characterises the field-theoretical content of the Ising model: it is a theory
of free fermions. The exact way in which the fermion sign problem is solved

5Perhaps as a consequence, he then decided to quit physics!
6With hindsight, one can now see in Onsager’s paper [On44] the germs of what was

later to be known as the Yang-Baxter equations—the most important ingredient in the
study of integrable systems.
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in the quantum spin chain makes precise the current understanding that the
Ising model is not solvable in three or higher dimensions.

A closely related—but somehow simpler—fermionic formulation in terms
of Grassmann variables

aa∗ + a∗a = 0 (4.3)

was found by Berezin [Be69]. We shall present this approach (following
[Pl88]) below. A rather different alternative that makes direct contact with
Chapter 2 is an elegant reformulation by Kasteleyn [Ka63] of the Ising model
as a dimer covering problem.

In some sense, the Ising model is to statistical physics what the hydrogen
atom is to atomic physics. Although originally solved on a square lattice
with periodic boundary conditions, the Ising model remains solvable when
defined on other lattices, or when subjected to various kinds of modifications
(such as the inclusion of certain interactions with the boundary or certain
multi-spin interactions). For this reason it roles as a testing bed on which
new theoretical ideas, approximation schemes or numerical calculations can
be tried out.

Note also that despite of all the activity mentioned above (see the book
[MW73] for a rather complete account as of 1973), seemingly simple questions
about the Ising model remain unanswered to this day. For example, an exact
solution in a rectangle with free boundary conditions does not seem to have
been uncovered yet.

4.1 Duality transformation

The simplest two-dimensional version of the Ising model is defined on the
square lattice through the Hamiltonian

H = −
∑
m,n

(J1σm,nσm+1,n + J2σm,nσm,n+1) , (4.4)

where J1 (resp. J2) measures the aligning interaction between horizontal
(resp. vertical) neighbouring spins. The goal is then to compute the par-
tition function

Z =
∑
{σ}

exp (−βH) , (4.5)

the sum being over all σm,n = ±1, as well as various correlation functions.
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Unless stated otherwise, we consider doubly periodic boundary condi-
tions. In some of the arguments we shall—just for the sake of notational
simplicity—consider the isotropic case J1 = J2 ≡ J and write the set of
nearest neighbours 〈ij〉.

4.1.1 High-temperature expansion

Since σi,j = ±1 takes only two different values, we have the identity

exp(βJσiσj) = cosh(βJ) + sinh(βJ)σiσj = cosh(βJ) (1 + wσiσj) , (4.6)

where w = tanh(βJ). The partition function then reads

Z = (cosh βJ)2N
∑
{σ}

∏
〈ij〉

(1 + wσiσj) , (4.7)

where 2N is the number of edges of a square lattice with N vertices.
A graphical representation can be associated with the development of

the product as follows. We color any given edge if the term wσiσj is taken,
and leave the edge empty if we take the term 1. The contribution of graphs
in which any vertex is incident on an odd number of coloured edges then
vanishes upon taking the sum

∑
{σ}. In other words, non-zero contributions

correspond to graphs consisting of closed polygons (which have the possibility
of touching at corners, i.e., to have coordination number 4).

This leads to

Z = 2N(cosh βJ)2N

N∑
p=0

w2pgN(p) , (4.8)

where gN(p) is the number of closed (not necessarily connected) polygons of
total length 2p that can be drawn on a square lattice of N vertices. This is
often referred to as a high-temperature expansion, since w = tanh(βJ)� 1
when βJ � 1, but we stress that this is an exact rewriting of Z that holds
for any β.

4.1.2 Low-temperature expansion

On the other hand, one can expand Z around one of the the totally or-
dered states, say σ ≡ 1. The excitations are then domain walls surrounding
domains of the opposite spin value (σ = −1).
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The domain walls live on the dual lattice, but since this is again a square
lattice, the walls are exactly the same polygons as before. The totally ordered
state has energy −2J ×N and an excitation raises this by 2J times the total
length of the polygons. Hence

Z = (e2βJ)N(cosh βJ)2N

N∑
p=0

w2pgN(p) (4.9)

with w = exp(−2βJ).

To have a precise definition of gN(p) one needs to specify the boundary
conditions. If we take free boundary conditions, the low-temperature expan-
sion (4.9) around the ordered state σ = 1 is obtained by surrounding the
finite system by a layer of fictitious spins σ0 = 1 on the boundary. In par-
ticular, the other ordered state σ = −1 will define a polygon that surrounds
the entire system.

Suppose on the other hand that one wishes to work on a finite lattice
with doubly periodic boundary conditions. When the size of the polygons
becomes comparable to the size of the lattice, the length 2p is ambiguous
since one may “wrap” the polygon around a periodic direction. To keep
things well defined in that case, the limit of an infinitely large lattice should
therefore be taken before considering polygons of arbitrarily large p.

4.1.3 Duality relation

Up to unimportant multiplicative factors, the partition functions in the high-
temperature expansion at inverse temperature β and in the low-temperature
expansion at β∗ therefore coincide, provided that

exp (−2β∗J) = tanh(βJ) . (4.10)

This is a duality relation relating exactly the partition functions at high and
low temperatures. Equivalently this can be rewritten

sinh(2βJ1) sinh(2β∗J2) = 1 , (4.11)

where we have reintroduced the distinction between horizontal and vertical
couplings.
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The duality relation permits us to determine the critical temperature
exactly. Namely, if there is a singularity in logZ(β) for some β, there should
be another singularity with the same critical exponents at β∗. If we assume
that the Ising model has a unique critical point βc, we must conclude that it
is given by the fixed point condition β = β∗. Thus sinh(2βcJ) = 1, or

βcJ =
1

2
log
(√

2 + 1
)

= 0.440 686 · · · . (4.12)

There is a nice generalisation of the argument to the Q-state Potts model,
defined by

H = −JPotts

∑
〈i,j〉

δ(σi, σj) (4.13)

and σi = 1, 2, . . . , Q. Note that for Q = 2 and JPotts = 2J this is equivalent
to the Ising model. The self-duality criterion reads in this case

βcJPotts = log
(√

Q+ 1
)
. (4.14)

Regular lattices other than the square lattice are not self-dual. Therefore,
the duality argument related the partition function Z(β) of the original model
to the partition function on the dual lattice Z∗(β∗). A duality relation can
only be extracted if there is some independent means of relating Z∗(β∗) to

a partition function Z(β̃) again defined on the original lattice. The critical

point βc is then determined by β = β̃.

In the case of the triangular lattice, this can be done by performing a
partial summation (decimation) over the spins on the even sublattice of the
dual, hexagonal lattice. This is known as a star-triangle transformation.

Such transformations were first used by Kennelly [Ke99] as early as 1899
in order to simplify networks of electrical resistors. They are now seen as the
precursors of the celebrated Yang-Baxter equations in the theory of integrable
systems.

The argument for the Ising model can again be generalised to the Potts
model. In terms of the variable v = exp(βJPotts)− 1 the result is

v3
c + 3v2

c = Q . (4.15)
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Figure 11: Relation between polygon configurations on the square lattice
(left) and dimer coverings on a decorated square lattice (right).

For the Ising case Q = 2, two of the solutions to this cubic read
exp(2βcJ) = ±

√
3. The sign is of no importance, since the length of do-

main walls on the dual, hexagonal lattice is necessarily even. Hence

βcJ =
1

4
log 3 = 0.274 653 · · · . (4.16)

That this is less than the result (4.12) on the square lattice makes perfect
sense, since it is easiar to align spins on a triangular lattice, due to the larger
number of nearest neighbours.

The last solution to (4.15) for Q = 2 is exp(2βcJ) = 0. This antiferromag-
netic problem at zero temperature is actually quite interesting, since it means
sending to zero the Boltzmann weight of neighbouring spins that align. On
the triangular lattice it is not possible to avoid aligned neighbouring spins
(think of the configurations around one lattice face), and the best one can
do is to forbid any configuration in which the three spins around a face are
aligned. The ground state is thus not unique, but a linear combination of all
states with no aligned faces. This is an interesting combinatorial problem,
which is critical and corresponds to a universality class different from that
of the usual Ising model.

4.2 Relation to dimer coverings

The Ising model, viewed as polygon configurations on the square lattice, can
be related to dimer configurations on a decorated square lattice, as shown in
Fig. 11. In each line, the occupation of external edges by polygons or dimers
is identical.

There appears to be two problems about this bijection. First, the cor-
respondence is not bijective, since a vertex with no polygons corresponds
to three (not one) dimer configurations on the internal decoration. Second,
the decorated lattice is non-planar and so it is not guaranteed to possess a
Kasteleyn orientation.

Fortunately it turns out that these two apparent complications compen-
sate one another, resulting in an exact equivalence. To see this, consider
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Figure 12: An oriented square lattice that permits us to solve the square-
lattice Ising model as a dimer covering problem.

the orientation of the decorated lattice shown in Fig. 12. One can verify
that with this orientation the orientation parity of all even cycles without
self-intersections is odd. Thus, the orientation parity of the transition cycles
connecting non-intersecting dimer configurations is odd as required. On the
other hand, in the third line of Fig. 11, the orientation parity connecting
either of the first two configurations with the third one is even, meaning that
the third configuration is counted with a minus sign. This implies that the
total count of the three configurations is 1 + 1 − 1 = 1, and the bijection
between polygon configurations and dimer coverings is established.

One can write down the matrix elements d(k, k′) of the matrix D by
using the orientation of Fig. 12. When doing this, one can readily distinguish
horizontal and vertical couplings, as in (4.4). It turns out that D is not easily
diagonalised for an M ×N lattice with free boundary conditions. However,
on the torus this is easily done (as usual one needs then four Pfaffians). Going
through the analysis one finds finally the same expression for the free energy
in the M,N →∞ limit as obtained by other methods [On44, SML64, Be69].

The problem of computing the Ising partition function on a rectangle
with free boundary conditions appears to be an open problem to this date.
It can however be done in the conformal limit [KV92].

The configurations of the zero-temperature antiferromagnetic Ising model
on the triangular lattice, discussed after (4.15), are bijectively related to
dimer coverings of the hexagonal lattice.

4.3 Solution using Grassmann variables

We now present a detailed solution of the Ising model using the rather dif-
ferent approach of Grassmann integrations [Be69]. The main motivation for
this approach is that it will enable us to make a precise connection between
the Ising model and free fermions. More generally, it is always convenient to
understand exact solvability as the consequence of some underlying algebraic
structure, and we want to make this algebraic link clear.
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σm,n σm+1,n

σm+1,n+1

(a)

σm,n σm+1,n

σm+1,n+1

(b)

σm,n σm+1,n

σm+1,n+1

τm,n

(c)

σm,n σm+1,n

σm+1,n+1

(d)

Figure 13: Four possible choices for the interactions within an elementary
cell. This permits us to treat the a) square, b) triangular and c) hexagonal
lattices in one single calculation. In d) the grey region stands for an arbitrary
interaction between pairs of spins, possibly including one or more internal
spins τ .

Rather than restricting to the square-lattice Hamiltonian (4.4) we might
as well consider a more general situation [Pl88] in which a general class of
interactions between pairs of spins, all situated within the shaded triangle
in Fig. 4.3.d, take place within the elementary cells of an underlying square
lattice.

Define the normalised trace over a spin σm,n = ±1 at lattice position
(m,n) as

Tr
σm,n

(· · · ) =
1

2

∑
σm,n=±1

(· · · ) (4.17)

and the normalised trace over all spins on the M ×N lattice as

Tr
σ

=
M∏
m=1

N∏
n=1

Tr
σm,n

. (4.18)

4.3.1 Parameterisation of the chosen lattice

We first show that the partition function of any Ising model with interactions
as in Fig. 4.3 can be written, up to an unimportant multiplicative factor, as

Z =Tr
σ

{∏
mn

(α0 + α1σ1σ2 + α2σ2σ3 + α3σ1σ3)mn

}
, (4.19)
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where
(σ1, σ2, σ3)mn = (σm,n, σm+1,n, σm+1,n+1) (4.20)

and αi is a set of four coefficients which can easily be determined for any
given lattice.

Consider as an example the triangular lattice (see Fig. 4.3.b) with Hamil-
tonian

H = −
∑
m,n

(J1σm,nσm+1,n + J2σm+1,nσm+1,n+1 + J3σm,nσm+1,n+1) . (4.21)

Using the identity (4.6) three times, we find that the Boltzmann weight of
an elementary cell is(
eβ(J1σ1σ2+J2σ2σ3+J3σ1σ3)

)
mn

= R [(1 + t1σ1σ2)(1 + t2σ2σ3)(1 + t3σ1σ3)]mn ,(4.22)

where we have set

R = cosh(βJ1) cosh(βJ2) cosh(βJ3) ,

ti = tanh(βJi) , for i = 1, 2, 3 .

Expanding (4.22), and using (σi)
2 = 1, we find that indeed the partition

function on the triangular lattice reads

Ztri = (2R)MNZ , (4.23)

where Z is the general form (4.19) with coefficients

α0 = 1 + t1t2t3 ,

αi = ti + ti+1ti+2 , for i = 1, 2, 3 (mod 3) . (4.24)

In the most general setting of Fig. 4.3.d one must first obtain the form
(4.19) by tracing over the spins in the interior of the shaded region. The
simplest example of this is the hexagonal lattice, shown in Fig. 4.3.c. It is
easily shown that

Zhex = (4R)MNZ , (4.25)

with R as before and coefficients

α0 = 1 ,

αi = titi+1 , for i = 1, 2, 3 (mod 3) . (4.26)
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4.3.2 Grassmann variables

We now introduce two Grassmann variables per site, cm,n and c∗m,n. By
definition, any two Grassmann variables anticommute

cicj + cjci = 0 , (4.27)

and in particular these variables are nilpotent

c2
i = c2

j = 0 . (4.28)

Any function of Grassmann variables is defined by its Taylor expansion, and
because of the nilpotency such expansions are automatically truncated to the
first order. The most general function of k Grassmann variables is defined
by the coefficients of the 2k possible monomials, e.g.,

f(c, c∗) = f0 + f1c+ f2c
∗ + f3cc

∗ . (4.29)

Finally we introduce an integration measure, such that∫
dc · 1 = 0 ,

∫
dc · c = 1 (4.30)

and extended by linearity. The differentials dc are themselves Grassmann
variables and thus anticommute. Note that Grassmann integration works
like ordinary differentiation.

In particular one finds∫
dc∗ dc eλcc

∗
f(c, c∗) = λf0 + f3 . (4.31)

4.3.3 Density matrix

In parallel with the trace over spin variables (4.17)–(4.18) we introduce the
trace over a pair of Grassmann variables

Tr
cm,n

(· · · ) =

∫
dc∗m,n dcm,n eλcm,nc

∗
m,n(· · · ) (4.32)

as a Gaussian integral with some weight factor λ. We shall also need the
trace over all 2MN Grassmann variables, and it turns out that the relevant
weight factor is λ = α0. We therefore define

Tr
c

(· · · ) =

∫ M∏
m=1

N∏
n=1

dc∗m,n dcm,n eα0cm,nc∗m,n (· · · ) . (4.33)
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Because of the anticommuting nature of the differentials, it is quite im-
portant to understand what order of integrations is implied by our notation.
In (4.32) the first integral is over dcm,n, followed by a second integration over
dc∗m,n. More generally, the first integration is over the rightmost differential.
On the other hand, any fixed pair of Grassmann variables commutes with the
whole algebra, so the order in which the product in (4.33) is written out with
respect to the indexing variable has no importance. We shall soon encounter
situations where this order is of the highest importance, so let us define that∏M

m=1 means writing the first term (with m = 1) to the left. Sometimes we
shall need the opposite order, and in that case we would write

∏1
m=M .

Let us first concentrate on the Boltzmann weight of a single elementary
cell in (4.19), viz.

(P123)mn = (α0 + α1σ1σ2 + α2σ2σ3 + α3σ1σ3)mn . (4.34)

This can be rewritten in factorised form

(P123)mn =

∫
dc∗mn dcmneα0cmnc∗mn B(1)

m,nB
(2)
m+1,nB

(3)
m+1,n+1 , (4.35)

where we have defined

B(1)
m,n = 1 +

α1√
η
cm,nσm,n ,

B
(2)
m+1,n = 1 +

√
η(cm,n + c∗m,n)σm+1,n , (4.36)

B
(3)
m+1,n+1 = 1 +

α2√
η
c∗m,nσm+1,n+1 .

We have here defined η = α1α2

α3
. Note that in these expressions for B, the

subscript refers to the spin variable σ, whereas the subscript of the fermion
variables c is always m,n.

To prove this, we first rewrite (4.34) as

P123 = (α0 − η) + η

(
α1

η
σ1 + σ2

)(
σ2 +

α2

η
σ3

)
,

where the subscript m,n has be omitted. By (4.31) we have

P123 =

∫
dc∗ dc e(α0−η)cc∗

[
1 + c

√
η

(
α1

η
σ1 + σ2

)]
×[

1 + c∗
√
η

(
σ2 +

α2

η
σ3

)]
.
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Using now the nilpotency, each [· · · ] can be factorised:[
1 + c

√
η

(
α1

η
σ1 + σ2

)]
=

(
1 + c

α1√
η
σ1

)
(1 + c

√
ησ2)[

1 + c∗
√
η

(
σ2 +

α2

η
σ3

)]
= (1 + c∗

√
ησ2)

(
1 + c∗

α2√
η
σ3

)
.

Multiplying now the 2nd and 3rd factors

(1 + c
√
ησ2) (1 + c∗

√
ησ2) = 1 +

√
η(c+ c∗)σ2 + ηcc∗

one gets a commuting term ηcc∗ which can be absorbed into the integration
measure:

e(α0−η)cc∗ + ηcc∗ = eαcc
∗
.

Assembling the pieces, this implies

P123 =

∫
dc∗ dc eα0cc∗

(
1 + c

α1√
η
σ1

)
×

(1 +
√
η(c+ c∗)σ2)

(
1 + c∗

α2√
η
σ3

)
.

This establishes the factorisation (4.35)–(4.36).

In terms of the trace (4.33) we have therefore

Z = Tr
σ
Q̂ , (4.37)

Q̂ = Tr
c

{∏
m,n

(
B(1)
m,nB

(2)
m+1,nB

(3)
m+1,n+1

)}
, (4.38)

where Q̂ will be referred to as the density matrix.

4.3.4 Mirror factorisation

The strategy will now be to perform Tr
σ

while keeping Tr
c

, so as to obtain

a Grassmann representation of Z. This cannot be done directly with the

45



form (4.38), since factors referring to the same σm,n do not occur in adjacent
positions in the product (cf. the different subscripts on the B factors). We
therefore first aim at rearranging the product (4.38) in order to obtain the
required adjacency.

It is convenient in this subsection to omit writing the integration over
Grassmann variables. We thus write instead of (4.35)

(P123)mn = B(1)
m,nB

(2)
m+1,nB

(3)
m+1,n+1 , (4.39)

keeping in mind that the result will eventually be integrated. Note that the
Grassmann pair (cm,n, c

∗
m,n) occurs only in this factor, and since terms in cm,n

and c∗m,n will vanish under the integration—as in (4.31)—eventually only the
commuting terms 1 and cm,nc

∗
m,n will matter anyway. In this sense, the factor

(4.39) can be considered to commute with the whole algebra.
Suppose that the products OiO∗i are commuting terms, whereas individ-

ual factors are not. Then we can write

(O1O∗1)(O2O∗2)(O3O∗3) = (O1O∗1)(O2(O3O∗3)O∗2) = (O1(O2(O3O∗3)O∗2)O∗1)

and more generally

L∏
i=1

OiO∗i =
L∏
i=1

Oi ·
1∏
i=L

O∗i . (4.40)

Using this property repeatedly suffices to bring (4.38) into the desired form.

Let us see in details how this is done. It is convenient sometimes to include
factors B

(i)
m,n in the product for which the indices m = 0 or m = M + 1 (and

n = 0 or n = N + 1). Imposing formally that spins “beyond the boundary”

vanish (σm,n = 0) we have B
(i)
m,n = 1, and the inclusion of such factors does

not alter the result.
Consider first the product of a row of (P123)mn for fixed n. Using (4.40)

we have

M∏
m=0

(P123)mn =
M∏
m=0

B(1)
m,nB

(2)
m+1,n ·

0∏
m=M

B
(3)
m+1,n+1 .

In the both factors on the right-hand side we can move the parenthesis and
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eliminate boundary terms:

M∏
m=0

B(1)
m,nB

(2)
m+1,n = B

(1)
0,n ·

M∏
m=1

B(2)
m,nB

(1)
m,n ·B

(2)
M+1,n =

M∏
m=1

B(2)
m,nB

(1)
m,n ,

0∏
m=M

B
(3)
m+1,n+1 = B

(3)
M+1,n+1 ·

1∏
m=M

B
(3)
m,n+1 =

1∏
m=M

B
(3)
m,n+1 . (4.41)

Thus we have for one row (neglecting boundary effects)

M∏
m=1

(P123)mn =
M∏
m=1

B(2)
m,nB

(1)
m,n ·

1∏
m=M

B
(3)
m,n+1 ,

where now the m indices are nicely organised.
The n indices are still not the same, but this is settled by taking the

product over n and rearranging the expression in the same way as we just
saw. The result is

N∏
n=1

M∏
m=1

(P123)mn =
N∏
n=1

[
1∏

m=M

B(3)
m,n ·

M∏
m=1

B(2)
m,nB

(1)
m,n

]
. (4.42)

Putting back the trace over Grassmann variables, the density matrix
therefore has the mirror factorised form

Q̂ =Tr
c

{
N∏
n=1

[
1∏

m=M

B(3)
m,n ·

M∏
m=1

B(2)
m,nB

(1)
m,n

]}
. (4.43)

4.3.5 Fermionic representation of Z

At the junction of the two products in (4.43) we have three B with the same
subscripts (m,n) = (1, n), i.e., referring to the same spin σm,n. We can now
trace over that spin:

Tr
σm,n

{
B

(3)
m,nB

(2)
m,nB

(1)
m,n

}
= 1

2

∑
σm,n=±1

(
1 + α2√

η
c∗m−1,n−1σm,n

)
×(

1 +
√
η(cm−1,n + c∗m−1,n)σm,n)

) (
1 + α1√

η
cm,nσm,n

)
.
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Only terms in 1 and σ2
m,n survive the trace:

. . . = 1 + (cm−1,n + c∗m−1,n)(α1cm,n − α2c
∗
m−1,n−1) + α3c

∗
m−1,n−1cm,n

= exp
[
α3c

∗
m−1,n−1cm,n + (cm−1,n + c∗m−1,n)(α1cm,n − α2c

∗
m−1,n−1)

]
.

For that same reason, this expression is quadratic in the fermion operators,
hence commutes with the algebra. It can therefore be taken out in front of
the expression.

In the remainder of the product the three B factors with (m,n) = (2, n)
are now adjacent, and we can trace next over that σm,n. Repeating the
operation until nothing remains, we arrive at a purely fermionic expression
for the partition function

Z =

∫ M∏
m=1

N∏
n=1

dc∗m,n dcm,n exp

{
M∑
m=1

N∑
n=1

[
α0cm,nc

∗
m,n (4.44)

+ (cm−1,n + c∗m−1,n)(α1cm,n − α2c
∗
m−1,n−1) + α3c

∗
m−1,n−1cm,n

]}
.

4.3.6 Diagonalisation and thermodynamical limit

One can now diagonalise by performing a discrete Fourier transformation of
the Grassmann variables. Let us suppose that M = N ≡ L:

cmn =
1

L

L−1∑
p=0

L−1∑
q=0

c̃pq exp

(
2πi

L
(mp+ nq)

)
, (4.45)

c∗mn =
1

L

L−1∑
p=0

L−1∑
q=0

c̃∗pq exp

(
−2πi

L
(mp+ nq)

)
. (4.46)

This is a rather standard exercise. Neglecting a few delicate effects having
to do with the boundary, the result is

Z =
L−1∏
p=0

L−1∏
q=0

[(
α2

0 + α2
1 + α2

2 + α2
3

)
− 2(α0α1 − α2α3) cos

(
2πp

L

)
(4.47)

− 2(α0α2 − α1α3) cos

(
2πq

L

)
− 2(α0α3 − α1α2) cos

(
2π(p+ q)

L

)]1/2

.
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In the thermodynamical limit we then have for the free energy

logZ

L2

L→∞
=

1

2

∫ 2π

0

dp

2π

∫ 2π

0

dq

2π
(4.48)

log
[(
α2

0 + α2
1 + α2

2 + α2
3

)
− 2(α0α1 − α2α3) cos p

−2(α0α2 − α1α3) cos q − 2(α0α3 − α1α2) cos(p+ q)] .

This expression can be specialised to yield the result for the square, tri-
angular, hexagonal and other lattices by inserting the coefficients αi.

One could think that this exact result could be converted into an enumer-
ation of the lattice polygons of the low/high temperature expansions. This
does not appear to be feasible in practice.

4.3.7 Critical point

There are several obvious symmetries in the expressions (4.47)–(4.48) allow-
ing arbitrary permutations of the αi and sign changes of any two of them,
provided that one simultaneously shifts the integration angles p and q. A less
obvious symmetry is to change αi to the conjugated parameters α∗i defined
by 

α∗0
α∗1
α∗2
α∗3

 =
1

2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1



α0

α1

α2

α3

 . (4.49)

Specialising to the square and triangular lattices, this transformation turns
out to coincide with the Kramers-Wannier duality transformation.

At the critical point, (4.48) must exhibit a singularity. A moment’s re-
flection shows that this can happen if and only if the argument Q(p, q) of
the logarithm vanishes for certain exceptional modes (p, q) = (0, 0), (0, π),
(π, 0), (π, π).7 One can check the following rewriting:

Q(p, q) =
[
ᾱ2

0 ᾱ2
1 ᾱ2

2 ᾱ2
3

] 
1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1




1
cos p
cos q

cos(p+ q)

 , (4.50)

7This will become clear when we compute the singular part of the free energy fsing
below.
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where we have defined

ᾱi = α0 − α∗i , for i = 0, 1, 2, 3 . (4.51)

In the product of the matrix and the right vector, three out of four trigono-
metric polynomials (i.e., the terms with coefficient ᾱ2

i for i = 0, 1, 2, 3) vanish
at any one of the exceptional (p, q) values. Therefore Q(p, q) = 0 if and only
if the prefactor (α0−α∗i )2 of the last trigonometric polynomial vanishes. The
criticality criterion can thus be written in compact form as

ᾱ0ᾱ1ᾱ2ᾱ3 = 0 (4.52)

or equivalently
α0α1α2α3 = α∗0α

∗
1α
∗
2α
∗
3 . (4.53)

4.4 Critical exponents

The singularity in the free energy at the transition can be inferred by in-
tegrating (4.48) around one of the exceptional (p, q) values. Consider for
instance (p, q) near (0, 0) and small (α0−α∗0)2. Taylor expanding the cosines
to second order8 we find for the free energy

−βf =
1

8π2

∫ ∫
0≤p2+q2≤r2

dp dq (4.54)

log

[
4(α0 − α∗0)2 + A1

p2

2
+ A2

q2

2
+ A3

(p+ q)2

2

]
+ · · ·

with A1 = 2(α0α1 − α2α3), A2 = 2(α0α2 − α1α3), and A3 = 2(α0α3 − α1α2).
Integrating this yields

−βf =
(2ᾱ0)2

4π
√
A1A2 + A2A3 + A1A3

log

(
1

(2ᾱ0)2

)
+ · · · , (4.55)

where the argument of the square root can be evaluated at criticality.
More generally, for the critical point ᾱi = 0 the dominant singular be-

haviour of the free energy reads

−βfsing =
(2ᾱi)

2

16π
√

(α0α1α2α3)c

log

(
1

(2ᾱi)2

)
. (4.56)

8It is indeed the absense of first order terms that leads to the singular behaviour.
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We infer that the singularity of the specific heat C = −β2 ∂2

∂β2 (βf) is

Csing
T→Tc∼ Ac log

∣∣∣∣ Tc

T − Tc

∣∣∣∣ , (4.57)

where the specific-heat critical amplitude is

Ac =
β2

c

π
√

(α0α1α2α3)c

(
dᾱj(β)

dβ

)2

c

. (4.58)

Thus, the standard critical exponent α = 0, but with a logarithmic divergence
(i.e., weaker than the usual power-law one).

The Grassmann approach can also be used to compute correlation func-
tions. For example, the one-point function gives the spontaneous magnetisa-
tion, M = 〈σm,n〉. One finds [Pl88] a surprisingly simple expression for the
eight power:

M8 =

{
1− α∗0α

∗
1α
∗
2α
∗
3

α0α1α2α3
for T ≤ Tc

0 for T ≥ Tc

(4.59)

This implies that

M
T→Tc∼

∣∣∣∣T − Tc

Tc

∣∣∣∣1/8 , (4.60)

so that the critical exponent β = 1
8
.

4.5 Fermionic action

To exhibit precisely the fermionic nature of the Ising model, we wish to
find the continuum limit of the action S appearing under the exponential in
(4.44).

We first rewrite the expression for S so that finite differences appear
whereever possible:

S =
∑
m,n

{
m̃cm,nc

∗
m,n + α1cm,n(c∗m,n − c∗m−1,n)

+ α2cm,n(c∗m,n − c∗m,n−1) + α3cm,n(c∗m,n − c∗m−1,n−1) (4.61)

+ α1cm,n(cm,n − cm−1,n) + α2c
∗
m,n(c∗m,n − c∗m,n−1)

}
, (4.62)
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where m̃ = α0 − α1 − α2 − α3 = 2ᾱ0. We have here used nilpotency and
anticommutativity, and some of the summation indices have been shifted by
one unit. Introduce now finite lattice derivatives

∂mxm,n = xm,n − xm−1,n , ∂nxm,n = xm,n − xm,n−1 , (4.63)

so that xm,n − xm−1,n−1 = (∂m + ∂n − ∂m∂n)xm,n. This gives

S =
∑
m,n

{m̃cmnc∗mn + λ1cmn∂mc
∗
mn + λ2cmn∂nc

∗
mn

− α3cmn∂m∂nc
∗
mn + α1cmn∂mcmn + α2c

∗
mn∂nc

∗
mn} , (4.64)

where λ1 = α1 + α3 and λ2 = α2 + α3.
We now take the continuum limit (m,n) → (x1, x2) ≡ x, so that ∂m →

∂
∂x1
≡ ∂1 and ∂n → ∂

∂x2
≡ ∂2. The continuum limit of the Grassmann

variables defines a two-component field: cmn → ψ(x) and c∗mn → ψ̄(x). This
leads to a slightly non-standard form of the fermionic action. However, if we
rotate the derivatives

∂ =
1

2
(∂1 − i∂2) , ∂̄ =

1

2
(∂1 + i∂2) (4.65)

and similarly rotate the field components, we arrive at

S =

∫
d2x

{
iMψ(x)ψ̄(x) + ψ(x)∂ψ(x) + ψ̄(x)∂̄ψ̄(x)

}
, (4.66)

with the rescaled mass

M =
α0 − α1 − α2 − α3(
2
√

(α0α1α2α3)c

)1/2
. (4.67)

Note that (4.66) has the standard form for the action of a Majorana fermion.
According to (4.52) the mass M vanishes at the critical point. We can

therefore conclude that the critical Ising model corresponds, in the continuum
limit, to a massless Majorana fermion. This furnishes a direct link between
the lattice model and (conformal) field theory.

We see moreover that all different lattices that we have treated on the
same footing are in the same universality class, since the coefficients αi only
enter into the mass M.
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Needless to say, one needs to be a little more careful when all the coupling
constants are not positive. For instance, it is an interesting exercise to track
down where the preceding argument should be changed when dealing with
antiferromagnetic cases, such as the T = 0 Ising model on the triangular
lattice (which is known to belong to a different universality class).
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5 Coordinate Bethe Ansatz

Given a 2D model of equilibrium statistical physics, one would like to com-
pute the partition function and certain correlation functions. This is rarely
possible on a finite lattice—with dimer coverings being a notable exception—
but in many cases exact results can be obtained in the thermodynamical limit.
The question arises under which conditions such computations are possible.

Via the transfer matrix formulation, a 2D model can be recast as the time
evolution of a 1D quantum spin chain. A first step in the analysis of a given
problem is to identify the particles being described by the spin chain as well
as their exact dynamics. The free energy and the correlation functions are
related in the usual way to the ground state and the excitations of the spin
chain Hamiltonian. The goal is then to diagonalise exactly this Hamiltonian,
i.e., to identify its eigenvectors and eigenvalues.

If there were only one particle in a spin chain with periodic boundary
conditions, its eigenvectors would be plane waves eikx of a certain momentum
k. When more than one particle is present, a product of plane waves would
be an appropriate wave function only if the particles moved independently.
This is of course not the case in any non-trivial model. But a natural idea,
pioneered by Bethe [Be31] in his 1931 paper on the Heisenberg model (also
known as the XXX spin chain), is to try an Ansatz of coupled plane waves.

In this chapter we shall illustrate this approach on a more general model,
known as the six-vertex model in its 2D incarnation, or equivalently as the
XXZ spin chain. This model has important relations to the Potts model and
to the Temperley-Lieb lattice algebra, as will be discussed in later chapters.

The six-vertex model was solved by Lieb [Li67]. It is a special case of the
eight-vertex model which was later solved by Baxter [Ba72].

The Bethe Ansatz technique comes in several variants. In this chapter we
focus on the so-called coordinate Bethe Ansatz, following roughly chapter 8 of
Baxter’s book [Ba82a]. The procedure is here to construct the eigenvectors
explicitly for n-particle states, by identifying the relations—known as the
Bethe Ansatz equations (BAE)—under which the so-called unwanted terms
cancel out. Studying in detail the cases n = 1 and n = 2 usually gives
crucial insight into the general form of these relations, and one proceeds to
the general case by reasonable guesswork (which for the simplest models can
be justified by detailed arguments).

In later chapters we shall rederive those results in an algebraic framework,
culminating in the so-called algebraic Bethe Ansatz. It will gradually emerge
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ω1 ω2 ω3 ω4 ω5 ω6

Figure 14: The allowed arrow arrangements (top) around a vertex that define
the six-vertex model, with the corresponding particle trajectories (bottom).

that the exact solvability of a model hinges on the possibility to factorise
any multi-particle scattering as a product of two-particle scatterings. This
solvability condition is encoded in the celebrated Yang-Baxter equation.

5.1 Six-vertex model

The six-vertex model is defined by placing arrows on the edges of a square
lattice, in such a way that every vertex is adjacent on two incoming and two
outgoing arrows. The six possible configurations around a vertex are shown
in the first line of Fig. 14 along with their respective Boltzmann weights
ω1, . . . , ω6. The corresponding energies are denoted εi, and we have ωi =
exp(− εi

kBT
). If there are ni vertices of type i on the given lattice, the goal

is to compute the asymptotic behaviour in the limit of a large lattice of the
partition function

Z =
∑

arrows

6∏
i=1

(ωi)
ni . (5.1)

In the transfer matrix formulation, we impose for the moment periodic
boundary conditions along the horizontal lattice direction. The row-to-row
transfer matrix then conserves the net arrow flux in the time direction. To
fully exploit this conservation law we move to an equivalent particle picture.
Recall that in the R-matrix factorisation of the transfer matrix, time flows in
the North-Eastern direction. We therefore define that an edge is occupied by
a particle if and only if it sustains a right-pointing or an up-pointing arrow.
This is shown in the second line of Fig. 14.

The resulting world-lines of particles are conserved, and moreover they
have a very simple dynamics. Following them from the bottom of the system
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Figure 15: A possible configuration of world-lines on a 4× 4 lattice.

to the top, they can only move up or to the right. This is illustrated in
Fig. 15.

The six-vertex model is solvable when the weights are chosen to be invari-
ant under a global reversal of arrows. The weights are traditionally denoted

ω1 = ω2 = a , ω3 = ω4 = b , ω5 = ω6 = c . (5.2)

Note however that since the arrow arrangement 5 (resp. 6) acts as a sink
(resp. source) of horizontal arrows, we must have the same number of each
in every line. In particular, n5 = n6. For any k 6= 0 we can therefore take
instead ω5 = kc and ω6 = k−1c without changing Z. This “gauge symmetry”
will turn out useful in later chapters.

5.2 Transfer matrix

The row-to-row transfer matrix T conserves the number n of world-lines when
going from one row to the next. The positions xi of the lines specifies a state
|x1, x2, . . . , xn〉, where we have assumed x1 < x2 < · · · < xn. The transfer
matrix element

〈y1, y2, . . . , yn|T |x1, x2, . . . , xn〉

equals the product of Boltzmann weights along the row, provided that the
state of the upper row 〈y1, y2, . . . , yn| is compatible with the state of the lower
row |x1, x2, . . . , xn〉. If the two states are not compatible, the matrix element
is defined to be zero.

The two states are compatible if and only if the positions in the upper
row yi interlace those in the lower row xi. The precise meaning of interlacing
is the following:
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x1 x2

y1 y2

x1 x2

y1 y2

Figure 16: The two ways in which 〈y1, y2, . . . , yn| can interlace |x1, x2, . . . , xn〉,
here shown for n = 2.

• If no line goes through the periodic lattice direction we have xi ≤ yi ≤
xi+1 for i = 1, 2, . . . , n− 1, and xn ≤ yn ≤ N .

• If a line goes through the periodic direction, we have 1 ≤ y1 ≤ x1, and
xi ≤ yi+1 ≤ xi+1 for i = 1, 2, . . . , n− 1.

By self-avoidance, at most one line can go through the periodic direction.
The two possible interlacings are shown for n = 2 in Fig. 16.

We now wish to construct n-particle states

|Ψn〉 =
∑

1≤x1<···<xn≤N

g(x1, . . . , xn)|x1, . . . , xn〉 , (5.3)

which are eigenvectors of T :

T |Ψn〉 = Λ|Ψn〉 . (5.4)

To this end we try an Ansatz of the form

g(x1, . . . , xn) =
∑
p∈Sn

Apz
x1

p(1)z
x2

p(2) · · · z
xn
p(n) , (5.5)

where the sum runs over all permutations p ∈ Sn of the particle labels
{1, 2, . . . , n}. The complex numbers zj are related to the so-called quasi-
momenta kj through the relation zj = exp(ikj). For the moment this Ansatz
can be considered loosely as “coupled plane waves”; we shall come back to
its physical interpretation in due course.

5.2.1 Sector with n = 0 particles

When n = 0, the unique state is completely empty. The horizontal row of
edges if either empty (i.e., completely filled with ω1 vertices) or filled by
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y = x
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y > x

x

y = x

x

y < x

Figure 17: The four possible transitions between row states in the n = 1
particle sector.

a horizontal line (i.e., completely filled with ω4 vertices). Thus T is one-
dimensional and takes the value

Λ = aN + bN . (5.6)

5.2.2 Sector with n = 1 particle

When n = 1, dimT = N . The eigenvectors (5.3) read |Ψ〉 =
∑

x g(x)|x〉,
and the Ansatz (5.5) is g(x) = zx. The particle at position x can undergo
four different processes as shown in Fig. 17. The eigenvalue equation (5.4)
projected on a basis state of the eigenvector (5.3) then becomes9

Λzx = aN−1bzx +
N∑

y=x+1

aN−(y−x+1)by−x−1c2zy

+ abN−1zx +
x−1∑
y=1

ax−y−1bN−(x−y+1)c2zy . (5.7)

Recalling now the geometric series

N2∑
n=N1

ωn =
ωN1 − ωN2+1

1− ω

the first sum in (5.7) reads

aN
(a
b

)x+1 ( c
a

)2
(
bz
a

)x+1 −
(
bz
a

)N+1

1− bz
a

, (5.8)

9To be precise, (5.7) contains the transition probabilities that x becomes y, hence it is
the transcription of 〈Ψn|T |x〉 = Λ〈Ψn|x〉.
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while the second sum is

bN
(a
b

)x+1 ( c
a

)2
(
bz
a

)1 −
(
bz
a

)x
1− bz

a

. (5.9)

Collecting everything, we first have the “wanted terms” multiplying aNzx.
They come from the first term in (5.7) and the first term in (5.8), and their
coefficient is

b

a
+

c2z

a(a− bz)
=
ab+ (c2 − b2)z

a(a− bz)
≡ L(z) . (5.10)

Another class of wanted terms, multiplying bNzx, comes from the third term
in (5.7) and the second term in (5.9). The coefficient of these terms is

a

b
− c2

b(a− bz)
=
a2 − c2 − abz
b(a− bz)

≡M(z) . (5.11)

The remaining terms, namely the second term in (5.8) and the first term in
(5.9), are “unwanted boundary terms” that read

ax−1bN−xc2z

a− bz
(1− zN) . (5.12)

The unwanted terms cancel out provided we impose the following condi-
tion on the allowed quasi-momenta:

zN = 1 . (5.13)

Note that this has precisely N solutions, and we have thus determined N
eigenvectors for the N -dimensional matrix T . Its eigenvalue is given by the
wanted terms and reads simply

Λ = aNL(z) + bNM(z) . (5.14)

5.2.3 Sector with n = 2 particles

When n = 2, dimT =
(
N
2

)
= N(N−1)

2
. The two possibilities that y1, y2 can

interlace x1, x2 are shown in Fig. 16. Let us define a function E(x, y) that
contains the weight of a world-line entering at x and exiting at y ≥ x

E(x, y) =

{
b
c

if y = x
cby−x−1 if y > x

(5.15)
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and another function D(y, x) giving the weight of the empty segment between
two world-lines

D(y, x) =

{
a
c

if x = y
cax−y−1 if x > y

. (5.16)

The eigenvalue equation (5.4) projected on one basis state |x1, x2〉 of the
eigenvector (5.3) then reads

Λg(x1, x2) =

x2∑
y1=x1

N∑
y2=x2

ax1−1E(x1, y1)D(y1, x2)E(x2, y2)caN−y2g(y1, y2)

+

x1∑
y1=1

x2∑
y2=x1

by1−1D(y1, x1)E(x1, y2)D(y2, x2)cbN−x2g(y1, y2) ,

where the two terms correspond to the situations shown in Fig. 16. Note
that the special cases when one of the x coincides with one of the y are
already provided for in the definitions of E(x, y) and D(y, x). However, the
double sums must be constrained to exclude terms with y1 = y2. This is best
done by first computing the sums without the constraint, then subtracting
off the disallowed contribution y1 = x2 = y2 to the first double sum, and
y1 = x1 = y2 to the second.

Despite of (5.5) we first insert the simper Ansatz

g(x1, x2) = A12z
x1
1 z

x2
2 .

It is convenient to introduce the short-hand notations

Lj ≡ L(zj) , Mj ≡M(zj) , ρj ≡ ρ(zj) =
c2zj

a(a− bzj)

and to define the function

Rj(x1, x2) = Lja
x2−x1zx1

j +Mjb
x2−x1zx2

j .

As before the terms coming from the constrained double summations are of
several types:
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Wanted terms

These wanted terms are those proportional to zx1
1 z

x2
2 :

A12

(
aNL1L2 + bNM1M2

)
zx1

1 z
x2
2

and they determine the eigenvalue

Λ = aNL1L2 + bNM1M2 . (5.17)

Unwanted internal terms

There are of the form (z1z2)x2 or (z1z2)x1 . One can verify that both such
terms are proportional to

M1L2 − 1 = − c2s12

(a− bz1)(a− bz2)
, (5.18)

where

s12 = 1− 2∆z2 + z1z2 , (5.19)

∆ =
a2 + b2 − c2

2ab
. (5.20)

The quantities s12 (scattering phase) and ∆ (anisotropy parameter) play a
very important role in the solution of the six-vertex model, and in the physical
interpretation of the scattering theory described by the Bethe Ansatz. We
shall come back to this later.

Unwanted boundary terms

These come from the y2 = N or the y1 = 1 summation limits and their sum
is

A12a
x1bN−x2

(
R2(x1, x2)ρ1 −R1(x1, x2)ρ2z

N
2

)
. (5.21)

Elimination of the unwanted terms

The justification of the complete Ansatz (5.5) is precisely that it permits us
to eliminate the unwanted terms. We therefore set

g(x1, x2) = A12z
x1
1 z

x2
2 + A21z

x1
2 z

x2
1 .
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The unwanted internal terms cancel under the condition

s12A12 + s21A21 = 0 . (5.22)

The sum of the unwanted boundary terms is

ax1bN−x2
{
ρ2R1(x1, x2)(A21 − zN2 A12) + ρ1R2(x1, x2)(A12 − zN1 A21)

}
and this will vanish under the conditions

zN1 =
A12

A21

= −s21

s12

,

zN2 =
A21

A12

= −s12

s21

. (5.23)

5.3 Bethe Ansatz equations

The structure of the solution for the case of general n is very much visible
in the above detailed treatment for n = 2. By generalising the argument (or
proceding by educated guesswork) it emerges that the eigenvalue is

Λ = aNL1L2 · · ·Ln + bNM1M2 · · ·Mn . (5.24)

The condition for the vanishing of the unwanted internal terms becomes

spj ,pj+1
Ap1,...,pj ,pj+1,...,pn + spj+1,pjAp1,...,pj+1,pj ,...,pn = 0 (5.25)

for each j = 1, 2, . . . , n − 1 and all permutations p ∈ Sn. Finally, the
condition for the vanishing of the unwanted boundary terms reads

zNp1
=
Ap1,p2,...,pn−1,pn

Ap2,p3,...,pn,p1

(5.26)

for all p ∈ Sn.

There is a nice alternative way of deriving (5.26) using the consideration
of translational invariance. Indeed the eigenstate must be unchanged upon
taking any of the particles through the periodic boundary condition and back
to its original position. In particular

g(x1, x2, . . . , xn−1, xn) = g(x2, x3, . . . , xn, x1 +N) . (5.27)
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Note that this respects our conventions that the arguments of g must be
written in increasing order. Using this, the form of the Ansatz (5.5) implies
(5.26).

To see this, consider for simplicity the case of n = 3 particles. We have
then

g(x1, x2, x3) = A123z
x1
1 z

x2
2 z

x3
3 + A132z

x1
1 z

x2
3 z

x3
2 + . . . ,

g(x2, x3, x1 +N) = A231z
x2
2 z

x3
3 z

x1+N
1 + A321z

x2
3 z

x3
2 z

x1+N
1 + . . . .

Since this must be valid for all xj we can identify terms

A231z
N
1 = A123 ,

A321z
N
1 = A132 . (5.28)

This proves (5.26) for the case n = 3.

Obviously (5.25)–(5.26) provides many more equations that the n un-
known quasi-momenta z1, z2, . . . , zn. Generalising (5.19) we define

sij(zi, zj) = 1− 2∆zj + zizj . (5.29)

One then easily verifies that (5.25) is solved by

Ap1,p2,...,pn = εp
∏

1≤i<j≤n

spj ,pi , (5.30)

where εp is the signature of the permutation p ∈ Sn. Inserting this into
(5.26) gives

zNp1
= (−1)n−1

n∏
l=2

spl,p1

sp1,pl

for all p ∈ Sn. But since the right-hand side is symmetric in p2, p3, . . . , pn
there are actually only n distinct equations:

zNj = (−1)n−1

n∏
l=1
l 6=j

sl,j
sj,l

for j = 1, 2, . . . , n . (5.31)

These are the Bethe Ansatz equations (BAE) for the six-vertex model.
The progress obtained by now is considerable. Rather than diagonalising

a transfer matrix of dimension 2N we have to solve only a set of n coupled
(but non-linear) equations for each n = 1, 2, . . . , N .

63



5.3.1 Scattering phases and the Yang-Baxter equation

It is useful to define the modified scattering phases

Ŝij(zi, zj) = −sij
sji

= −1− 2∆zj + zizj
1− 2∆zi + zizj

. (5.32)

The Bethe Ansatz equations can the be written in the suggestive form

zNj =
n∏
l=1
l6=j

Ŝlj(zl, zj) for j = 1, 2, . . . , n . (5.33)

This can be interpreted physically as follows. When the particle j is taken
around the periodic direction and back to its original position, it picks up a
scattering phase Ŝlj each time it crosses another particle l. These phases are
also known as the S-matrix elements of the scattering theory.

We now derive some important physical properties of the S-matrix. Let
us again focus on the case of n = 3 particles. Eliminating zN1 from (5.28)
we obtain A123

A231
= A132

A321
. Doing the same for zN2 and zN3 , and making some

rearrangements, we arrive at

A213

A123

=
A321

A312

,
A312

A132

=
A231

A213

,
A321

A231

=
A132

A123

. (5.34)

This tells us that the interchange of two particles (e.g., 1 and 2 in the first
relation) is independent of the position of the third particle (which on the
left-hand side of the relations is to the right of the two particles being inter-
changes, and vice versa).

It thus emerges that the S-matrix possesses a locality property, accord-
ing to which the scattering amplitude of n quasi-particles factorises into a
product of

(
n
2

)
two-particle S-matrices. To make this more precise, consider

the following relations which follow from (5.30):

A321 =

{
Ŝ12A312 = Ŝ12Ŝ13A132 = Ŝ12Ŝ13Ŝ23A123

Ŝ23A231 = Ŝ23Ŝ13A213 = Ŝ23Ŝ13Ŝ12A123

Eliminating A123 yields the so-called Yang-Baxter relation

Ŝ12Ŝ13Ŝ23 = Ŝ23Ŝ13Ŝ12 , (5.35)

64



which can be represented diagramatically in terms of the world-lines of the
particles:

1 2 3

Ŝ23

Ŝ13

Ŝ12
=

1 2 3

Ŝ12

Ŝ13

Ŝ23

(5.36)

The graphical reading of this diagram is that any world-line can be moved
across the intersection of two other world-lines.

Obviously the above argument is at most suggestive, since after all the
factors in (5.35) are just scalars, and as such the identity is trivial. We shall
however see later that the same relation holds for matrix-valued quantities
(operators), such as R-matrices and monodromy (' transfer) matrices.

The Yang-Baxter equation (5.35) is at the heart of the algebraic approach
to the Bethe Ansatz and we shall return to it extensively in later chapters.

5.4 Phase diagram

The six-vertex model has a non-trivial phase diagram, and it is hardly sur-
prising that its thermodynamic limit depends on the parameter ∆. In fact
the Bethe Ansatz equations (5.31) show that the limit depends only on ∆.
Although the phase diagram can be derived in details, let us first discuss a
few qualitative arguments.

If either a or b is large compared to the other weights, the system will
freeze into a unique state in which all vertical arrows and all horizontal
arrows point in the same direction. It turns out that this freezing occurs
whenever ∆ > 1. The largest eigenvalue is that of the n = 0 particle sector,
whence trivially Λmax = aN + bN . The free energy per vertex is therefore
f = min(ε1, ε3).

If c is very large compared to the other weights, the predominant config-
uration is the one where all vertices on the even (resp. odd) sublattice are
of the type ω5 (resp. ω6). The system is however not frozen, meaning that
it exhibits fluctuations around the predominant configuration.10 One would

10We shall discuss the nature of these fluctuations more carefully when dealing with the
Coulomb gas. Suffice it to say here that the least possible change of a configuration is to
reverse a path of consistently oriented arrows. Any such path has infinite length in the
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expect non-critical behaviour as long as c remains reasonably large. This is
indeed the case: when ∆ < −1 the system is in a non-critical phase.

The most interesting phase occurs for −1 < ∆ < 1. In that range the six-
vertex model is critical, and it turns out that the critical exponents depend
continuously on ∆. This is an interesting counter-example to naive ideas of
universality.

We shall concentrate most of the subsequent discussion on the critical
case −1 < ∆ < 1, where the free energy can be expressed in terms of Fourier
integrals. (The non-critical case ∆ < −1 can also be worked out in details
and calls instead for the use of Fourier series.)

5.5 Thermodynamic limit for ∆ < 1

It is not known how to solve the Bethe Ansatz equations (5.31) for finite n
and N . This situation is quite common in the study of integrable systems.
By contrast, we have seen that the partition function of dimer coverings can
be exactly computed on a finite lattice—a highly unusual situation.

Nevertheless, it turns out that the six-vertex model is exactly solvable in
the thermodynamic limit. By this we mean precisely that the free energy
f = − 1

βN
log Λmax, or equivalently the ground state energy in the spin chain,

can be determined analytically for N → ∞. The same is true for the low-
lying excitations, but for the moment we concentrate on the ground state.

5.5.1 Location of the quasi-momenta

The BAE (5.31) possess many solutions for the quasi-momenta zj. It is not
a priori clear which one corresponds to the ground state. In what follows we
shall admit the following fact:

• The solution of the BAE (5.31) that maximises the eigenvalue Λ is such
that z1, z2, . . . , zn are distinct, lie on the unit circle, are distributed
symmetrically about unity, and are packed as closely as possible.

This can actually be proved quite rigorously, using some lengthy analysis
[YY66]. An easier method, that usually works quite well for more general

frozen phase, whereas the ∆ < −1 has an exponential number of short paths (of length
four).
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integrable models, is to study numerically the solutions for low values of N—
confronting the results with exact diagonalisations of the transfer matrix—
until the pattern has become clear.

5.5.2 Transformation to a set of real equations

We introduce the momenta kj ∈ R and the function Θ(p, q) so that

zj = exp(ikj) , (5.37)
si,j
sj,i

= exp(−iΘ(kj, ki)) . (5.38)

By (5.32) we have then

e−iΘ(p,q) =
1− 2∆eip + ei(p+q)

1− 2∆eiq + ei(p+q)
. (5.39)

To see that Θ(p, q) is a real function, it suffices to notice that

tan

(
1

2
Θ(p, q)

)
= −i 1− e−iΘ(p,q)

1 + e−iΘ(p,q)
=

∆ sin
(
p−q

2

)
cos
(
p+q

2

)
−∆ cos

(
p−q

2

) ,
where the right-hand side is manifestly real.

Including the term l = j obviously leaves the right-hand side of (5.31)
unchanged, so we can rewrite it as

exp(iNkj) = (−1)n−1

n∏
l=1

exp(−iΘ(kj, kl)) ,

where now both sides of the equation are unimodular. Taking logarithms we
have

Nkj = 2πIj −
n∑
l=1

Θ(kj, kl) , (5.40)

where Ij ranges between ±
(
n−1

2

)
, hence is an integer (resp. half an odd

integer) if n is odd (resp. even). Note that both sides of this equation are
real.

The hypothesis that k1, k2, . . . , kn be distinct, symetrically distributed
about the origin, and packed as closely as possible implies that the ground
state is obtained by choosing

Ij = j − 1

2
(n+ 1) , for j = 1, 2, . . . , n . (5.41)
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5.5.3 Continuum limit

The thermodynamic limit is obtained by sending n,N → ∞, while keeping
the ratio n/N fixed and finite. This ratio describes the (fixed) ratio of up-
pointing arrows in each row of the lattice. The distribution function ρ(k) of
Bethe roots is defined so that Nρ(k) dk is the number of kj lying between
k and k + dk. By assumption ρ(k) has support on a symmetric interval
[−Q,Q], where Q will be determined later. Thus∫ Q

−Q
ρ(k) dk =

n

N
. (5.42)

For a given value kj of k, the quantity Ij + 1
2
(n + 1) = N

∫ k
−Q ρ(k′) dk′ is

the number of momenta kl with l < j. Passing from sums to integrals in
(5.40)—and denoting kj simply as k—then produces

Nk = −π(n+ 1) + 2πN

∫ k

−Q
ρ(k′) dk′ −N

∫ Q

−Q
Θ(k, k′)ρ(k′) dk′ .

Taking derivatives with respect to k, and dividing by N , then leads to a
linear integral equation for ρ(k)

2πρ(k) = 1 +

∫ Q

−Q

∂Θ(k, k′)

∂k
ρ(k′) dk′ . (5.43)

The free energy is then given by (5.24) as

f = − 1

β
max

{
log a+

1

N

n∑
j=1

logL(zj) , log b+
1

N

n∑
j=1

logM(zj)

}
.

In the thermodynamic limit this becomes

f = − 1

β
max

{
log a+

∫ Q

−Q
[logL(eik)]ρ(k) dk ,

log b+

∫ Q

−Q
[logM(eik)]ρ(k) dk

}
. (5.44)

5.6 Free energy for −1 < ∆ < 1

A natural strategy for solving the linear integral equation (5.43) would be
to use Fourier transformation. This is however only possible if we can find a
transformation to a difference kernel. Fortunately this is possible.
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5.6.1 Difference kernel transformation

For −1 < ∆ < 1 we parameterise

∆ = − cosµ , with 0 < µ < π (5.45)

and we trade k for a new variable α defined by

eik =
eiµ − eα

eiµ+α − 1
. (5.46)

Note that α ∈ R. Indeed, supposing this, it is easily seen that |eik|2 = 1 from
the right-hand side of (5.46), as is consistent with the hypothesis that k ∈ R.

Differentiating logarithmically—i.e., using d
dα

eik = ieik dk
dα

to isolate dk
dα

—
we find

dk

dα
=

sinµ

coshα− cosµ
. (5.47)

This proves in particular that k(α) ∈ R is a monotonically increasing function
(since 0 < µ < π), and by (5.46) it maps the interval (−∞,∞) onto (µ −
π, π − µ). It follows directly from (5.46) that k(−α) = −k(α), i.e., the
function is odd.

The change of variables (5.46) is not as miraculous as it may first appear.
Indeed consider the map z : C 7→ C given by

z(w) =
a11w + a12

a21w + a22

. (5.48)

This conformal transformation, variously known as a projective map or a
Möbius transformation, will play a major role in chapter 10. It has the
property that it preserves the set of circles and straight lines (the latter
being considered circles of infinite radius). After a normalisation, usually
taken as det aij = 1, it depends on three complex parameters.

To make contact with (5.46) we set z = eik and w = eα. We then have
|z| = 1 (a circle), whereas w ∈ R+ (a straight line). We also abbreviate
the free parameter in (5.46) as ρ = eiµ. The desired symmetry property
k(−α) = −k(α) can be rewritten z( 1

w
) = 1

z(w)
. Using (5.48), this is solved

by a11 = a22 and a12 = a21. If we now fix the global scale by setting z(0) =
a12

a11
= 1

z(∞)
= −ρ, we obtain precisely (5.46).
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Let us define p = k(α) and q = k(β), so that

eip =
eiµ − eα

eiµ+α − 1
, eiq =

eiµ − eβ

eiµ+β − 1
.

Inserting this into (5.39) the scattering phase becomes

e−iΘ(p,q) =
eα−β − e2iµ

eβ−α − e2iµ
. (5.49)

Crucially, this depends only on the difference α−β (and on the constant µ).
We shall need the root density function R(α) transformed to the α vari-

able (and renormalised by 1
2π

for later convenience)

R(α) dα = 2πρ(k) dk . (5.50)

Plugging this into (5.43) leads to

R(α) =
dk

dα
− 1

2π

∫ Q1

−Q1

∂Θ(α, β)

∂β
R(β) dβ ,

where we note that there is a new integration range (−Q1, Q1) corresponding
to the α variable. Notice also the sign change on the second term, because
the dependence is on α−β and we now derive with respect to β. Computing
the derivatives from (5.47) and (5.49) finally leads to

R(α) =
sinµ

coshα− cosµ
− 1

2π

∫ Q1

−Q1

sin(2µ)

cosh(α− β)− cos(2µ)
R(β) dβ , (5.51)

and the normalisation condition (5.42) for the root density function now
reads

1

2π

∫ Q1

−Q1

R(α) dα =
n

N
. (5.52)

5.6.2 Parameterisation

We have already parameterised ∆ = − cosµ in (5.45). The Bethe Ansatz
equations (5.31)—and hence the universality class of the six-vertex model—
depend only on the initial vertex weights a, b, c through ∆ = a2+b2−c2

2ab
. We

must therefore choose a parameterisation of the two independent ratios a :
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b : c that respects this latter constraint (we “uniformise the spectral curve”).
This can be done in this case using trigonometric functions:

a : b : c = sin

(
µ− w

2

)
: sin

(
µ+ w

2

)
: sinµ , −µ < w < µ (5.53)

defining another parameter w.
The eigenvalues of the transfer matrix are determined by (5.24) through

the functions L(z) and M(z) given by (5.10)–(5.11). Recalling that z = eik is
parameterised by (5.46), the parametric form of these functions now becomes

L(eik) =
ei(w+µ) − eα−iµ

eα − eiw
,

M(eik) =
ei(w−µ) − eα+iµ

eα − eiw
. (5.54)

5.6.3 Solution by Fourier integrals

The integral equation (5.51) that determines the root density function now
has a difference kernel. One can therefore solve it by Fourier transformation,
provided that Q1 = ∞. Let us suppose that this is so, and justify the
assumption below. The Fourier transformed root density function then reads

R̃(x) =
1

2π

∫ ∞
−∞

R(α)eixα dα . (5.55)

Let us define the function

φµ(α) =
sinµ

coshα− cosµ
, (5.56)

which is often referred to as the source term of the Bethe Ansatz equations.
The difference kernel equation (5.51) then decouples upon Fourier transfor-
mation, since the Fourier transform of a convolution is the product of Fourier
transforms. Explicitly, multiplying both sides of (5.51) by 1

2π
eixα and inte-

grating over α leads to

R̃(x) = φ̃µ(x)− φ̃2µ(x) · R̃(x) . (5.57)
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Exercise: Show that the Fourier transform of the source term is

φ̃µ(x) =
sinh ((π − µ)x)

sinh(πx)
. (5.58)

Inserting this yields

R̃(x) =
sinh((π − µ)x)

sinh(πx)
− sinh((π − 2µ)x)

sinh(πx)
R̃(x) (5.59)

and we can then finally isolate

R̃(x) =
1

2 cosh(µx)
. (5.60)

The normalisation condition (5.52) is such that R̃(0) = n
N

, and evaluating
(5.60) we arrive at

n

N
=

1

2
. (5.61)

This simple result justifies the assumption Q1 =∞ a posteriori. Indeed, the
largest sector of the transfer matrix precisely corresponds to the case where
there are as many up-pointing as down-pointing arrows. By a simple entropic
reasoning, this is also the ground state sector.11

From (5.54) one obtains

|L(eik)|2 =
cos(w + 2µ)− coshα

cosw − coshα
,

|M(eik)|2 =
cos(w − 2µ)− coshα

cosw − coshα
.

This implies that |L| > |M | for w < 0, and |L| < |M | for w > 0.
Suppose in the sequel that w < 0; a similar calculation for w > 0 can be

shown to lead to exactly the same end result. The free energy is then given
by the first term in (5.44):

f = − 1

β

(
log a+

1

2π

∫ ∞
−∞

[log |L(eik)|]R(α) dα .

)
(5.62)

11A variant argument is obtained by examining (5.24).
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Using (5.60) and the fact that parity is conserved by Fourier transformation,
we see that R(α) is an even function. Under the integral we can therefore
replace the other factor log |L(eik)| by its even part, which is also its real
part. From (5.54) we get

ReL(eik) = − cosµ+
sinµ sinw

cosw − coshα
, (5.63)

and the Fourier transform of log |L(eik)| becomes

1

2π

∫ ∞
−∞

eixα log |L(eik)| dα =
sinh((µ+ w)x) sinh((π − µ)x)

x sinh(πx)
. (5.64)

Exercise: Detail this computation!

To compute (5.62) we can use that the Fourier transform of a product is
the convolution of Fourier transforms. The end result follows by combining
(5.60) and (5.64):

f = − 1

β

(
log a+

∫ ∞
−∞

sinh((µ+ w)x) sinh((π − µ)x)

2x cosh(µx) sinh(πx)
dx

)
. (5.65)

As already stated, exactly the same result is found for w > 0. We have
therefore found, for any w ∈ (−µ, µ), the free energy of the six-vertex model
in the critical region ∆ ∈ (−1, 1).

5.6.4 Ice model

The equal-weighted case a = b = c = 1 is of special interest, both combi-
natorially and historically (it was solved by Lieb [Li67] before the general
case). Physically it can be interpreted as a two-dimensional model of ice:
The arrows on the edges represent to which side the electron cloud is pushed
by the hydrogen bonding, and the six-vertex constraint corresponds to local
charge neutrality.

In this case w = 0 and µ = 2π
3

from (5.53). The integral (5.65) can then
be performed explicitly by contour integration; this is true more generally
whenever µ is a rational fraction of π.

We have

−βf =

∫ ∞
−∞

sinh
(
πx
3

)
tanh

(
2πx

3

)
2x sinh(πx)

dx . (5.66)
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The integrand is regular for x → 0, even, and decays like 1
2x

e−2πx/3 for
Rex � 1. We can therefore close the contour in the upper-half plane and
use the Cauchy integration theorem.

The residues are all on the imaginary axis. They read for p ∈ N:

−3i

4(3p+ 3
4
)π

at x = (3p+
3

4
)i ,

3i

4(3p+ 1)π
at x = (3p+ 1)i ,

3i

4(3p+ 2)π
at x = (3p+ 2)i ,

−3i

4(3p+ 9
4
)π

at x = (3p+
9

4
)i .

Thus

−βf = 2πi
∑

Im(x)>0

Res f(x)

= −3

2

∞∑
p=0

(
− 1

3p+ 3
4

+
1

3p+ 1
+

1

3p+ 2
− 1

3p+ 9
4

)

=
5

2

∞∑
p=0

(1 + 2p)

(1 + 3p)(2 + 3p)(1 + 4p)(3 + 4p)

=
3

2
log

(
4

3

)
. (5.67)

The effective number of configurations per vertex

Z1/MN = exp(−βf) =

(
4

3

) 3
2

' 1.539 600 · · · (5.68)

is known as Lieb’s constant [Li67].
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6 Yang-Baxter equation

In the preceeding chapter we have seen how to solve the six-vertex model by
the coordinate Bethe Ansatz. A natural next step is to identify the structures
that make such a solution possible, and then to exploit those structures to
solve more general classes of models. One would expect the structures in
question to be of algebraic nature.

Obviously this programme will require to first take a slightly more ab-
stract point of view. We shall expose the necessary ingredients in the first
half of this chapter, and then connect them concretely to the six-vertex model
in the second half.

6.1 R-matrix

Let us start by highlighting some crucial results from our analysis of the
six-vertex model:

1. The three Boltzmann weights of the six-vertex model define two inde-
pendent ratios a : b : c. From these we have defined two parameters:

• A parameter ∆ = a2+b2−c2
2ab

which characterises the universality
class of the model. Only this combination appears in the Bethe
Ansatz equations, via the scattering amplitudes.

• Another uniformising parameter—called w in (5.53)—on which
the ratios a : b : c depend, but which does not change the value of
∆.

2. The scattering amplitudes—encoded in the S-matrix—are such that
that multi-particle scattering of several quasi-particles factorise into a
pruduct of two-particle scattering amplitudes.

We now attempt to formalise these properties for statistical models of a
particular type, defined on a so-called Baxter lattice. By this we mean any
lattice that can be drawn in the plane as a collection of lines (one can think of
them as straight lines, but this is not necessary) that undergo only pairwise
intersections. The lattice does not at all need to be regular. The degrees of
freedom live on the edges of the lattice, and interactions take place at the
vertices.
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Moreover, we suppose that to each line is associated a so-called spectral
parameter, analogous to the uniformising parameter discussed above. The
Boltzmann weights for a vertex where two lines with spectral parameters u
and v intersect is supposed to have the difference property: it must depend
only on the difference u− v. The weights of course also depends on ∆, and
on the states of the degrees of freedom defined on the edges adjacent on the
vertex.

The Boltzmann weights can be encoded as the matrix element of a linear
operator, called the R-matrix:

u

v

αi

βi

µi µi+1 = R
µi+1βi
µiαi (u− v) = a〈µi+1| ⊗ i〈βi|Rai(u− v)|µi〉a ⊗ |αi〉i

(6.1)
At the risk of appearing pedantic, let us explain very carefully this notation:

• The indices µi, αi and µi+1, βi label the statistical degrees of freedom
defined on the lattice edges. The notation corresponds exactly to what
we have seen in the definition of the transfer matrix for the dimer
problem. The first pair of indices is the in-state, and the second pair is
the out-state. The time evolution thus goes in the North-East direction.

• A spectral parameter u is attached to the horizontal line, and v to the
vertical line. The R-matrix depends on the difference u− v. To avoid
any confusion about the sign, the lines carry an orientation.12 When
looking along the direction of the time evolution, the argument of R is
the spectral parameter seen on one’s left (namely u) minus the spectral
parameter seen on one’s right (namely v), both counted with a sign that
reflects the orientation of the lines along the direction of sight.

• We shall often refer to the spaces α and β as quantum and to the space
µ as auxiliary.

• The R-matrix acting between the auxiliary space and the ith quantum
is denoted by Rai. Its components are denoted R

µi+1βi
µiαi . Note that the

12These arrows should of course not be confused with the (six-vertex) arrow degrees of
freedom that live on lattice edges!

76



order of the out-indices has been permuted: this convention defines
the R-matrix. One sometimes encounter the opposite, unpermuted
convention: this defines what is called the Ř-matrix.

More formally, the R-matrix is a linear operator

Rai : Va ⊗ Vi 7→ Va ⊗ Vi , (6.2)

where the vector spaces Va (auxiliary) and Vi (quantum) carry the edge de-
grees of freedom. For instance, in the six-vertex model they are both equal to
the spin-1

2
representation space C2, since each arrow can be in two possible

states: the R-matrix is then a 4× 4 matrix.
The transfer matrix t is an endomorphism on the tensor product of all

quantum spaces

t : V1 ⊗ V2 ⊗ · · · ⊗ VL 7→ V1 ⊗ V2 ⊗ · · · ⊗ VL . (6.3)

It can be written as

t = Tra (RaLRaL−1 · · ·Ra2Ra1) , (6.4)

where Tra denotes the trace over the auxiliary space Va. For simplicity we
have not written the dependence on the spectral parameters. Indeed, one has
the possibility of taking different spectral parameters for each quantum space
Vi, and also for Va, which will correspond to a completely inhomogeneous
lattice model. The matrix elements of t can be written very explicitly as

〈β|t|α〉 =
∑

µ1,...,µL

Rµ1βL
µLαL

RµLβL−1
µL−1αL−1

· · ·Rµ3β2
µ2α2

Rµ2β1
µ1α1

. (6.5)

Note that µ1 appears both in the rightmost and the leftmost factor, so we
indeed perform the operator Tra.

Before going on, it is legitimate to ask oneself whether this formalism is
general enough to accommodate “all” statistical models of interest:

• A first question concerns the generality of the Baxter lattice. This
of course encompasses all regular lattices for which all vertices are of
degree four. What then about other lattices, such as the hexagonal and
triangular lattices, which are widely used in statistical physics? One
can usually find one’s way out by making suitable transformations.
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For instance, on the hexagonal lattice one can shrink all edges along
one of the three principal direction to zero, thus regrouping pairs of
3-valent vertices to form 4-valent vertices:13 This turns the hexagonal
lattice into a square lattice. The triangular lattice can be turned into
a hexagonal lattice by duality, or into a Kagomé lattice (which is a
Baxter lattice) by going to the medial lattice. Other possible tricks
include decimation procedures.

• A second question is how to deal with situations where the statistical
degrees of freedom are not defined on the edges, but rather on the
vertices. Going to suitably defined dual variables will usually enable
us to transform such a model into one involving edge variables.

• Finally, how could one deal with long-range interactions, mediated by
spatially extended objects, such as clusters or loops? One possibility
is to define the R-matrix on appropriate representation spaces that
take into account the non-locality of the interaction. Another option
is to transform the model into one with local interactions. We shall
see both possibilities at play in our subsequent treatment of the Potts
model, which can be represented either as a Temperley-Lieb loop model
with non-local interactions, or transformed into a six-vertex model with
complex Boltzmann weights.

6.2 Commuting transfer matrices

A statistical model defined on a Baxter lattice is said to be integrable pro-
vided its R-matrix satisfies the Yang-Baxter equation and the inversion re-
lation. The Yang-Baxter relation reads pictorially:

u1 u2 u3

1 2 3

R23

R13

R12

=

u1 u2 u3

1 2 3

R12

R13

R23

(6.6)

13This is a lattice version of the Hubbard-Stratonovich transformation used in field
theory.
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The algebraic transscription is

R12(u)R13(u+ v)R23(v) = R23(v)R13(u+ v)R12(u) , (6.7)

where we have set u = u1 − u2 and v = u2 − u3, so that u1 − u3 = u + v.
We stress again that the spectral parameters ui always follow the lines of the
Baxter lattice. The same is true for the labels of the representation spaces,
that appear as subscripts for theR-matrix. It is sometimes convenient to have
these labels stay well-ordered in space (i.e., with 1 on the left, 2 in the middle,
and 3 on the right) at all times (in the diagram time flows upwards). In that
case one uses instead the Ř-matrix, for which the Yang-Baxter equation reads

Ř23(u)Ř12(u+ v)Ř23(v) = Ř12(v)Ř23(u+ v)Ř12(u) . (6.8)

The inversion relation can be represented pictorially as

u1 u2

∝

u1 u2 (6.9)

and reads algebraically
R12(u)R12(−u) ∝ I . (6.10)

The constant of proportionality could of course be set to unity by a suitable
rescaling of R. Note also how the sign convention for spectral parameters
comes into use when writing (6.10).

We shall show below that the R-matrix of the six-vertex model indeed
satisfies (6.7) and (6.10).

The relations (6.7) and (6.10) imply the commutation of two transfer
matrices corresponding to different choices of spectral parameters on the
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auxiliary lines. This is best demonstrated graphically:

u1

u2

v1 v2 · · · vL

=
u1

u2

v1 v2 · · · vL

=

u1

u2

v1 v2 · · · vL

=
u1

u2

v1 v2 · · · vL (6.11)

The first picture represents the product t(u2)t(u1), since the two crossings
to the left amount to the identity by (6.10).14 In the second picture we have
used (6.7) to push the v1 line to the left. This is repeated in the third picture
for the next v2 line. Repeating this operation L times, we finally arrive at the
last picture, which represents the product t(u1)t(u2), apart from the crossings
on the left and right. But the right crossing can be taken around the periodic
boundary condition (more formally: we are using the cyclicity of the trace),
and using once more (6.10) the two crossings annihilate. Summarising, we
have shown that

t(u2)t(u1) = t(u1)t(u2) . (6.12)

The existence of an infinite family of commuting transfer matrices has
important consequences. Indeed the Bethe Ansatz technique permits us to
diagonalise all these transfer matrices simultaneously.

Moreover, we can take derivatives of (6.12) with respect to u2. All these
derivatives commute with t(u1), hence are conserved by the time evolution
process. In other words, an integrable system has an infinite number of
conserved quantities. The first few derivatives can be identified with the
Hamiltonian, the momentum operator, and so on. We shall present explicit
examples below.

Note also that the various vector spaces in which the R-matrices act need
not be isomorphic. In particular, one can have different representations on
the quantum and auxiliary spaces. From a basic integrable model—such as

14The transfer matrices depend also on the spectral parameters v1, v2, . . . , vL of the
quantum spaces, but we omit this dependence for notational convenience.
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the six-vertex model in the spin-1
2

representation—one can construct higher-
spin solutions by appropriate fusions of representation spaces. One speaks
in that case of descendent models.

6.3 Six-vertex model

Let us parametrise the weights of the six-vertex model (cf. Fig. 14) as follows:

ω1 = ω2 = sin(γ − u) ,

ω3 = ω4 = sinu ,

ω5 = e−i(u−η) sin γ ,

ω6 = ei(u−η) sin γ . (6.13)

We have then ∆ = − cos γ. The gauge parameter η can be chosen at will,
since vertices of type 5 and 6 appear in pairs, and only the value of

√
ω5ω6

enters the computation of the partition function.
Denote by C2 = 0, 1 the occupation number of each edge in the particle

picture defined by the lower half of Fig. 14. The Ř-matrix can then be written
in the basis (C2)2 = {|00〉, |01〉, |10〉, |11〉} as

Ř =


ω1 0 0 0
0 ω5 ω4 0
0 ω3 ω6 0
0 0 0 ω2

 . (6.14)

In the gauge η = 0 this becomes

Ř(u) =


sin(γ − u) 0 0 0

0 e−iu sin γ sinu 0
0 sinu eiu sin γ 0
0 0 0 sin(γ − u)

 . (6.15)

We now claim that this Ř-matrix satisfies the Yang-Baxter equation (6.8),
where the uniformising parameter u has been identified with the spectral
parameter.

It is an instructive exercise to verify this. In tensor notation (6.8) reads
in the space (C2)3

(I⊗Ř(u))(Ř(u+v)⊗I)(I⊗Ř(v)) = (Ř(v)⊗I)(I⊗Ř(u+v))(Ř(u)⊗I) . (6.16)
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This identity between 8×8 matrices is greatly simplified by the symmetries of
the problem. First, the number of particles is conserved. Second, the weights
are invariant under a global negation (0↔ 1) of the occupation numbers.

The only equations to be verified thus concern a 1× 1 matrix (in the 0-
particle space |000〉) and a 3× 3 matrix (in the 1-particle space |100〉, |010〉,
|001〉). Only the latter gives rise to non-trivial equations.

The inversion relation (6.10) reads

Ř(u)Ř(−u) = sin(γ − u) sin(γ + u)I . (6.17)

6.3.1 Temperley-Lieb algebra

The Ř-matrix (6.15) can be decomposed as

Ř(u) = sin(γ − u)I + sin(u)E , (6.18)

where I is the identity operator in V 2 = (C2)2 and

E =


0 0 0 0
0 e−iγ 1 0
0 1 eiγ 0
0 0 0 0

 . (6.19)

The operator E satisfies the basis-independent relations

E2 = 2 cos γ E ,

(E ⊗ I)(I ⊗ E)(E ⊗ I) = E ⊗ I ,
(I ⊗ E)(E ⊗ I)(I ⊗ E) = I ⊗ E , (6.20)

where now I is the identity in V . For a system of width L one defines on
VL = V ⊗L a family of L− 1 such operators:

Em = I⊗m−1 ⊗ E ⊗ I⊗L−m−1 , for m = 1, 2, . . . , L− 1. (6.21)

They verify the relations

(Em)2 = 2 cos γ Em ,

EmEm±1Em = Em ,

EmEm′ = Em′Em for |m−m′| > 1 (6.22)
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defining the so-called Temperley-Lieb (TL) algebra.
The TL algebra plays a major role in lattice models of statistical mechan-

ics, the Potts model in particular. In addition to the above spin-1
2

arrow rep-
resentation, the TL algebra can be represented in terms of Fortuin-Kasteleyn
clusters, their surrounding loops, domain walls of Potts spins, two-row Young
tableaux, and much more. We shall come back to some of those issues in a
later chapter.

6.3.2 Pauli matrices

It is convenient to make manifest the spin-1
2

nature of the six-vertex model
by reexpressing things in terms of the Pauli matrices

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
. (6.23)

The arrow conservation then means that the transfer matrix t(u) commutes
with the total magnetisation

Sz =
1

2

L∑
m=1

σzm . (6.24)

The Temperley-Lieb generator can be written as

Em =
1

2

[
σxmσ

x
m+1 + σymσ

y
m+1 − cos γ (σzmσ

z
m+1 − I)− i sin γ (σzm − σzm+1)

]
.

(6.25)

6.3.3 Spectral parameter and anisotropy

The physical meaning of the spectral parameter u is that it controls the
spatial anisotropy of the system. To see this qualitatively, note that in the
u → 0 limit, the Ř-matrix is proportional to the identity by (6.18). The
transfer matrix t(u) thus acts on a state just by shifting all spins one unit
to the right (with periodic boundary conditions); note that this follows from
the fact that time propagates in the North-East direction.

In a 1+1 dimensional quantum mechanical analogy, the u→ 0 limit thus
means that interactions between spins happen very slowly. Equivalently, the
time direction has been stretched with respect to the spatial direction. A ho-
mogeneous system can be retrieved by rescaling time by a certain anisotropy
factor ζ(u).
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It does not appear feasible to determine ζ(u) without invoking certain
results of conformal field theory. Suffice it here to say that one finds

ζ(u) = sin

(
πu

γ

)
. (6.26)

This predicts that the isotropic point ζ(u) = 1 occurs for u = γ
2
. One then

has by (6.18) that Ř ∝ I +E, a fact that can be accounted for geometrically
within the loop representation of the Temperley-Lieb algebra.

6.3.4 Spin chain hamiltonian

Using (6.18) we thus see that in the completely anisotropic limit u → 0 the
transfer matrix becomes

t(0) = sinL(γ) e−iP , (6.27)

where e−iP is the shift operator that translate the lattice sites one unit to
the right. Equivalently, P can be interpreted as the momentum operator.

We know from the path-integral formalism that the transfer matrix (the
time evolution operator) is the exponential of the quantum hamiltonian. To
make things completely precise, note that to first order in u, one may omit
on of the factors sin(γ− u)I in (6.18) and take sin(u)E instead. The correct
development in the limit u→ 0 therefore reads

t(u) ' t(0) exp

[
− u

sin γ
H

]
, (6.28)

where H is the Hamiltonian of the spin chain. Equivalently

H = − sin γ
∂

∂u
log t(u)

∣∣∣∣
u→0

= − sin γ t(0)−1t′(0) . (6.29)

Here the inverse t(0)−1 = (sin γ)−LeiP is just the shift in the opposite (left)
direction. The derivative t′(0) gives L terms, one for each of the factors in
the product (6.5). Using (6.18) we have Ř′(0) = − cos γ I + E. Therefore

H = L cos γ I −
L∑

m=1

Em . (6.30)
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Inserting the expression (6.25) for the TL generators in terms of Pauli
matrices, the piece in i sin γ (σzm − σzm+1) simplifies by telescopy. With open
boundary condition it would become a surface magnetic field acting on the
first and last spins. We consider instead periodic boundary conditions, so
this term vanishes alltogether. One is left with

H = −1

2

L∑
m=1

[
σxmσ

x
m+1 + σymσ

y
m+1 + ∆(σzmσ

z
m+1 + I)

]
, (6.31)

where we recall that ∆ = − cos γ.
We thus arrive at the Hamiltonian of a Heisenberg-type spin chain, where

however the interaction is anisotropic along the z-direction. For that reason,
this is called the XXZ spin chain with anisotropy parameter ∆.15

Let us emphasize that due to the commutativity of transfer matrices, the
eigenvectors of the six-vertex model transfer matrix and of the XXZ spin
chain Hamiltonian are identical. It is thus equivalent to diagonalise one or
the other, and in that sense the two models are equivalent.

15We are here referring to an anisotropy between the different components of the inter-
action in the space direction. This should not be confused with the space-time anisotropy
linked with the spectral parameter u.
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7 Algebraic Bethe Ansatz

It is possible to continue the formal developments of the previous chapter and
obtain a completely algebraic derivation of the Bethe Ansatz equations (5.31)
and the corresponding expression (5.24) for the transfer matrix eigenvalues.
There are at least two reasons for following this route.

The first reason is that the elimination of unwanted terms is somewhat
tricky, and it might be hard to see if one has taken into account all possible
processes when generalising from n = 1, 2, . . . computations to the general
case. The algebraic approach will add clarity to this step.

The second reason is that the algebraic Bethe Ansatz approach makes
contact with a rich mathematical structure known as affine Hopf algebras.
Within this structure, results about Lie algebras (and even Lie superalgebras)
make possible the generalisation from the spin-1

2
six-vertex model to infinite

classes of higher-spin integrable models. Exposing this in some detail requires
to make contact also with the underlying quantum group, which for the six-
vertex model is Uq(sl(2)). Since this is a more advanced subject, we refrain
from treating it in this introduction.

The word “algebraic” should of course not conceal the fact that once the
Bethe Ansatz equations for a given model have been found, there is also—as
we have seen in section 5.6—a fair amount of analytical work to be done in
order to derive the free energy in the thermodynamic limit and the critical
exponents.

7.1 Monodromy matrix

We define the monodromy matrix T (u) as the same product over R-matrices
as used in defining the transfer matrix (6.4), but without the trace over the
auxiliary space:

T (u) = RaLRaL−1 · · ·Ra2Ra1 . (7.1)

Thus T (u) is an endomorphism on the auxiliary space Va and we have

t(u) = Tra T (u) . (7.2)

When several auxiliary spaces are involved we shall sometimes use the
notation Ta(u) to make clear what space is involved. We shall also denote
matrix elements of T (u) using the same convention as for the R-matrix, and
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sometimes represent them graphically as

i jT ji (u) =
(7.3)

These matrix elements are operators acting in the quantum spaces, here
shown symbolically as a double line.

We can repeat the reasoning of (6.11)

u1

u2

v1 v2 · · · vL

=
u1

u2

v1 v2 · · · vL

=

u1

u2

v1 v2 · · · vL

=
u1

u2

v1 v2 · · · vL (7.4)

to establish that

Rab(u− v)
(
Ta(u)Tb(v)

)
=
(
Tb(v)Ta(u)

)
Rab(u− v) . (7.5)

This identity is known popularly as the RTT relation. Using the double line
convention of (7.3) it can also be written pictorially

u1 u2 u3

1 2 3

T23

R13

T12

=

u1 u2 u3

1 2 3

T12

R13

T23

(7.6)

7.2 Co-product and Yang-Baxter algebra

A Yang-Baxter algebra A is a couple (R, T ) satisfying the RTT relation (7.5).
Its generators are the matrix elements T ji (u). It is equipped with a product,
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obtained graphically by stacking two monodromy matrices along a common
quantum space (represented as a double line).

In addition to this product, A is also equipped with a co-product ∆,16

obtained graphically by glueing together two monodromy matrices along a
common auxiliary space (represented as a single line). We have

∆
(
i j

)
=
∑

k i k j
(7.7)

The co-product thus serves to map the algebra A into the tensor product
A⊗A:

∆ : A → A⊗A
T ji (u) 7→

∑
k

T ki (u)⊗ T jk (u) (7.8)

while preserving the algebraic relations of A.

In particular, the co-product ∆T ji must again satisfy the RTT relation
(7.5). It is a nice exercise to understand what this means and to prove it.

An algebra equipped with a product and a co-product is called a bi-
algebra. To be precise, we need a little more structure (co-associativity,
existence of a co-unit, . . . ). If in addition we have an antipode (and if various
diagrams commute) one arrives at a Hopf algebra.

7.3 Six-vertex model

When the auxiliary space is C2, the matrix elements of the monodromy
matrix are usually denoted as follows:

T 0
0 (u) = A(u) , T 0

1 (u) = B(u) , T 1
0 (u) = C(u) , T 1

1 (u) = D(u) . (7.9)

Recall that the structure constants of a Lie algebra provide a represen-
tation, known as the adjoint. In the same way, the R-matrix provides a
representation of dimension 2 of the Yang-Baxter algebra. Indeed, in the

16This ∆ should not be confused with the anisotropy parameter of the six-vertex model
(XXZ spin chain).
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special case where the double line is just a single line, the monodromy ma-
trix reduces to the R-matrix:(

T ji (u)
)k
l

= Rjk
il (u) . (7.10)

The RTT relation is then nothing but the Yang-Baxter relation for the R-
matrix.

The notation (7.9) just amounts to reading the R-matrix as a 2×2 matrix
of blocks of size 2× 2. As in (6.14) we have

R =


ω1 0 0 0
0 ω3 ω6 0
0 ω5 ω4 0
0 0 0 ω2

 =

[
A(u) B(u)
C(u) D(u)

]
. (7.11)

We recall the usual weights a, b, c (which now depend on the spectral pa-
rameter u), and we take the gauge η = u in (6.15):17

a(u) = sin(γ − u) , b(u) = sinu , c(u) = sin γ . (7.12)

We have then in explicit notation, and in terms of Pauli matrices:

A(u) =

[
a(u) 0

0 b(u)

]
=
a(u) + b(u)

2
I +

a(u)− b(u)

2
σz ,

B(u) =

[
0 0
c(u) 0

]
=
c(u)

2
(σx − iσy) = c(u)σ− ,

C(u) =

[
0 c(u)
0 0

]
=
c(u)

2
(σx + iσy) = c(u)σ+ ,

D(u) =

[
b(u) 0

0 a(u)

]
=
a(u) + b(u)

2
I − a(u)− b(u)

2
σz . (7.13)

Note that B(u) (resp. C(u)) is acts as a creation (resp. annihilation)
operator on the quantum space, with respect to the pseudo-vacuum in which
all spins are up. We shall see below that this interpretation remains valid
when taking co-products: B(u) transforms n particle states into n+1 particle
states (and vice versa for C(u)).

17To go from this convention to that of Gómez et al, take u → −iu, γ → π − γ, and
divide all weights by −i.
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7.3.1 Co-product

Establishing how the co-product acts on the operators A(u), B(u), C(u) and
D(u) will turn out to be an important ingredient in the sequel. In more
formal terms, we wish to obtain a representation of the six-vertex Yang-
Baxter algebra A on the space V ⊗L.

Let us begin by examining the case L = 2 in details. Consider for instance
the construction of ∆B(u). We have:

∆B(u)|00〉 = 1

0

1

0

0

0

0 +

c(u)a(u)|10〉

1

0

0

1

0

1

0

b(u)c(u)|01〉
(7.14)

Here the left and right indices define B(u) = T 0
1 (u), and the co-multiplication

implies a sum over the middle index. The bottom (resp. top) indices define
the in-state (resp. out-state) of the quantum spaces, here denoted as kets.

Proceeding in the same way for the three other in-states, we find that
∆B(u) can be written in the basis {|00〉, |01〉, |10〉, |11〉} as

∆B(u) =


0 0 0 0

b(u)c(u) 0 0 0
c(u)a(u) 0 0 0

0 c(u)b(u) a(u)c(u) 0



=


0 0 0 0
0 0 0 0

c(u)a(u) 0 0 0
0 c(u)b(u) 0 0

+


0 0 0 0

b(u)c(u) 0 0 0
0 0 0 0
0 0 a(u)c(u) 0


= B(u)⊗ A(u) +D(u)⊗B(u) . (7.15)

It is actually simpler to avoid specifying the states of the quantum spaces
alltogether. Applying (7.7) directly one then obtains

∆L−1B(u) = 1 0 0 +

∆L1−1B(u)⊗∆L2−1A(u)

1 1 0

∆L1−1D(u)⊗∆L2−1B(u)
(7.16)
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Note that this derivation applies for any bipartition L1 + L2 = L, and not
only for L1 = L2 = 1.

Repeating the working for the three other operators, the complete co-
multiplication table reads:

∆A(u) = A(u)⊗ A(u) + C(u)⊗B(u) ,

∆B(u) = B(u)⊗ A(u) +D(u)⊗B(u) ,

∆C(u) = C(u)⊗D(u) + A(u)⊗ C(u) ,

∆D(u) = D(u)⊗D(u) +B(u)⊗ C(u) . (7.17)

To generalise this construction from L = 2 to arbitrary L it suffices to
use the associativity of the co-multiplication. Indeed for L ≥ 2 we have

∆L−1 : A → A⊗L

∆L−1 7→ (I⊗L−2 ⊗∆)∆L−2 . (7.18)

When making this definition, we have chosen to insert new tensorands
from the right. Inserting them from the left would make no difference to the
result, since in any case it can also be computed directly along the lines of
(7.14). In the latter case, one has to sum over all L− 1 intermediate indices,
of the type k in (7.7). It is a useful exercise to compute ∆2B(u) for L = 3
in all three ways and check that one obtains identical results.

In the following we shall simplify the notation and write, for example,
B(u) instead of ∆L−1B(u). Thus B(u) is an operator that acts on all L
spaces in the tensor product V ⊗L. Using (7.17)–(7.18) repeatedly it can be
expanded in fully tensorised form, as an expression with 2L−1 terms. This
expanded form is (7.17) for L = 2, and the expression for L = 3 is contained
in the above exercice. The factors entering each term in the expanded form
act on a single space V .

7.3.2 Commutation relations

The operators A(u), B(u), C(u) and D(u) satisfy a set of commutation
relations which follow as a direct consequence of the RTT relation (7.5).
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To see in details how this works, we first write out the RTT relation in
component form:∑

j1,j2

Rk1k2
j1j2

(u− v)T (u)j1i1T (v)j2i2 =
∑
j1,j2

T (v)k2
j2
T (u)k1

j1
Rj1j2
i1i2

(u− v) . (7.19)

This gives a relation for each choice of (k1, k2, i1, i2). Consider for instance
the choice (0, 0, 1, 0):

R00
00(u− v)T (u)0

1T (v)0
0 = T (v)0

1T (u)0
0R

01
10(u− v) + T (v)0

0T (u)0
1R

10
10(u− v) .

(7.20)
Insert now the R-matrix elements from (7.11)–(7.12) and the monodromy
matrix elements from (7.9), recalling that the former are just scalars, whereas
the latter are (non-commuting) operators. This gives

a(u− v)B(u)A(v) = c(u− v)B(v)A(u) + b(u− v)A(v)B(u) . (7.21)

Among all the possible commutation relations we shall actually only need
a few. First, for two operators of the same type we have simply

A(u)A(v) = A(v)A(u) , B(u)B(v) = B(v)B(u) ,

C(u)C(v) = C(v)C(u) , D(u)D(v) = D(v)D(u) . (7.22)

Second, to push an A or a D past a B we have

A(u)B(v) =
a(v − u)

b(v − u)
B(v)A(u)− c(v − u)

b(v − u)
B(u)A(v) ,

D(u)B(v) =
a(u− v)

b(u− v)
B(v)D(u)− c(u− v)

b(u− v)
B(u)D(v) . (7.23)

The first of these relations follows from (7.21) after a relabelling u ↔ v
and some rearrangement. The second relation is obtained from a similar
computation.

7.3.3 Algebraic Bethe Ansatz

We now have all necessary ingredients to treat the six-vertex model using
the algebraic Bethe Ansatz.
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As in the coordinate Bethe Ansatz, one starts from the pseudo-vacuum,
or reference state, in which all spins point up and no particle world-lines are
present. We denote this state as

| ⇑〉 = | ↑↑ · · · ↑〉 = |00 · · · 0〉 . (7.24)

Recall that B(u) creates a particle (or equivalently, flips down one spin),
whereas C(u) annihilates a particle. Thus, an n-particle state (i.e., with n
down spins) can be constructed as follows:

|Ψn〉 =
n∏
i=1

B(ui)| ⇑〉 . (7.25)

The states (7.25) are called algebraic Bethe Ansatz states.
Our goal is to diagonalise the transfer matrix

t(u) = Tra T (u) = A(u) +D(u) . (7.26)

This means solving the eigenvalue equation

t(u)|Ψn〉 = [A(u) +D(u)]
n∏
i=1

B(ui)| ⇑〉 = Λn(u; {ui})
n∏
i=1

B(ui)| ⇑〉 . (7.27)

This can obviously only be done if the parameters {ui} satisfy certain condi-
tions. These are precisely the Bethe Ansatz equations, and we shall rederive
them now using the algebraic method.

This obviously implies that {ui} must somehow be related to the pseudo-
momenta. The correct relation will be obtained from the algebraic method
below, but we can obtain it already now by comparing out setup to that of
the coordinate Bethe Ansatz.

We know from section 5.2.2 that a one-particle state reads |Ψ1〉 =∑
x g(x)|x〉 with g(x) = zx = eikx. In the algebraic framework—and set-

ting L = 2 for simplicity—this same state follows from (7.25) and (7.14):

|Ψ1〉 = ∆B(u)| ⇑〉 = c(u)a(u)|10〉+ b(u)c(u)|01〉 .

Comparing this with |Ψ1〉 =
∑

x g(x)|x〉 we identify18

z = eik =
a(u)

b(u)
. (7.28)

93



(To be quite honest, for L = 2 one cannot by comparing |01〉 and |10〉 say
whether the particle has moved to the right or to the left, i.e., distinguish z
and z−1. But the above result will be rederived below by other means.)

To compute [A(u) +D(u)]
∏n

i=1B(ui)| ⇑〉 we use the commutation rela-
tions (7.23) to push A(u) and D(u) to the right, past the string of B’s. When
they have been pushed completely to the right, one applies the relations

A(u)| ⇑〉 = a(u)L| ⇑〉 , D(u)| ⇑〉 = b(u)L| ⇑〉 , (7.29)

Note that (7.29) follows from the first and last lines of (7.17), generalised for
L = 2 to arbitrary L. Consider for instance ∆A(u). It is easy to see that the
right-hand side will contain a single term A(u)⊗L, and all remaining terms
will contain at least one factor C(u) in the tensor product. But this C(u)
will annihilate | ⇑〉, so the only contribution is a(u)L| ⇑〉 indeed.

Each time we push A(u) one position towards the right, we obtain two
contributions from the right-hand side of (7.23). The unique term obtained
by always choosing the first contribution is a wanted A-term. In this term, the
arguments of the B(ui) remain unchanged, and A(u) simply “goes through”.
The remaining 2n − 1 terms are unwanted A-terms. In those terms, at least
one of the arguments ui of the B’s has been changed into u, and so the state
is not of the form (7.25). Similarly, there is one wanted and 2n− 1 unwanted
D-terms.

The wanted A-term and the wanted D-term produces the expression for
the eigenvalue of the transfer matrix

Λn(u; {ui}) = a(u)L
n∏
i=1

a(ui − u)

b(ui − u)
+ b(u)L

n∏
i=1

a(u− ui)
b(u− ui)

. (7.30)

This should of course coincide with (5.24). This means that we should
identify

Li = L(zi) =
a(ui − u)

b(ui − u)
. (7.31)

On the other hand we have the definition (5.10) according to which

Li =
a(u)b(u) +

(
c(u)2 − b(u)2

)
zi

a(u)
(
a(u)− b(u)zi

) , (7.32)
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where zi = a(ui)
b(ui)

. Inserting the parameterisations (7.12) and simplifying we
find indeed

Li =
sin(γ − (ui − u))

sin(ui − u)
=
a(ui − u)

b(ui − u)
. (7.33)

The result zi = a(ui)
b(ui)

was obtained above; alternatively one can find it by

taking the u→ 0 limit of (7.32).
In the same way we can verify that

Mi = M(zi) =
a(u− ui)
b(u− ui)

(7.34)

is in agreement with the definition (5.11).

The condition that the unwanted A-terms cancel the unwanted D-terms
leads to the Bethe Ansatz equations (BAE)(

a(ui)

b(ui)

)L
=

n∏
j=1

j 6=i

a(ui − uj)b(uj − ui)
a(uj − ui)b(ui − uj)

. (7.35)

Proof of (7.35). Let us abbreviate A0 ≡ A(u) and Ai ≡ A(ui) for i =
1, 2, . . . , n, and similarly for the other types of operators. We also set

αij ≡
a(uj − ui)
b(uj − ui)

, βij ≡ −
c(uj − ui)
b(uj − ui)

, (7.36)

so that the commutation relations (7.23) can be rewritten

AiBj = αijBjAi + βijBiAj ,

DiBj = αjiBjDi + βjiBiDj . (7.37)

The unwanted A-terms (resp. D-terms) are those where A0 (resp. D0)
exchanges its spectral parameter with one or more of the B’s and hence
becomes some Ai (resp. Di) with i ≥ 1 as it is pushed to the right of

∏n
i=1Bi.

The sum of these unwanted A-terms is

n∑
i=1

āi

 n∏
j=1

j 6=i

Bj

Ai| ⇑〉 =
n∑
i=1

āi a(ui)
L

 n∏
j=1

j 6=i

Bj

 | ⇑〉 . (7.38)
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At first sight, it may appear complicated to compute the coefficients āi, since
the A-operator might exchange its rapidity with the B’s several times, as it
is moved through the product. However, we can simplify the computation of
āi dramatically by using (7.22) to rewrite (7.25) as

|Ψn〉 = Bi

n∏
j=1

j 6=i

Bj| ⇑〉 . (7.39)

The action of A0 on this can then only produce an Ai on the right if the
exchange of spectral parameter happens when A0 is commuted through the
very first factor Bi in (7.39). Therefore:

āi = β0i

∏
k=1
k 6=i

αik . (7.40)

By this simple trick, the total number of unwanted A-terms has been reduced
from 2n − 1 to just n.

Similarly, the unwanted D-terms read

n∑
i=1

d̄i

 n∏
j=1

j 6=i

Bj

Di| ⇑〉 =
n∑
i=1

d̄i b(ui)
L

 n∏
j=1

j 6=i

Bj

 | ⇑〉 (7.41)

with
d̄i = βi0

∏
k=1
k 6=i

αki . (7.42)

Due to (7.12) we have β0i = −βi0. Therefore the sum of (7.38) and (7.41)
vanishes provided that (

a(ui)

b(ui)

)L
=

n∏
k=1
k 6=i

αki
αik

. (7.43)

Plugging back (7.36) we arrive at (7.35).
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Alternatively (7.35) follows also from the form (7.30) of the eigenvalue,
as we now argue. We set z = e2iu and q = eiγ, and we define the shifted
eigenvalue Λ̃ = (2ieiu)LΛn(u, {ui}). Elementary computations then bring
(7.35) into the form

Λ̃ =
(
q − q−1z

)L n∏
i=1

q−1zi − qz
z − zi

+ (z − 1)L
n∏
i=1

qzi − q−1z

z − zi
. (7.44)

Defining the polynomials

Q(z) =
n∏
i=1

(z − zi) , φN(z) = (z − 1)L , (7.45)

we obtain

Λ̃Q(z) = (−q)L−nφN(q−2z)Q(q2z) + (−q)NφN(z)Q(q−2z) . (7.46)

Whenever the spectral parameter equals one of the Bethe roots, we have
Q(zj) = 0 on the left-hand side of (7.46). Therefore the right-hand side
must also vanish. Working backwards through the change of variables then
produces the BAE (7.35).

The form (7.35) is best compared with (5.33). We have therefore the
identification of the scattering phases

Ŝji =
a(uj − ui)b(ui − uj)
a(ui − uj)b(uj − ui)

= −1− 2∆zi + zizj
1− 2∆zj + zizj

. (7.47)

Exercise: Verify this using the parameterisation (7.12).

7.4 Energy and momentum

We can compute the energy E of the Bethe Ansatz state (7.25). To this
end we just need to recall the link (6.29) between the transfer matrix t(u)
and the Hamiltonian H. Taking expectation values with respect to the state
(7.25) the operator H gets replaced by its expectation value E, and t(u) gets
replaced by the eigenvalue Λ(u; {ui}). Therefore

En({ui}) = − sin γ
∂

∂u
log Λn(u; {ui})

∣∣∣∣
u→0

. (7.48)
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In (7.30) only the first term contributes in the u→ 0 limit:

Λn ' sinL(γ)
n∏
i=1

a(ui − u)

b(ui − u)
. (7.49)

Taking the derivative we arrive at

En({ui}) = L cos γ +
n∑
i=1

ε(ui) , (7.50)

where the energy of a single particle with quasi-momentum

zj = eikj =
a(uj)

b(uj)
. (7.51)

is simply

ε(ui) = − sin2(γ)

sin(ui) sin(γ − ui)
. (7.52)

In the same way we can express the momentum of the Bethe Ansatz state:

−iP = log

(
t(0)

sinL(γ)

)
=

n∑
i=1

log

(
a(ui)

b(ui)

)
, (7.53)

meaning that the quasi-momenta (7.51) just add up.

Note that the constant (i.e., independent of ui) term in (7.50) is consistent
with that of (6.30). If we normalise the Hamiltonian as H = −

∑L
m=1 Em,

the n-particle energy reads simply En({ui}) =
∑n

i=1 ε(ui).

7.5 Further developments

• We have not exposed how to manipulate the Bethe roots to construct
low-lying excitations over the ground state. This is best discussed after
introducing some notions of conformal field theory. In particular it
is possible to make an exhaustive comparison between excitations in
the XXZ spin chain and in the Coulomb gas CFT for the compactified
boson.

98



• In the case of an open, non-periodic spin chain one will in general need
specific boundary interactions to guarantee integrability. These are en-
coded in a so-called K-matrix. The Yang-Baxter equations must then
be supplemented with the Sklyanin equation that ensures the compat-
ibility between R and K matrices.

• We have already mentioned the possibility of introducing Hopf alge-
bras and quantum groups as a means of constructing algebraic Bethe
Ansätze for more general systems. Indeed, the algebraic Bethe Ansatz
solution of the 6-vertex model can essentially be generalised in two dif-
ferent ways, namely by increasing the rank, or by increasing the spin.

• Baxter’s TQ-relation, the Y-system,. . . .

• Computation of correlation functions via algebraic Bethe Ansatz, fol-
lowing the works by J.-M. Maillet et al.
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8 Potts model

When writing the integrable R-matrix of the six-vertex model, in (6.18), we
have briefly come across a new type of algebraic structure: the Temperley-
Lieb algebra. This is an example of a lattice algebra [Ma91], or more generally
a partition algebra [HR05]. Other examples include the dilute Temperley-
Lieb algebra, the Brauer algebra, and various types of multi-colour braid-
monoid algebras [GP93].

The R-matrix based on each of these algebras generates the transfer ma-
trix of a corresponding statistical mechanics model. Obviously one can gather
important information about the statistical mechanics model by studying the
underlying algebra and its representation theory.

In what follows we shall focus on the (open, or non-periodic) Temperley-
Lieb (TL) algebra. This algebra has many different representations, each of
which is related to a particular stat-mech model: Potts, Ising, six-vertex,
restricted solid-on solid (RSOS) model,. . . . Historically, each model was in-
troduced independently, but with hindsight the unifying algebraic framework
can be used to understand better the relations among them.

Most of the corresponding representations of the TL algebra are not faith-
ful, i.e., they obey additional relations than those defining the TL algebra.
The Potts model—to be precise: in its formulation as a loop model—furnishes
a faithful representation. Since it is also an extremely interesting and well-
studied model in statistical mechanics, it is natural to study it in some detail.
The selfdual Potts model on a square lattice will turn out to be closely re-
lated to the six-vertex model, so that the results of preceding chapters imply
the exact solution of the Potts model. Also on the triangular lattice can the
selfdual model be exactly solved.

For the mathematically inclined, let us briefly mention an important con-
nection to representation theory. A central result, known as Schur-Weyl
duality, states that:

1. The general linear group GLn(C) and the symmetric group Sk both
act on the tensor product V ⊗k with dimV = n. (We interpret V ⊗k as
the quantum space.)

2. These two actions commute and each action generates the full cen-
traliser of the other.

3. As a (GLn(C),Sk)-bimodule, the tensor space has a multiplicity free
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decomposition

V ⊗k '
⊕
λ

LGLn(λ)⊗ LSk(λ) , (8.1)

where LGLn(λ) are irreducible GLn(C)-modules and LSk(λ) are irre-
ducible Sk-modules.

Similar results hold when taking subgroups of GLn(C), in which case the
centraliser algebras become bigger. The TL algebra occurs in this hierarchy
of dualities, and its centraliser is the quantum algebra Uq(sl2).

In this chapter we define the Potts model in various representations and
exhibit its equivalence to the six-vertex model. Even though we are mainly
interested in the model defined on a square lattice, it turns out that many
of the transformations that we need hold when the model on more general
graphs. Since it hardly more complicated—and a lot more instructive—to
work in the “correct” generality, we shall choose to do so and specialise only
when needed.

8.1 Spin representation

Let G = (V,E) be an arbitrary connected graph with vertex set V and
edge set E. The Q-state Potts model is initially defined by assigning a spin
variable σi to each vertex i ∈ V . Each spin can take Q different values, by
convention chosen as σi = 1, 2, . . . , Q. We denote by σ the collection of all
spin variables on the graph. Two spins i and j are called nearest neighbours if
they are incident on a common edge e = (ij) ∈ E. In any given configuration
σ, a pair of nearest neighbour spins is assigned an energy −J if they take
identical values, σi = σj. The Hamiltonian (dimensionless energy functional)
of the Potts model is thus

H = −K
∑

(i,j)∈E

δ(σi, σj) . (8.2)

where the Kronecker delta function is defined as

δ(σi, σj) =

{
1 if σi = σj
0 otherwise

(8.3)

and K = J/kBT is a dimensionless coupling constant (interaction energy).
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The case Q = 2 corresponds to the Ising model. Indeed, if Si = ±1 we
have

2δ(Si, Sj) = SiSj + 1 . (8.4)

The second term amounts to an unimportant shift of the interaction energy,
and so the models are equivalent if we set KPotts = 2KIsing.

The thermodynamic information about the Potts model is encoded in the
partition function

Z =
∑
σ

e−H =
∑
σ

∏
(ij)∈E

eKδ(σi,σj) (8.5)

and in various correlation functions. By a correlation function we understand
the probability that a given set of vertices are assigned fixed values of the
spins.

In the ferromagnetic case K > 0 the spins tend to align at low temper-
atures (K � 1), defining a phase of ferromagnetic order. Conversely, at
high temperatures (K � 1) the spins are almost independent, leading to
a paramagnetic phase where entropic effects prevail. On physical grounds,
one expects the two phases to be separated by a critical point Kc where the
effective interactions between spins becomes long ranged.

For certain regular planar lattices Kc can be determined exactly by du-
ality considerations. Moreover, Kc will turn out to be the locus of a second
order phase transition if 0 ≤ Q ≤ 4. In that case the Potts model enjoys
conformal invariance in the limit of an infinite lattice, allowing its critical
properties to be determined exactly by a variety of techniques. These prop-
erties turn out to be universal, i.e., independent of the lattice used for defining
the model microscopically.

8.2 Fortuin-Kasteleyn cluster representation

The initial definition (8.2) of the Potts model requires the number of spins
Q to be a positive integer. It is possible to rewrite the partition function and
correlation functions so that Q appears only as a parameter. This makes its
possible to assign to Q arbitrary real (or even complex) values.

Notice first that by (8.3) we have the identity

eKδ(σi,σj) = 1 + vδ(σi, σj) , (8.6)
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where we have defined v = eK − 1. Now, it is obvious that for any edge-
dependent factors he one has∏

e∈E

(1 + he) =
∑
E′⊆E

∏
e∈E′

he . (8.7)

where the subset E ′ is defined as the set of edges for which we have taken
the term he in the development of the product

∏
e∈E. In particular, taking

he = vδ(σi, σj) we obtain for the partition function (8.5)

Z =
∑
E′⊆E

v|E
′|
∑
σ

∏
(ij)∈E′

δ(σi, σj) =
∑
E′⊆E

v|E
′|Qk(E′) , (8.8)

where k(E ′) is the number of connected components in the graph G′ =
(V,E ′), i.e., the graph obtained from G by removing the edges in E \ E ′.
Those connected components are called clusters, and (8.8) is the Fortuin-
Kasteleyn cluster representation of the Potts model partition function. The
sum over spins σ in (8.5) has now been replaced by a sum over edge subsets,
and Q appears as a parameter in (8.8) and no longer as a summation limit.

8.3 Duality of the partition function

Consider now the case where G = (V,E) is a connected planar graph. Any
planar graph possesses a dual graph G∗ = (V ∗, E∗) which is constructed by
placing a dual vertex i∗ ∈ V ∗ in each face of G, and connecting a pair of
dual vertices by a dual edge e∗ ∈ E∗ if and only if the corresponding faces
are adjacent in G. In other words, there is a bijection between edges and
dual edges, since each edge e ∈ E intersects precisely one dual edge e∗ ∈ E∗.
Note that by the Euler relation

|V |+ |V ∗| = |E|+ 2 . (8.9)

By construction, the dual graph is also connected and planar. Note also that
duality is an involution, i.e., (G∗)∗ = G.

The Euler relation can easily be proved by induction. If E = ∅, since G
was supposed connected we must have |V | = |V ∗| = 1, so (8.9) indeed holds.
Each time a further edge is added to E, there are two possibilities. Either
it connects an existing vertex to a new vertex, in which case |V | increases
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by one and |V ∗| is unchanged. Or it connects two existing vertices, meaning
that a cycle is closed in G. In this case |V | is unchanged and V ∗ increases
by one. In both cases (8.9) remains valid.

Recalling the cluster representation (8.8)

ZG(Q, v) =
∑
E1⊆E

v|E1|Qk(E1)

ZG∗(Q, v
∗) =

∑
E2⊆E∗

(v∗)|E2|Qk(E2) (8.10)

we now claim that it is possible to chose v∗ so that

ZG(Q, v) = kZG∗(Q, v
∗) (8.11)

where k is an unimportant multiplicative constant.
To prove this claim, we show that the proportionality (8.11) holds term

by term in the summations (8.10). To this end, we first define a bijection
between the terms by E2 = (E \E1)∗, i.e., an edge is present in E1 if its dual
edge is absent from E2, and vice versa. This implies

|E1|+ |E2| = |E| . (8.12)

We have moreover the topological identity for the induced (not necessarily
connected) graphs G1 = (V,E1) and G2 = (V ∗, E2)

k(E1) = |V | − |E1|+ c(E1) = |V | − |E1|+ k(E2)− 1 , (8.13)

where we k(E1) and c(E1) are respectively the number of connected compo-
nents and the number of independent cycles19 in the graph G1.

The proof of (8.13) is again by induction. If E1 = ∅, we have k(E1) = |V |,
c(E1) = 0 and k(E2) = 1. Each time an edge is added to E1 there are two
possibilities. Either c(E1) stays constant, in which case k(E1) is reduced by
one and k(E2) is unchanged. Or c(E1) increases by one, in which case k(E1)
is unchanged and k(E2) increases by one. In both cases (8.13) remains valid.

19The number of independent cycles—also known as the circuit rank, or the cyclomatic
number—is the smallest number of edges to be removed from a graph in order that no
graph cycle remains.
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Combining (8.12)–(8.13) gives

v|E1|Qk(E1) = k (v∗)|E2|Qk(E2) , (8.14)

where we have defined

k = Q1−|V ∗|v|E| = Q|V |−|E|−1v|E| (8.15)

and v∗ = Q/v. Comparing (8.14) with (8.10) completes the demonstration
of (8.11) and furnishes the desired duality relation

vv∗ = Q . (8.16)

The duality relation (8.16) is particularly useful when the graph is self-
dual, G∗ = G. This is the case of the regular square lattice. Assuming the
uniqueness of the phase transition, the critical point is given by the selfdual
coupling:

vc = ±
√
Q (square lattice) (8.17)

In the Ising case Q = 2, the solution vc = +
√
Q gives Kc = log(

√
2 + 1) in

agreement with (4.12).

8.4 Special cases

One of the strengths of the Q-state Potts model is that it contains a large
number of interesting special cases. Many of those make manifest the ge-
ometrical content of the partition function (8.8). The equivalence between
Q = 2 and the Ising model has already been discussed. We shall concentrate
here on a couple of more subtle equivalences, that explicitly exploit the fact
that Q can now be used as a continuous variable.

8.4.1 Bond percolation

For Q = 1 the Potts model is seemingly trivial, with partition function
Z = (1 + v)|E|. Instead of setting Q = 1 brutally, one can however consider
taking the limit Q → 1. This leads to the important special case of bond
percolation.

Let p ∈ [0, 1] and set v = p/(1 − p). We then consider the rescaled
partition function

Z̃(Q) ≡ (1− p)|E|Z =
∑
E′⊆E

p|E
′|(1− p)|E|−|E′|Qk(E′) . (8.18)

105



We have of course Z̃(1) = 1. But formally, what is written here is that each
edge is present in E ′ (i.e., percolating) with probability p and absent (i.e.,
non percolating) with probability 1 − p. Appropriate correlation functions

and derivatives of Z̃(Q) in the limit Q → 1 furnish valuable information
about the geometry of the percolation clusters. For instance

lim
Q→1

Q
dZ̃(Q)

dQ
= 〈k(E ′)〉 (8.19)

gives the average number of clusters.

8.4.2 Trees and forests

Using (8.13), and defining w = Q
v

, one can rewrite (8.8) as

Z =
∑
E1⊆E

(
Q

w

)|V |+c(E1)−k(E1)

Q|V |−|E1|+c(E1)

= v|V |
∑
E1⊆E

wk(E1)−c(E1)Qc(E1) . (8.20)

Take now the limit Q→ 0 and v → 0 in such a way that the ratio w = Q/v

is fixed and finite, and consider the rescaled partition function Z̃ = Zv−|V |.
The limit Q→ 0 will suppress any term with c(E1) > 0, and we are left with

Z̃ =
′∑

E1⊆E

wk(E1) , (8.21)

where the prime indicates that the summation is over edge sets such that
the graphs G1 = (V,E1) have no cycles, c(E1) = 0. Such graphs are known
as forests, or more precisely (since the vertex set V is that of G), spanning
forests of G. Each connected component carries a weight w.

For w → 0, the surviving terms are spanning trees, i.e., forests with
a single connected component. Note that the critical curve on the square
lattice (8.17) goes through the point (Q, v) = (0, 0) with a vertical tangent
(i.e., w → 0) and thus describes spanning trees.

8.5 Loop representation

We now transform the Potts model defined on a planar graph G into a model
of self-avoiding loops on a related graph M(G), known in graph theory as
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Figure 18: (a) A planar graph G (black circles and solid lines) and its dual
graph G∗ (white circles and dashed lines). (b) The medial graph M(G) =

M(G∗). (c) The plane quadrangulation Ĝ =M(G)∗.

the medial graph. Each term E ′ in the cluster representation (8.8) is in
bijection with a term in the loop representation. The correspondence is,
roughly speaking, that the loops turn around the connected components in
G′ = (V,E ′) as well as their elementary internal cycles. More precisely, the
loops separate the clusters from their duals.

To make this transformation precise, we first need to define the medial
graph M(G) = (Ṽ , Ẽ) carefully. Let G = (V,E) be a connected planar
graph with dual G∗ = (V ∗, E∗). The pair (G,G∗) can be drawn in the plane
such that each edge e ∈ E intersects its corresponding dual edge e∗ ∈ E∗

exactly once, see Figure 18a. To each of these intersections corresponds a
vertex ĩ ∈ Ṽ of M(G).

Consider now the union G ∪ G∗. This is in fact a quadrangulation of
the plane. Each quadrangle consists of a pair of half-edges and one vertex
from G, and a pair of half-edges and one vertex from G∗. These two pairs
of half-edges meet in a pair of vertices from Ṽ . An edge of M(G) is drawn

diagonally inside each quadrangle, joining the pair of vertices from Ṽ . This
defines the edge set Ẽ and completes the definition of the medial graph. An
example is shown in Figure 18b.

It is manifest in these definitions that G and G∗ are used in a completely
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Figure 19: Square and triangular lattices (solid lines) with their correspond-
ing medial lattices (dashed lines).

symmetric way. Thus, a graph and its dual has the same medial graph,
M(G) =M(G∗). Moreover, it is easy to see that every vertex ofM(G) has
degree four.20

The medial of the square lattice is another (tilted) square lattice. The
medial of the triangular lattice (or of its dual hexagonal lattice) is known
as the kagome lattice.21 These two medial lattices, shown in Figure 19, are
particularly important for subsequent applications.

To each term E ′ in appearing in the sum (8.8) we now define a system of

self-avoiding loops that completely cover the edges of M(G). Let ĩ ∈ Ṽ be

a vertex of M(G) and write its adjacent (half)edges from E, E∗ and Ẽ in

cyclic order as ẽ1eẽ2e
∗ẽ3eẽ4e

∗. Now if e ∈ E ′, link up the half-edges of Ẽ in
two pairs as (ẽ4ẽ1)(ẽ2ẽ3). Conversely, if e ∈ E \E ′, we link (ẽ1ẽ2)(ẽ3ẽ4). Note
that we do not allow the non-planar (crossing) linking (ẽ1ẽ3)(ẽ2ẽ4). The set

of linkings at all vertices Ṽ defines the desired system of loops.
In concrete terms, this definition means that the loops bounce off all edges

E ′ and cut through the corresponding dual edges. The complete correspon-
dence is illustrated in Figure 20.

To complete the transformation, note that the number of loops l(E ′) is
the sum of the number of connected components k(E ′) and the number of

20This implies that the dual ofM(G) is a quadrangulation Ĝ, which is however different
from the quadrangulation G ∪ G∗. See Figure 18c. The Potts model admits yet another
representation, namely as a height model—or RSOS model—on Ĝ.

21Literally “eye basket”. This refers to a type of traditional Japanese wicker basket
weave.
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(a) (b)

Figure 20: (a) A subset E ′ ⊆ E (thick black solid lines) and its complemen-
tary subset (E ′)∗ ⊆ E∗ (thick black dashed lines). (b) The corresponding
system of self-avoiding loops on the medial graph (blue curves).

independent cycles c(E ′):

l(E ′) = k(E ′) + c(E ′) . (8.22)

Inserting this and the topological identity (8.13), which reads in the present
notation

k(E ′) = |V | − |E ′|+ c(E ′) , (8.23)

into (8.8) we arrive at

Z = Q|V |/2
∑
E′⊆E

x|E
′|Ql(E′)/2 , (8.24)

where we have defined x = vQ−1/2.
This is the loop representation of the Potts partition function. It impor-

tance stems from the fact that the loops, their local connectivities (called
linkings in the above argument), and the non-local quantity l(E ′) all admit
an algebraic interpretation within the Temperley-Lieb algebra.

The duality transformation in the loop representation consists in shifting
the linking at each vertex cyclically by one step. In terms of the x variables
the duality relation (8.16) reads simply

xx∗ = 1 . (8.25)
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In the case of the square lattice, the self-dual points are xc = ±1, and the
usual critical point is xc+ = 1. The loop model (8.24) then becomes extremely
simple: there is just a weight n =

√
Q for each loop.

8.6 Vertex model representation

In the definition of the Q-state Potts model, Q was originally a positive inte-
gers. However, in the corresponding loop model (8.24) it appears as formal
parameters and may thus take arbitrary complex values. The price to pay
for this generalisation is the appearance of a non-locally defined quantity,
the number of loops l. The locality of the model may be recovered by trans-
forming it to a vertex model with complex Boltzmann weights as we now
show.

The following argument supposes that G = (V,E) is a (connected) planar
graph. Most applications however suppose a regular lattice, a situation to
which we shall return shortly.

Consider any model of self-avoiding loops defined on G (or some related
graph, such as the medial graphM(G) for the Potts model). The Boltzmann
weights are supposed to consist of a local piece—depending on if and how
the loops pass through a given vertex—and a non-local piece of the form nl,
where n is the loop weight and l is the number of loops. In the case of the
Potts model we have n =

√
Q.

In a first step, each loop is independently decorated by a global orientation
s = ±1, which by planarity and self-avoidance can be described as either
counterclockwise (s = 1) or clockwise (s = −1). If each oriented loop is
given a weight w(s), we have the requirement

n = w(1) + w(−1) . (8.26)

An obvious possibility, sometimes referred to as the real loop ensemble, is
w(1) = w(−1) = n/2. This can be interpreted as an O(n/2) model of
complex spins.

We are however more interested in the complex loop ensemble with w(s) =
eisγ. Note that in the expected critical regime,

n = 2 cos γ ∈ [−2, 2] , (8.27)

the parameter γ ∈ [0, π] is real. Locality is retrieved by remarking that the
weights w(±1) are equivalent to assigning a local weight w(α/2π) each time
the loop turns an angle α (counted positive for left turns).
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Note that a planar graph cannot necessarily be drawn in the plane in
such a way that all edges are straight line segments. Therefore, the local
weights w(α/2π) must in general be assigned both to vertices and to edges.
However, it is certainly possible to redraw the graph so that each edge is a
succession of several straight line segments. Introducing auxiliary vertices of
degree two at the places where two segments join up, the weight for turning
can be assigned to those auxiliary vertices. In that sense, any planar graph
admits a local redistribution of the loop weight, with local weights w(α/2π)
assigned only to vertices.

The loop model is now transformed into a local vertex model by assigning
to each edge traversed by a loop the orientation of that loop. An edge not
traversed by any loop is assigned no orientation. The total vertex weight is
determined from the configuration of its incident oriented edges: it equals
the above local loop weights summed over the possible linkings of oriented
loops which are compatible with the given edge orientations. In addition,
one must multiply this by any loop-independent local weights, such as x in
(8.24).

8.7 Six-vertex model

To see how this is done, we finally specialise to the Potts model defined
on the square lattice G. The loop model is defined on the corresponding
medial lattice M(G) which is another (tilted) square lattice. Each edge of
the lattice is visited by a loop, and two loop segments (possibly parts of the
same loop) meet at each vertex. In the oriented loop representation, each
vertex is therefore incident on two outgoing and two ingoing edges.

It is convenient for the subsequent discussion to make the couplings of the
Potts model anisotropic. In its original spin formulation (8.5) we therefore let
K1 (resp.K2) denote respectively the dimensionless coupling in the horizontal
(resp. vertical) direction of the square lattice, and we let

x1 =
eK1 − 1√

Q
, x2 =

eK2 − 1√
Q

(8.28)

be the corresponding parameters appearing in the loop representation (8.24).
Note that in all the results obtained this far it is straightforward to generalise
to completely inhomogeneous edge dependent couplings, and the only reason
that we have chosen not to present the results in this generality is that it
tends to make notations slightly cumbersome.
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ω1 ω2 ω3 ω4 ω5 ω6

Figure 21: The allowed arrow arrangements (top) around a vertex that define
the six-vertex model, with the corresponding particle trajectories (bottom).

The six possible configurations of arrows around a vertex of the medial
lattice M(G) are shown in Fig. 21 (obtained simply by rotating Fig. 14
through π

4
). The corresponding vertex weights are denoted ωp (resp. ω′p) on

the even (resp. odd) sublattice ofM(G). By definition, a vertex of the even
(resp. odd) sublattice ofM(G) is the mid point of an edge with coupling K1

(resp. K2) of the original spin lattice G. With respect to Figure 21 we define
the even sublattice to be such that an edge e ∈ E occupies the upper-left and
lower-right quadrants, and the corresponding dual edge e∗ ∈ E∗ occupies the
lower-left and upper-right quadrants. For the odd sublattice, exchange e and
e∗.

Using (8.24) we then have

Z = Q|V |/2
∑

arrows

6∏
p=1

(ωp)
Np(ω′p)

N ′p , (8.29)

where the sum is over arrow configurations satisfying the constraint “two in,
two out” at each vertex, and Np (resp. N ′p) is the number of vertices on the
even (resp. odd) sublattice with arrow configuration p. Thus, the square-
lattice Potts model has been represented as a staggered six-vertex model.22

The weights read explicitly

ω1, . . . , ω6 = 1, 1, x1, x1, e
iγ/2 + x1e−iγ/2, e−iγ/2 + x1eiγ/2 (8.30)

ω′1, . . . , ω
′
6 = x2, x2, 1, 1, e

−iγ/2 + x2eiγ/2, eiγ/2 + x2e−iγ/2 (8.31)

To see this, note that configurations i = 1, 2, 3, 4 are compatible with just
one linking of the oriented loops:

ω1

=

1 (8.32)

22The term staggered means that the weights alternate between sublattices.
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whereas i = 5, 6 are compatible with two different linkings (and the weight
is obtained by summing over these two):

ω5

=

eiγ/2

+

x1e−iγ/2 (8.33)

Note that the even and odd sublattices are related by a π/2 rotation of the
vertices in Figure 21. This rotation interchanges configurations (ω1, ω2) ↔
(ω′3, ω

′
4) and ω5 ↔ ω′6. On the level of the weights it corresponds to x1 ↔ x2.

The staggered six-vertex model is not exactly solvable in general. How-
ever, if we impose

x2 = (x1)−1 (8.34)

we have ω′i = (x1)−1ωi for any i = 1, 2, . . . , 6. The factors (x1)−1 from each
ω′i can be taken outside the summation in (8.29) and we have effectively
ω′i = ωi. The six-vertex model then becomes homogeneous, hence solvable.
Note that the solvability condition is nothing else than (8.25): the selfdual
square-lattice Potts model is equivalent to a homogeneous six-vertex model.
The results for the latter therefore apply. The anisotropy parameter is

∆ =
a2 + b2 − c2

2ab
= − cos γ , (8.35)

where we have replaced c2 by ω5ω6 by invoking the usual gauge symmetry.23

This matches perfectly the parameterisation (6.13). Note that the spectral
parameter u is precisely what allows us to take different horizontal and ver-
tical couplings.

We stress once more that the square-lattice Potts model is solvable at its
selfdual point, but not at arbitrary temperatures. This is in contrast with
the Ising model, which is solvable at any temperature. In that sense the Ising
model is a rather untypical integrable model.

However the integrable R-matrix of the six-vertex model satisfies the
Yang-Baxter relations for any choice of the spectral parameters. There is
one other choice that also corresponds to a Potts model. If one lets the
horizontal spectral parameters alternate like u, u + π

2
, u, u + π

2
, . . . and the

23In the special case x1 = x2 = 1 of (8.34) we even have ω5 = ω6.
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vertical like v, v+ π
2
, v, v+ π

2
, . . . one obtains the antiferromagnetic transition

curve of the Potts model:

x1 =
sin(u)

sin(γ − u)
, x2 = −cos(γ − u)

cos(u)
. (8.36)

This has been analysed in [Ba82b, JS06, IJS08].

8.8 Twisted vertex model

Sometimes it is convenient to consider particular correlation functions in
which the weight of some of the loops are changed. As an elementary ex-
ample, consider the Potts loop model defined on a connected planar graph
G = (V,E) and let i1, i2 ∈ V be a pair of root vertices. The partition func-
tion Z(n) is given by (8.24) with loop weight n =

√
Q and additional local

weights at the vertices.
Define now a modified partition function Z1(n, n1) as follows: loops on

M(G) surrounding neither or both of the roots have an unchanged weight n,
whereas those surrounding only one of the roots have a modified weight n1.
This defines the two-point correlation function Z1(n, n1)/Z(n). An interest-
ing special case is provided by n1 = 0, which expresses the probability that
the two roots belong to the same cluster.

It is possible to produce Z1(n, n1) in the vertex model representation,
leading to a so-called twisted vertex model. To this end, let P12 be a an
oriented self-avoiding path on G, going from i1 to i2. Let us parametrise

n1 = 2 cos γ1 ∈ [−2, 2] (8.37)

with real γ1 ∈ [0, π]. In the arrow formulation, we then associate a special
weight w̃ to any edge ẽ of M(G) that crosses the path P12. The weight w̃
depends on the orientation of the arrow on ẽ: it equals eiγ1 (resp. e−iγ1) if
the arrow points from left to right (resp. from right to left) upon viewing ẽ
along the direction given by P12.

The path P12 is often called a seam, and the edges traversing it are referred
to as seam edges.

In the oriented loop representation, it is easy to see that a loop surround-
ing neither or both of the roots will traverse P12 an even number of times,
and the phase factors w̃ will cancel out globally. However, a loop surround-
ing just one of the roots with have one excess factor e±iγ1 depending on its
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global orientation (clockwise or counterclockwise), leading to (8.37) once the
orientations have been summed over.

Note that the above construction of Z1(n, n1) depends on the seam P12

only through its end points i1 and i2. In that sense, the exact shape of the
seam is irrelevant and can be deformed at will.

Finally, the weights w̃ can be absorbed in the vertex weights, by incor-
porating them in the weight of the vertex at the right (with respect to the
orientation defined by P12) end point of ẽ.

These considerations are important when discussing boundary effects.
Suppose we wish to define the square-lattice Potts model on a cylinder with
periodic boundary conditions. This is still a planar graph, but if we decide
to draw it as such, i.e., in cobweb shape

(8.38)

the edges will be curved and additional complex phase factors will be picked
up by the loops. These extra phases will cancel out for oriented loops that
do not encircle the origin, and the usual weight n = 2 cos γ will result from
summing over orientations. However, loops that do encircle the origin will
finally a wrong weight n̄ = 2.

Alternatively, one may draw the cylinder as a standard square lattice with
periodic boundary conditions across. In this version, oriented loops that are
not homotopic to a point will not turn a total angle α = ±2π, but rather
ᾱ = 0. They thus get the weight n̄ = 2 as above: the two points of view are
equivalent.

The introduction of a seam running from the origin to the point at infinity
will change the weighting: n̄ = n1. In particular, setting n1 = n we obtain
the true Potts model. Such subtleties are important when discussing critical
exponents, since these will in fact depend on n1.

Note finally that the case of doubly periodic (toroidal) boundary condi-
tions is quite delicate, since most of the equivalences presented in this chapter
depend crucially on the planarity of the graph.
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9 Temperley-Lieb algebra

The Temperley-Lieb algebra TLN(n) is a unital associative algebra over C.
Its N − 1 generators are denoted Em for m = 1, 2, . . . , N − 1. They satisfy
the relations

(Em)2 = nEm ,

EmEm±1Em = Em ,

EmEm′ = Em′Em for |m−m′| > 1 . (9.1)

It will turn out useful to define the q-deformed numbers

[k]q =
qk − q−k

q − q−1
(9.2)

and parameterise
n = q + q−1 = [2]q . (9.3)

Notice that in the previous chapter we had n = 2 cos γ, so that q = eiγ. For
k ∈ N the q-number is actually a polynomial in n:

[k + 1]q = Uk(n/2) , (9.4)

where Uk(x) is the kth order Chebyshev polynomial of the second kind

Uk(cos θ) =
sin
(
(k + 1)θ

)
sin(θ)

. (9.5)

The algebra TLN(n) can be represented in many ways. We shall be
particularly interested in its loop-model representation, since this permits us
to make contact with the previous chapter. In this representation, TLN(n)
is viewed as an algebra of diagrams acting on N numbered vertical strands
(for convenience depicted inside a dashed box) as

Em = · · · · · ·

1 2 m m+ 1 N − 1 N

Multiplication in TLN(n) is defined by stacking diagrams vertically. More
precisely, the product of two generators g2g1 is defined by placing the diagram
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for g2 above the diagram for g1, identifying the bottom points of g2 with the
top points of g1. The resulting diagram is considered up to smooth isotopies
that keep fixed the surrounding box, and any closed loop is replaced by the
factor n.

In this way we have for instance (omitting strands on which the action is
trivial)

(Em)2 = = n = nEm

and

EmEm+1Em = = = Em .

It is thus readily seen that all the defining relations (9.1) are satisfied. More-
over, for generic values of n no further relations hold: the loop-model repre-
sentation is faithful.

9.1 Integrable Ř-matrix

Starting from first principles, we now construct an integrable model based
on the TL algebra. Let us suppose that the Ř-matrix has the form

Řm,m+1(u) = f(u)I + g(u)Em , (9.6)

where f(u) and g(u) are some functions of the spectral parameter u to be
determined. Inserting this into the Yang-Baxter equation (6.8) yields(

f(u)I + g(u)E2

) (
f(u+ v)I + g(u+ v)E1

) (
f(v)I + g(v)E2

)
=(

f(v)I + g(v)E1

) (
f(u+ v)I + g(u+ v)E2

) (
f(u)I + g(u)E1

)
. (9.7)

Using the algebraic relations (9.1) we can expand both sides of (9.7). The
left-hand side produces

f(u)f(u+ v)f(v)I + f(u)g(u+ v)f(v)E1 +

g(u)g(u+ v)f(v)E2E1 + f(u)g(u+ v)g(v)E1E2 +[
g(u)g(v)

(
g(u+ v) + nf(u+ v)

)
+ f(u+ v)

(
f(u)g(v) + f(v)g(u)

)]
E2 ,
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and the right-hand side becomes

f(v)f(u+ v)f(u)I + f(v)g(u+ v)f(u)E2 +

f(v)g(u+ v)g(u)E2E1 + g(v)g(u+ v)f(u)E1E2 +[
g(u)g(v)

(
g(u+ v) + nf(u+ v)

)
+ f(u+ v)

(
f(u)g(v) + f(v)g(u)

)]
E1 .

These expressions must be identical in TL3(n), and so we can identify the
coefficients for each of the five possible words in the algebra. The relations
resulting from the words I, E1E2 and E2E1 are trivial. The relations coming
from E1 and E2 are identical—related via an exchange of the left- and right-
hand sides—and read

g(u)g(v)
(
g(u+ v) + nf(u+ v)

)
+ f(u+ v)

(
f(u)g(v) + f(v)g(u)

)
=

f(u)f(v)g(u+ v) . (9.8)

The functional relation (9.8) is a typical outcome of this way of solving
the Yang-Baxter equations. It is in general not easy to solve this type of
relation, and even if one finds solutions it is often difficult to make sure that
one has found all the solutions. Worse, in more complicated cases than the
one considered here the Ansatz for the Ř-matrix will involve more terms and
the functions f(u), g(u),. . . must satisfy several coupled functional equations.

It is useful to rewrite (9.8) in terms of the parameters z = eiu, w = eiv

and q = eiγ. That is, instead of the additive spectral parameters u, v we have
now multiplicative spectral parameters z, w. Thus

g(z)g(w)
(
g(zw) + (q + q−1)f(zw)

)
+ f(zw)

(
f(z)g(w) + f(w)g(z)

)
=

f(z)f(w)g(zw) . (9.9)

It is tempting to set f(z) = 1, since the overall normalisation of the Ř-matrix
is unimportant, but in general this is not a good idea. A time proven strategy
is to suppose that f(z) and g(z) are polynomials of some small degree in the
variables z, z−1, q and q−1. (In some cases one needs to try fractional powers
of q as well.) In this case we are lucky: there is a solution of degree one

f(z) =
q

z
− z

q
, (9.10)

g(z) = z − z−1 . (9.11)

Verifying that this is a solution is of course easy. Finding it from scratch
already calls for the use of symbolic algebra software such as Mathematica.
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Going back to additive spectral parameters, we thus have a trigonometric
solution of (9.7):

f(u) = sin(γ − u) , g(u) = sin(u) . (9.12)

Note that this agrees with (6.18).
In general, solutions to the Yang-Baxter equation turn out to be polyno-

mial, trigonometric or elliptic (in order of increasing difficulty).

9.2 Transfer matrix decomposition

In the remainder of this chapter we shall be interested in the Q-state Potts
model defined on an L×M annulus of width L spins and of circumference M
spins. The boundary conditions are free in the space (L, horizontal) direction
and periodic in the time (M , vertical) direction.

We work in the loop representation in order to make contact with the
Temperley-Lieb algebra TLN(n) defined on N = 2L strands and with loop
weight n =

√
Q. The transfer matrix can be read off from (8.24):

T = QL/2

(
L−1∏
m=1

(I + x1E2m)

) (
L∏

m=1

(x2I + E2m−1)

)
, (9.13)

where x1 (resp. x2) defines the horizontal (resp. vertical) coupling constant
through (8.28).

We have seen in (8.34) that the Potts model is solvable if x2 = (x1)−1. In
that case we have

T =

(√
Q

x1

)L(L−1∏
m=1

(I + x1E2m)

) (
L∏

m=1

(I + x1E2m−1)

)
. (9.14)

We recognise here the integrable Ř-matrix (9.6) and identify

x1 =
g(u)

f(u)
=

sin(u)

sin(γ − u)
. (9.15)

According to (8.30) we have also x1 = ω3

ω1
, and we note that this agrees

precisely with the parameterisation (6.13) used when studying the six-vertex
model.
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Figure 22: List of all TL states on N = 4 strands. Each row corresponds to
a definite sector of the transfer matrix.

Figure 23: List of all TL reduced states on N = 4 strands. Each row corre-
sponds to a definite sector of the transfer matrix.

The transfer matrix T acts on states which can be depicted diagramati-
cally as non-crossing link patterns within a box bordered by two horizontal
rows, each of N points. The complete list of states for N = 4 is shown in
Fig. 22. The bottom (resp. top) side of the box corresponds to time t = 0
(resp. t = t0); the transfer matrix propagates the states from t0 to t0 + 1 and
thus acts on the top of the box only.

A link joining the top and the bottom of the box is called a string, and
any other link is called an arc. We denote by s the number of strings in a
given state. Any state can be turned into a pair of reduced states by cutting
all its strings and pulling apart the upper and lower parts. For convenience,
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a cut string will still be called a string with respect to the reduced state. The
complete list of reduced states for N = 4 is shown in Fig. 23.

Conversely, a state can be obtained by adjoining two reduced states,
gluing together their strings in a unique fashion. Thus, if we define d2j as
the number of reduced states with s = 2j strings, the number of states with
s = 2j strings is simply (d2j)

2.
The partition function ZN,M on an annulus of width N strands and height

M units of time cannot be immediately expressed in terms of reduced states
only, since these do not contain the information about how many loops (con-
tractible or non-contractible) are formed when the periodic boundary condi-
tion is imposed. We can however write it in terms of states as

ZN,M(n, `) = 〈u|TM |v〉 . (9.16)

It is useful to slightly generalise the problem by giving the weight n to con-
tractible loops and a different weight ` to non-contractible loops. Recalling
(9.3) we shall parameterise the latter as24

` = t+ t−1 = [2]t . (9.17)

At time t0 = 0 the top and the bottom of the box must be identified.
Therefore, the right vector |v〉 is just the unit vector corresponding to the
unique state that contains no arcs and N strings (i.e., each link connects a
point on the bottom to the point immediately above it on the top).

At time t0 = M the top and the bottom of the box must be reglued.
Therefore, the left vector 〈u| is obtained by identifying the top and bottom
sides for each state. Counting the number of loops of each type gives the
corresponding weight as a monomial in the loop weights n and `.

The reduced states can be ordered according to a decreasing number of
strings. The states can be ordered first according to a decreasing number of
strings, and next, for a fixed number of strings, according to its bottom half
reduced state. These orderings are brought out by the rows in Figs. 22–23.

With this ordering, T has a blockwise lower triangular structure in the
basis of reduced states, since the generator ei can annihilate two strings (if
their position on the top of the box are i and i + 1) but cannot create any
strings.

In the basis of states, T is blockwise lower triangular with respect to
the number of strings, for the same reason. Each block on the diagonal in

24This t has of course nothing to do with the “time” discussed above.
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this decomposition corresponds to a definite number of strings. The block
corresponding to s = 2j strings is denoted T̃2j. But since T acts only on

the top of the box, each T̃2j = T2j ⊕ . . . ⊕ T2j is in turn a direct sum of
d2j identical blocks T2j which correspond simply to the action of T on the
reduced states with 2j strings.

In particular, the eigenvalues of T are the union of the eigenvalues of T2j,
where the T2j now act in the much smaller basis of reduced states. This
observation is particularly useful in numerical studies.

9.3 The dimensions dk and Dk

In spite of the periodic boundary conditions, ZN,M(n, `) is obviously not a
usual matrix trace. It can however be decomposed on standard traces by
constructing the transfer matrix blocks Tk algebraically within TLN(n). We
shall come back to this issue in the following sections.

For each block Tk we define the corresponding character as

Kk = tr (Tk)
M , (9.18)

where we stress that the trace is over reduced states. Obviously we have

Kk =

dk∑
i=1

(
λ

(k)
i

)M
, (9.19)

where λ
(k)
i are the eigenvalues of Tk. We recall that dk = dimTk.

The expression of the partition function in terms of transfer matrix eigen-
values is more involved, due essentially to the non-local nature of the loops,
and reads

ZN,M =
L∑
j=0

D2jK2j , (9.20)

where Dk are some eigenvalue amplitudes to be determined. We shall provide
the answer in the next sections, using algebraic means.

In view of the Schur-Weyl duality (mentioned briefly in the introduction
to chapter 8) the Dk can also be interpreted as the (quantum) dimensions
of the commutant of TLN(n), which is the quantum algebra Uq(sl2). In
the corresponding bimodule, the partition function (9.20) therefore has a
multiplicity free decomposition.
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Determining the dk is an exercise of elementary combinatorics that we deal
with now. Let E(j, k) denote the number of reduced states on 2j strands,
and using 2k strings, so that d2j = E(L, j). The corresponding generating
function reads

E(k)(z) =
∞∑
j=0

E(j, k)zj , (9.21)

where z is a formal parameter representing the weight of an arc, or of a pair
of strings. When k = 0, a reduced state with no strings is either empty, or
has a leftmost arc which divides the space into two parts (inside the arc and
to its right) each of which can accomodate an independent arc state. The
generating function f(z) ≡ E(0)(z) therefore satisfies f(z) = 1 + zf(z)2 with
regular solution

f(z) =
1−
√

1− 4z

2z
=
∞∑
j=0

(2j)!

j! (j + 1)!
zj . (9.22)

When k 6= 0, the strings simply divide the space into 2k + 1 parts each of
which contains an independent arc state. Therefore,

E(k)(z) = zkf(z)2k+1 =
∞∑
j=k

[(
2j

j + k

)
−
(

2j

j + 1 + k

)]
zj (9.23)

and in particular we have

d2j = E(L, j) =

(
2L

L+ j

)
−
(

2L

1 + L+ j

)
. (9.24)

Note that d2j depends on the number of strands N = 2L, but we usually will
not mention this explicitly.

The total number of reduced states is

L∑
j=0

d2j =

(
2L

L

)
, (9.25)

while the total number of (non-reduced) states is

L∑
j=0

(d2j)
2 = E(2L, 0) =

1

2L+ 1

(
4L

2L

)
. (9.26)
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In particular for N = 2L = 4 we have

d4 = 1 , d2 = 3 , d0 = 2 ,

in agreement with the number of reduced states shown in each row of Fig. 23.
The total number of states is 12 + 32 + 22 = 14 in agreement with Fig. 22.

9.4 Jones-Wenzl projectors

We have decomposed the full transfer matrix T to elementary blocks Tk that
have the property that the number of strings is precisely k and cannot be
lowered by the action of TLN(n). In more algebraic terms, Tk is the restric-
tion of T to a representation with precisely k strings. This representation is
known as the standard module Vk. It can be shown that Vk is irreducible
when q is not a root of unity.

Within Vk, the generator Em annihilates any (reduced) state for which
the strands at positions m and m+ 1 are both strings, and acts in the usual
way on any other state. There exists an algebraic object that imposes this
restriction: the Jones-Wenzl (JW) projector.

The JW projector Pk ∈ TLk(n) is defined by the recursion relation

Pk+1 = Pk −
[k]q

[k + 1]q
PkEkPk , for k ≥ 1 , (9.27)

and the initial condition P1 = I. Both sides of this equation act in TLk+1(n).
To keep the notation simple it is implicitly understood that the projector Pk
acts only on the k leftmost strands.

The first few JW projectors read explicitly

P1 = I ,

P2 = I − 1

n
E1 ,

P3 = I − n

n2 − 1
(E1 + E2) +

1

n2 − 1
(E1E2 + E2E1) . (9.28)

In the sequel it will turn out useful to have a diagrammatic representation
of Pk. We shall represent it as a bar across the strands being projected (here
and in the following all pictures are for k = 4):

Pk =
(9.29)
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The JW has two crucial properties. First, it is idempotent and bigger
projectors swallow smaller ones:

PmPk = PkPm = Pk , for 1 ≤ m ≤ k . (9.30)

Second, no contractions are allowed among the strands having been pro-
jected:

EmPk = PkEm = 0 , for 1 ≤ m ≤ k − 1 . (9.31)

The proof of the properties (9.30)–(9.31) is by induction in k. The case
k = 1 is obvious: since P1 = I, the first property (9.30) is trivial, and for the
second property (9.31) there is nothing to be shown. Suppose therefore that
both properties hold for k and let us show them for k + 1. For convenience
we write αk = [k]q/[k + 1]q.

We consider first (9.31). For m < k we have

EmPk+1 = = − αk
(9.32)

where we have used (9.27). Both diagrams on the right-hand side are zero
by the induction hypothesis (9.31), whence EmPk+1 = 0 as required.

The argument for m = k is slightly more involved. We first use (9.27) to
write

EkPk+1 = − αk
(9.33)

In the second term on the right-hand side, the small loop cannot yet be
replace by n since it is “trapped” by the projector. We therefore use (9.27)
once more:

= − αk−1 = (n− αk−1)

(9.34)
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where in the last step use was made of the induction hypothesis (9.30). In-
serting (9.34) into (9.33) we obtain

EkPk+1 = − αk(n− αk−1)

(9.35)

but by (9.30) the two diagrams on the right-hand side are identical. To have
EkPk+1 = 0 as required, we therefore need the coefficient to vanish

1− αk(n− αk−1) = 0 ,

which is easily shown to be equivalent to

[2]q[k]q = [k − 1]q + [k + 1]q . (9.36)

But (9.36) is precisely the recursion relation satisfied by [k]q, so (9.31) is
proved.

Let us note that (9.34) is actually a quite useful identity. In algebraic
terms, and using (9.36), it can be written

EkPkEk =
[k + 1]q

[k]q
EkPk−1 . (9.37)

We still need to prove (9.30) for k + 1 and m ≤ k + 1. This is done by
induction in m. Since P1 = I the statement is trivial for m = 1. Suppose
now m ≤ k and that the statement has been proved for m− 1. We have

PmPk+1 = = − αm−1

(9.38)

After using the induction hypothesis on both diagrams on the right-hand
side we obtain

= − αm−1

(9.39)
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But the second diagram on the right-hand side vanishes by (9.31), so we have
PmPk+1 = Pk+1 as required.

Exactly the same argument applies when m = k + 1, so the proof is
complete.

9.5 Markov trace

One of our main objectives is to compute the annulus partition function
ZN,M(n, `) given by (9.16). This calls for algebraic way of imposing the peri-
odic boundary conditions in the time direction. This motivates the following
definition of the Markov trace.

Let w ∈ TLN(n) be a word in the TL algebra. We can represent w as a
diagram in a box, cf. Fig. 22. The Markov trace of w is defined as

Trw = nN1`N2 , (9.40)

where N1 (resp. N2) is the number of contractible (resp. non-contractible)
loops formed when identifying the top and the bottom sides of the box. This
definition is extended by linearity to the whole algebra TLN(n). Pictorially
we can write

Trw = w

(9.41)

Contractible (resp. non-contractible) loops are those that cover an even (resp.
odd) number of dashed lines. The corresponding weights have been defined
as n = [2]q and ` = [2]t.

In particular wish to know the Markov trace of the JW projectors Pk.
This can be found by using (9.27):

TrPk+1 = Tr − αk Tr
(9.42)
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In the second diagram on the right-hand side we can slide the uppermost
projector across the periodic boundary condition to the bottom, where it
gets swallowed by the other projector. We thus have

TrPk+1 = [2]t TrPk − αk Tr
(9.43)

Note that the last diagram does not equal TrPk−1. Indeed, the small loop
on the right is contractible. For the moment it is “trapped” by the projector,
but we can liberate it by repeating the argument of (9.34). We arrive at

TrPk+1 = [2]t TrPk − αk ([2]q − αk−1) TrPk−1 . (9.44)

Thanks to (9.36) we have αk ([2]q − αk−1) = 1, and so we have the recursion
relation

[2]tTrPk = TrPk−1 + TrPk+1 (9.45)

with initial conditions TrP0 = [1]t = 1 and TrP1 = [2]t = `. Invoking again
(9.36) the solution is

TrPk = [k + 1]t = Uk(`/2) . (9.46)

It is rather remarkable that this depends only on `, and not on n.

9.6 Decomposition of the Markov trace

Assume that q is not a root of unity, so that the standard modules Vj are
irreducible. We now define a scalar product in Vj. Given two reduced states
|v1〉, |v2〉 ∈ Vj, cf. Fig. 23, each containing j strings. The scalar product
〈v1|v2〉 is obtained by reflecting |v1〉 in a horizontal mirror, then gluing to-
gether the two states. We define 〈v1|v2〉 = 0 unless each string in v2 connects
onto a string in v1. Otherwise we attribute a weight [2]q = n to each closed
loop and 1 to each string in the compound diagram.

Let us give some examples in TL4(n). The Gram matrices of scalar
products in V4, V2 and V0, cf. Fig. 23, read

M4 = [1] , M2 =

 n 1 0
1 n 1
0 1 n

 , M0 =

[
n2 n
n n2

]
. (9.47)
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As a side remark we point out that the determinants of the Gram matrices
may vanish if and only if q is a root of unity. We are supposing throughout
that this is not the case, so that the representation theory is generic. In more
technical terms, the algebra TLN(n) is supposed to be semi-simple.

A related observation is that the JW projectors are ill-defined when q is
a root of unity.

Since Vj are generic there exists a basis Bj which is orthonormal with
respect to the scalar product:

∀bk, bl ∈ Bj : 〈bk|bl〉 = δk,l . (9.48)

We also extend our definition of the scalar product so that states belonging
to different standard modules Vj and Vj′ , with j 6= j′, are orthogonal.

The next step is to construct an element PN,j ∈ TLN(n) that projects
on Vj. In other words, PN,j must act as the identity on Vj and annihilate
all states of Vj′ with j′ 6= j. Obviously PN,N = PN is just the familiar JW
projector. For arbitrary j we define (the diagrammatic representation shows
the case N = 4 and j = 2)

PN,j =
∑
b∈Bj

|b〉 ◦ Pj ◦ 〈b| =
∑
b∈Bj b

b

(9.49)

This has the required properties and satisfies the completeness relation

N∑
j=0

PN,j = I ∈ TLN(n) . (9.50)

We are now in a position to attain the goal of decomposing the Markov
trace of any element w ∈ TLN(n) over standard traces—i.e., traces with
respect to the basis states b ∈ Bj. We first decompose w using (9.50):

w =
∑
j

PN,j w =
∑
j w

PN,j

(9.51)
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Inserting the definition (9.49) and taking the Markov trace yields

Tr w

PN,j

=
∑
b∈Bj

b

b

w

=
∑
b∈Bj b

w

b

(9.52)

Returning to algebraic terms, this means that we have shown

Trw =
∑
j

TrPj
∑
b∈Bj

〈b|w|b〉 =
∑
j

[j + 1]t trVj w . (9.53)

The main result (9.53) applies in particular when w = TM , theMth power
of the Potts model partition function. We have thus finished the demon-
stration that ZN,M indeed has the form (9.20) and identified the eigenvalue
amplitudes as Dj = [j + 1]t. The characters

Kj = trVjT
M (9.54)

defined in () are usually written K1,1+j for reasons that will become clear
later on. We can thus summarise our final result as

ZN,M(n, `) =
L∑
j=0

[1 + 2j]tK1,1+2j(n) . (9.55)

The point is that the K1,1+2j can be computed exactly in the continuum
limit, using CFT techniques. The expression (9.55) will then give access
to—among many other things—exact crossing formulae in percolation.

Finally one should also note the sum rule

L∑
j=0

d2jD2j = `N , (9.56)

which expresses the fact that there are ` degrees of freedom living on each
site.
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10 Basic aspects of CFT

An important break-through occurred in 1984 when Belavin, Polyakov and
Zamolodchikov [BPZ84] applied ideas of conformal invariance to classify the
possible types of critical behaviour in two dimensions. These ideas had
emerged earlier in string theory and mathematics, and in fact go back to
earlier (1970) work of Polyakov [Po70] in which global conformal invariance
is used to constrain the form of correlation functions in d-dimensional the-
ories. It is however only by imposing local conformal invariance in d = 2
that this approach becomes really powerful. In particular, it immediately
permitted a full classification of an infinite family of conformally invariant
theories (the so-called “minimal models”) having a finite number of funda-
mental (“primary”) fields, and the exact computation of the corresponding
critical exponents. In the aftermath of these developments, conformal field
theory (CFT) became for some years one of the most hectic research fields
of theoretical physics, and indeed has remained a very active area up to this
date.

This chapter focusses on the basic aspects of CFT, with a special emphasis
on the ingredients which will allow us to tackle the geometrically defined loop
models via the so-called Coulomb Gas (CG) approach. The CG technique will
be exposed in the following chapter. The aim is to make the presentation self-
contained while remaining rather brief; the reader interested in more details
should turn to the comprehensive textbook [DMS87] or the Les Houches
volume [LH89].

10.1 Global conformal invariance

A conformal transformation in d dimensions is an invertible mapping x→ x′

which multiplies the metric tensor gµν(x) by a space-dependent scale factor:

g′µν(x
′) = Λ(x)gµν(x). (10.1)

Note that such a mapping preserves angles. Therefore, just as Wilson [Wi69]
suggested using global scale invariance as the starting point for investigating
a system at its critical point, Polyakov [Po70] proposed imposing the local
scale invariance (10.1) as the fundamental requirement for studying a critical
system in which the microscopic interactions are short ranged.

A priori, a geometrical model of self-avoiding objects such as loops does
not seem to be governed by short-range interactions. However, we have
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already seen in (8.30)–(8.31) how to transform it into a vertex model with
local interactions (albeit the complex Boltzmann weights still point to its
non-local origin). We shall see later that the critical exponents of the Potts
model can indeed be derived by CFT and CG techniques.

10.1.1 The conformal group

We first investigate the consequences of (10.1) for an infinitesimal transfor-
mation of the form25

xµ → x′µ = xµ + εµ(x) . (10.2)

To first order in ε the change in metric is given by

g′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ

= (∂αµ − ∂µεα)(∂βν − ∂νεβ)gαβ

= gµν − (∂µεν + ∂νεµ) . (10.3)

The requirement (10.1) means that

∂µεν + ∂νεµ = f(x)gµν , (10.4)

where the factor f(x) can be determined by taking traces on both sides of
(10.4):

f(x) =
2

d
∂ρε

ρ . (10.5)

We can assume that the conformal transformation amounts to an in-
finitesimal deformation of the standard Cartesian metric gµν = ηµν , where
ηµν is the d-dimensional identity matrix. By differentiating (10.4), permuting
indices and forming a linear combination one establishes

2∂µ∂νερ = ηµρ∂νf + ηνρ∂µf − ηµν∂ρf (10.6)

and contracting this with ηµν we arrive at

2∂2εµ = (2− d)∂µf . (10.7)

On the other hand, applying ∂ν to (10.7) and ∂2 to (10.4) gives

(2− d)∂µ∂νf = ηµν∂
2f , (10.8)

25Below we use the summation convention on repeated indices.
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and contracting this with ηµν leads to

(d− 1)∂2f = 0 . (10.9)

We are now ready to draw some important conclusions from (10.8)–(10.9)
and valid in arbitrary dimension d. The case d = 1 is somewhat particular,
since no constraints on f are implied: any smooth transformation is con-
formal. On the other hand, we are not likely to need CFT to solve simple
short-ranged one-dimensional models! The case d = 2 is where CFT has the
most to offer, and we shall discuss it in detail later.

For the moment we thus concentrate on the case d ≥ 3. Eqs. (10.8)–(10.9)
imply that ∂µ∂νf = 0, whence f is at most linear in the coordinates. Using
(10.6) this means that ∂µ∂νερ is constant, whence

εµ = aµ + bµνx
ν + cµνρx

νxρ with cµνρ = cµρν . (10.10)

Since the above discussion holds for all x, we may treat each power of the
coordinates separately. The constant term

εµ = aµ (10.11)

corresponds obviously to translations. For the linear term it is useful to
distinguish between the diagonal and off-diagonal parts. The former

εµ = λxν (10.12)

corresponds to dilatations, while the latter

εµ = ωµνx
ν , (10.13)

with ωµν = −ωνµ an antisymmetric tensor, corresponds to rotations.
The important new ingredient comes from the quadratic term which cor-

responds to the special conformal transformation (SCT). It can be written
as (after some work)

x′µ =
xµ − bµx2

1− 2b · x + b2x2
, (10.14)

or equivalently as a translation, preceded and followed by an inversion xµ →
x′µ = xµ/x2, viz.

x′µ

x′2
=
xµ

x2
− bµ . (10.15)
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The infinitesimal form of the SCT is found by developing (10.14) to linear
order in bµ:

x′µ = xµ + 2(x · b)xµ − bµx2 . (10.16)

The corresponding scale factor is determined by∣∣∣∣∂x′

∂x

∣∣∣∣ =
1

(1− 2b · x + b2x2)d
. (10.17)

In particular the distance separating two points xi and xj scales like

|x′i − x′j| =
|xi − xj|

(1− 2b · xi + b2x2
i )

1/2(1− 2b · xj + b2x2
j)

1/2
. (10.18)

One can now write down the generators of infinitesimal conformal trans-
formations and study their commutation relations. In this way one estab-
lishes that the conformal group is isomorphic to the pseudo-orthogonal group
SO(d+ 1, 1) with 1

2
(d+ 1)(d+ 2) real parameters.

10.1.2 Correlation function of quasi-primary fields

The connection between a statistical mechanics model and quantum field
theory is made as usual by writing the partition function and correlation
functions of the former as functional integrals in the latter:

Z =

∫
DΦ e−S[Φ] (10.19)

〈φ1(x1) . . . φk(xk)〉 = Z−1

∫
DΦφ1(x1) . . . φk(xk)e

−S[Φ] (10.20)

Here S[Φ] is the euclidean action, Φ the collection of fields, and φi ∈ Φ.
In other words, Z−1e−S[Φ]DΦ is the Gibbs measure in the continuum limit.
Paradoxically, in many cases the hypothesis of conformal invariance may per-
mit one to classify and precisely characterise the possible continuum theories
without ever having to write down explicitly the action S[Φ].

A field φ(x), here supposed spinless for simplicity, is called quasi-primary
provided it transforms covariantly under the conformal transformation (10.1):

φ(x)→ φ′(x′) =

∣∣∣∣∂x′

∂x

∣∣∣∣−∆/d

φ(x). (10.21)
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The number ∆ = ∆φ is a property of the field and is called its scaling
dimension. Using this, conformal invariance completely fixes [Po70] the form
of the two- and three-point correlation functions, as we shall now see.

The assumption of quasi-primarity implies the following covariance con-
dition for a general two-point function

〈φ1(x1)φ2(x2)〉 =

∣∣∣∣∂x′

∂x

∣∣∣∣∆1/d

x=x1

∣∣∣∣∂x′

∂x

∣∣∣∣∆2/d

x=x2

〈φ1(x′1)φ2(x′2)〉 . (10.22)

Rotation and translation invariance imply that

〈φ1(x1)φ2(x2)〉 = f(|x1 − x2|) , (10.23)

and covariance under a scale transformation x→ λx fixes f(x) = λ∆1+∆2f(λx).
Therefore

〈φ1(x1)φ2(x2)〉 =
C12

|x1 − x2|∆1+∆2
(10.24)

for some constant C12. Inserting now this into (10.22) and using the SCT
with scale factor (10.17) we obtain

C12

|x1 − x2|∆1+∆2
=

C12

γ∆1
1 γ∆2

2

(γ1γ2)(∆1+∆2)/2

|x1 − x2|∆1+∆2
, (10.25)

with
γi = 1− 2b · xi + b2x2

i . (10.26)

Equating powers of γi in (10.25) gives 2∆1 = 2∆2 = ∆1 +∆2 with the unique
solution ∆1 = ∆2. This means that the two-point function vanishes unless
the two fields have the same scaling dimension. Moreover it is conventional
to normalise the fields so that C12 = 1. In conclusion

〈φ1(x1)φ2(x2)〉 =
δ∆1,∆2

x2∆1
12

, (10.27)

where we have set xij = |xi − xj|.
We next discuss the case of a three-point function. Covariance under

rotations, translations and dilations imply that it must be of the form26

〈φ1(x1)φ2(x2)φ3(x3)〉 =
C123

xa12x
b
23x

c
13

(10.28)

26A priory the right-hand side of (10.28) may be replaced with a sum over several terms
satisfying (10.29), but see below.
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with
a+ b+ c = ∆1 + ∆2 + ∆3 . (10.29)

Covariance under SCT implies that

C123

xa12x
b
23x

c
13

=
C123

γ∆1
1 γ∆2

2 γ∆3
3

(γ1γ2)a/2(γ2γ3)b/2(γ1γ3)c/2

xa12x
b
23x

c
13

, (10.30)

so that
a+ c = 2∆1 , a+ b = 2∆2 , b+ c = 2∆3 .

This system has the unique solution

〈φ1(x1)φ2(x2)φ3(x3)〉 =
C123

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆3+∆1−∆2
31

. (10.31)

The constants C123 are non-trivial parameters, which will reappear below as
structure constants in the operator product expansion.

The complete determination (up to C123) of two- and three-point functions
is a consequence of the fact that (10.18) does not allow us to construct
conformal invariants of two or three points. For N ≥ 4 points one can
however construct N(N−3)/2 independent invariants, known as anharmonic
ratios or cross-ratios. For instance, the four-point function takes the form

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 = f

(
x12x34

x13x24

,
x12x34

x23x14

) 4∏
i<j

x
∆/3−∆i−∆j

ij (10.32)

with ∆ =
∑4

i=1 ∆i. We stress that the function f is not fixed solely by global
conformal invariance.

10.1.3 Stress tensor and global Ward identity

The stress tensor T µν is the conserved Noether current associated with the
conformal symmetry. It can be defined27 as the response of the partition
function to a local change in the metric:

T µν(x) = − 1

(2π)d−1

δ logZ

δgµν(x)
(10.33)

27Note the analogy with the theory of integrable systems, where the conserved charges
are obtained as derivatives of the transfer matrix with respect to the anisotropy (spectral
parameter).
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The power of 2π is conventional and will lead to convenient simplifications
later.

Because of (10.19) this can be written equivalently as the variation of the
local action S[φ] under the transformation (10.2):

δS =
1

(2π)d−1

∫
ddxT µν(x) ∂µεν(x) . (10.34)

This point of view will be useful later when we consider the response of the
action to transformations that are only conformal in some parts of space.
But for truly (global) conformal transformations we have obviously δS = 0.
This immediately entails some important symmetry properties of T µν .

For the translational invariance (10.11), εν(x) = aν , one has of course
∂µεν(x) = 0, whence δS = 0 as expected. But performing instead an in-
tegration by parts in (10.34), and using that aν is arbitrary, we obtain the
conservation law

∂µT
µν(x) = 0 . (10.35)

Thus T µν(x) is indeed equivalent to the usual Noether current.
Regarding the rotational invariance (10.13), for the integral (10.34) to

vanish, the stress tensor must be symmetric:

T µν(x) = T νµ(x) . (10.36)

And finally the dilatation invariance (10.12) has ∂µεν(x) = δνµ, so the stress
tensor is traceless:

T µµ (x) = 0 . (10.37)

The stress tensor also satisfies a very important constraint known as the
Ward identity. This identity is most powerful in the case of local conformal
invariance in d = 2 (see below), but the starting point is a global identity
valid in any dimension that we derive now.

Consider the correlation function of a product of local fields φi(xi) that
we denote for simplicity as

X = φ1(x1)φ2(x2) · · ·φn(xn) . (10.38)

The correlation function 〈X〉 is a physical observable and does not change un-
der an infinitesimal coordinate transformation (10.2). We have thus δ〈X〉 =
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0. A non-trivial identity however results from decomposing the various
changes that add up to zero. There is an explicit variation of the fields,

φi(xi)→ φ′i(xi) = φi(xi) + δφi(xi) (10.39)

and the action pick up a variation δS given by (10.34). But since the correla-
tion function is defined by the functional integral (10.20) there will be three
types of changes to 〈X〉 induced by 1) the explicit field variation δφi(xi), 2)
the variation δS in the correlation functional integral, and 3) the variation
δS in the normalisation Z−1. Summing these up leads to

0 =
n∑
i=1

〈φ1(x1) · · · δφi(xi) · · ·φn(xn)〉

− 1

(2π)d−1

∫
ddx〈T µν(x)X〉∂µεν(x)

−
[

1

(2π)d−1

∫
ddx〈T µν(x)〉∂µεν(x)

]
〈X〉 . (10.40)

For a theory at its critical point only the identity operator has a non-zero
one-point function. In particular 〈T µν(x)〉 = 0. The global Ward identity
therefore takes the form

n∑
i=1

〈φ1(x1) · · · δφi(xi) · · ·φn(xn)〉 =
1

(2π)d−1

∫
ddx〈T µν(x)X〉∂µεν(x)

(10.41)

10.2 Two dimensions and local conformal invariance

Conformal invariance is especially powerful in two dimensions for reasons
that we shall expose presently. For the moment, we work in the geometry of
the Riemann sphere, i.e., the plane with a point at infinity, and we shall write
the coordinates as x = (x1, x2). Under a general coordinate transformation
xµ → x′µ = wµ(x1, x2) application of (10.1) implies the Cauchy-Riemann
equations

∂w2

∂x1
= ±∂w

1

∂x2
,

∂w1

∂x1
= ∓∂w

2

∂x2
, (10.42)
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i.e., w(x) is either a holomorphic or an antiholomorphic function. Important
simplifications will therefore result upon introducing the complex coordinates

z ≡ x1 + ix2 , z̄ ≡ x1 − ix2 . (10.43)

A conformal mapping then reads simply z → z′ = w(z).
It is convenient to consider (x1, x2) ∈ C2, so that z and z̄ can be con-

sidered independent complex variables, not linked by complex conjugation.
For that reason we can often concentrate on the transformations of z alone,
bearing in mind that z̄ satisfies the same properties. Ultimately the relation-
ship between the two—i.e., z̄ indeed is the complex conjugate of z̄—will be
enforced through the constraint of modular invariance (see section 10.7).

The identification of two-dimensional conformal transformations with an-
alytic maps w(z) could have been anticipated from the well-known fact that
the latter are angle-preserving. It should be noted that an analytic map is
defined (via its Laurent series) by an infinite number of parameters. This
does not contradict the result of section 10.1 that the set of global conformal
transformations is defined by only 1

2
(d+ 1)(d+ 2) = 6 real parameters, since

analytic maps are not necessarily invertible and defined in the whole complex
plane.

Global conformal transformations in d = 2 take the form of the projective
transformations

w(z) =
a11z + a12

a21z + a22

(10.44)

with aij ∈ C and a normalisation constraint that we can take as det aij = 1.

It is straightforward to verify that the composition of two projective
transformations is again projective, with parameters {aij} that correspond
to multiplying those of the individual transformations as 2 × 2 matrices.
In other words, d = 2 global conformal transformations form the group
SL(2,C) ' SO(3, 1).

We can sketch an argument why the projective transformations (10.44)
are the only globally defined invertible holomorphic mappings f(z). First,
for f to be single-valued it cannot have branch points. Second, for f to be
invertible it cannot have essential singularities. Therefore f(z) = P (z)/Q(z)
must be a ratio of polynomials without common zeros. For the inverse image
of zero to exist, P (z) can only have a single zero. This cannot be a multiple
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zero, since otherwise f would not be invertible. Therefore P (z) = a11z+a12.
The same argument with zero replaced by infinity implies that Q(z) = a21z+
a22.

In complex coordinates, the transformation law (10.21) becomes

φ′(w, w̄) =

(
dw

dz

)−h(
dw̄

dz̄

)−h̄
φ(z, z̄) (10.45)

where the real parameters (h, h̄) are called the conformal weights. The combi-
nations ∆ = h+ h̄ and s = h− h̄ are called respectively the scaling dimension
and the spin of φ. A field φ satisfying (10.45) for any projective transforma-
tion (resp. any analytic map) w(z) is called quasi-primary (resp. primary).
An example of a quasi-primary field which is not primary is furnished by the
stress tensor (see below).

The expressions (10.27)–(10.31) for the two- and three-point correlation
functions still hold true with the obvious modification that the dependence
in zij ≡ zi − zj (resp. in z̄ij) goes with the conformal weights h (resp. h̄).

10.3 Stress tensor and local Ward identity

The change to complex coordinates implies that the conservation laws of T µν

need some rewriting. Directly from (10.43) the corresponding derivatives
read

∂z =
1

2
(∂1 − i∂2) ,

∂z̄ =
1

2
(∂1 + i∂2) (10.46)

with inverses

∂1 = ∂z + ∂z̄ ,

∂2 = i(∂z − ∂z̄) . (10.47)

The elements of the complex metric can be read off from the obvious rewriting
of the line element in Euclidean d = 2 space:

ds2 = gµν dxµ dxν = (dx1)2 + (dx2)2 = dz dz̄ . (10.48)

140



This leads to gzz = gz̄z̄ = 0 and gzz̄ = gz̄z = 1
2
. In particular the components

of the stress tensor read now in complex coordinates:

Tzz ≡ T (z, z̄) =
1

4
(T11 − T22 + 2iT12) ,

Tz̄z̄ ≡ T̄ (z, z̄) =
1

4
(T11 − T22 − 2iT12) (10.49)

Tzz̄ = Tz̄z =
1

4
(T11 + T22) =

1

4
T µµ .

We can likewise rewrite the conservation law (10.35) in complex coordinates:

∂z̄T (z, z̄) +
1

4
∂zT

µ
µ = 0 ,

∂zT̄ (z, z̄) +
1

4
∂z̄T

µ
µ = 0 . (10.50)

Recall that scale invariance further implies the tracelessness T µµ = 0 from
(10.37); in general the trace would be proportional to the beta function,
which vanishes at a renormalisation group fixed point. At the fixed point we
thus have

∂z̄T (z, z̄) = ∂zT̄ (z, z̄) = 0 . (10.51)

This means that T depends only on z, hence is an holomorphic function, and
that T̄ depends only on z̄, hence is an anti-holomorphic function. This is a
very important element in the solvability of two-dimensional CFT.

To emphasize this crucial result we henceforth denote the two non-vanishing
components of the stress tensor T (z) and T̄ (z̄), viz.

T (z) ≡ Tzz , T̄ (z̄) ≡ Tz̄z̄ . (10.52)

Following Fateev and Zamolodchikov [FZ87] it is even possible to go
(much) further: CFT’s in which the conformal symmetry is enhanced with
other, so-called extended, symmetries (superconformal, parafermionic, W al-
gebra,. . . ) can be constructed by requiring more analytic currents and mak-
ing them coexist with T (z) by imposing certain associativity requirements.

We now come back to the Ward identity (10.41) for a product of local
operators φi(zi, z̄i). In d = 2, if we suppose that these operators are primary
and that the infinitesimal transformation is only locally conformal, we will
get a much stronger local form of the Ward identity.
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Let C be a circle centered at the origin of radius sufficiently large so as to
surround all the points (zi, z̄i) with i = 1, 2, . . . , n. Denote by nµ its outgoing
normal vector. We shall suppose that the infinitesimal transformation, z′ =
z+ ε(z) and z̄′ = z̄+ ε̄(z̄), is conformal only inside C, whereas on the outside
it is merely a differentiable function that tends to zero sufficiently fast at
infinity.

Consider first the right-hand side of (10.41). We can perform an integra-
tion by parts and invoke the conservation law (10.35) to get rid of the bulk
part of this integral. Only remains the boundary terms. The boundary term
at infinity vanishes due to the hypothesis that ε(z) and ε̄(z̄) tend to zero
sufficiently fast at infinity. The boundary term at C can be written as

1

2π

∫
C

dΣnµεµ〈T µνX〉 =
1

2πi

∮
C

dz ε(z)〈T (z)X〉 − 1

2πi

∮
C

dz̄ ε̄(z̄)〈T̄ (z̄)X〉 ,

(10.53)
where Σ denotes the surface (actually line) element of the circle C and we
recall that ε(z) = ε1 + iε2 and ε̄(z̄) = ε1 − iε2.

Consider next the left-hand side of (10.41). The transformation law
(10.45) for the primary field φi(zi, z̄i) can be written as

φ′i(z
′
i, z̄
′
i) (dz′)hi (dz̄′)h̄i = φi(z, z̄) (dz)hi (dz̄)h̄i , (10.54)

where (hi, h̄i) are the corresponding conformal weights. Developping the
infinitesimal transformation to first order this reads

δφi ≡ φ(zi, z̄i)− φ′(z′i, z̄′i) =
[
(hi∂iε+ ε∂i) + (h̄i∂̄iε̄+ ε̄∂̄i)

]
φi(zi, z̄i) . (10.55)

Assembling these ingredients, and using the independence of the analytic
and antianalytic parts of the expressions, we arrive at

1

2πi

∮
C

dz ε(z)

[
n∑
i=1

(
hi

(z − zi)2
+

∂i
z − zi

)
〈X〉 − 〈T (z)X〉

]
= 0 (10.56)

We have here used the Cauchy theorem. There is a corresponding expression
with bars. Since ε(z) is arbitrary the integrand must in fact vanish:

〈T (z)X〉 =
n∑
i=1

(
hi

(z − zi)2
+

∂i
z − zi

)
〈X〉 . (10.57)

This is the desired conformal Ward identity. On the right-hand side we see
manifestly the singularities in each of the coordinates zi of the primary fields
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φi(zi, z̄i) entering the product X. These are the expected short-distance
singularities whenever T (z) approaches any of the primary fields:

T (z)φj(zj, z̄j) =
hj

(z − zj)2
φj(zj, z̄j) +

1

z − zj
∂zjφ(zj, z̄j) +O(1) . (10.58)

The conformal Ward identity written in this local form is our first example
of an operator product expansion (OPE), i.e., a formal power series in the
coordinate difference that expresses the effect of bringing close together two
operators.

Several remarks are in order:

1. It is tacitly understood that OPE’s only have a sense when placed
between the brackets 〈· · · 〉 of a correlation function.

2. We generically expect singularities to arise when approaching two local
operators in a quantum field theory; in particular the average of a field
over some small volume will have a variance that diverges when that
volume is taken to zero.

3. An OPE should be considered an exact identity (valid in a finite do-
main of the field coordinates) rather than an approximation, provided
the formal expansion is written out to arbitrarily high order. In our ex-
ample, (10.57) only determines the first two terms in the OPE (10.58).

4. Contracting any field φ with T (z) and comparing with (10.58) is ac-
tually a useful practical means of determining its primarity and its
conformal dimension hφ.

It is not difficult to see from (10.33) that on dimensional grounds T itself
is a quasi-primary field of conformal dimension h = 2, since the partition
function Z is dimensionless. However, the average 〈T (z1)T (z2)〉 ∼ (z1−z2)−4

has no reason to vanish, and so the OPE of T with itself takes the form

T (z1)T (z2) =
c/2

(z1 − z2)4
+

2T (z2)

(z1 − z2)2
+
∂T (z2)

z1 − z2

+O(1) . (10.59)

In particular, T is not primary. The constant c appearing in (10.59) is called
the central charge. Considering two non-interacting CFT’s as a whole, one
has from (10.33) that their stress tensors, and hence their central charges,
add up, and so c can be considered as a measure of the number of quantum
degrees of liberty in the CFT.
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It is straightforward (but somewhat lengthy) exercise to establish that
c = 1

2
for a free fermion and c = 1 for a free boson. Details can be found in

section 5.3 of [DMS87].

As T is not primary, it cannot transform like (10.45) under a finite con-
formal transformation z → w(z). We can always write the modified trans-
formation law as

T ′(w) =

(
dw

dz

)−2 [
T (z)− c

12
{w; z}

]
. (10.60)

To determine what {w; z} represents, we use the constraint due to two suc-
cessive applications of (10.60) and the fact that {w; z} = 0 for projective con-
formal transformations, since T is quasi-primary. The result is that {w; z}
is the Schwarzian derivative

{w; z} =
d3w/dz3

dw/dz
− 3

2

(
d2w/dz2

dw/dz

)2

. (10.61)

10.4 Finite-size scaling on a cylinder

The central charge c is ubiquitous in situations where the CFT is placed in
a finite geometry, i.e., interacts with some boundary condition. An impor-
tant example is furnished by conformally mapping the plane to a cylinder of
circumference L by means of the transformation

w(z) =
L

2π
log z . (10.62)

This transformation can be visualised by viewing the cylinder in perspective,
with one rim contracting to the origin and the other expanding to form
the point at infinity. Taking the expectation value of (10.60), and using
the fact that 〈T (z)〉 = 0 in the plane on symmetry grounds, one finds that
〈T (w)〉 = −π2c/6L2 on the cylinder. Applying (10.33) then implies that the
free energy per unit area f0(L) satisfies [BCN86, Af86]

f0(L) = f0(∞)− πc

6L2
+ o(L−2) . (10.63)

This is a very useful result for obtaining c for a concrete statistical model,
since f(L) can usually be determined from the corresponding transfer matrix,
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either numerically for small L by using exact diagonalisation techniques,
or analytically in the Bethe Ansatz context by using the Euler-Maclaurin
formula.

One may note the clear analogy between (10.63) and the Casimir effect
between two uncharged metallic plates. According to quantum electrody-
namics, the vanishing of the wave function on the plates induces a force
between them. This force may be attracting or repelling depending on the
specific arrangement of the plates.

It is also of interest to study such finite-size effects on the level of the
two-point correlation function of a primary field φ. Again using the mapping
(10.62), the covariance property (10.45) and the form (10.27) of the correlator
in the plane can be used to deduce its form on the cylinder. Assuming for
simplicity h = h̄ = ∆/2, and writing the coordinates on the cylinder as
w = t+ ix, with t ∈ R and x ∈ [0, L), one arrives at

〈φ(t1, x1)φ(t2, x2)〉 =

(
2π

L

)2∆ [
2 cosh

(
2πt12

L

)
− 2 cos

(
2πx12

L

)]−∆

,

(10.64)
where t12 = t1 − t2 and x12 = x1 − x2. In the limit of a large separation
of the fields, t12 → ∞, this decays like e−t12/ξ with correlation length ξ =
L/2π∆. But this decay can also be written (Λφ/Λ0)−t12 , where Λ0 is the
largest eigenvalue of the transfer matrix, and Λφ is the largest eigenvalue
compatible with the constraint that an operator φ has been inserted at each
extremity t = ±∞ of the cylinder. Denoting the corresponding free energies
per unit area f(L) = −L−1 log Λ, we conclude that [Ca84a]

fφ(L)− f0(L) =
2π∆

L2
+ o(L−2) . (10.65)

This is as useful as (10.63) in (numerical or analytical) transfer matrix stud-
ies, since the constraint imposed by φ can usually be related explicitly to
properties of the transfer matrix spectrum.

10.5 Virasoro algebra and its representation theory

Up to this point, we have worked in a setup where the fields were seen as
functionals of the complex coordinates z, z̄. To obtain an operator formal-
ism, one must impose a quantisation scheme, i.e., single out a time and a
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space direction. In this formalism a crucial role will be played by the mode
operators of the stress tensor, defined by

Ln =
1

2πi

∮
C

zn+1T (z) dz, L̄n =
1

2πi

∮
C

z̄n+1T̄ (z̄) dz̄ . (10.66)

The transfer matrix then propagates the system from one time slice to the
following and is written as the exponential of the Hamiltonian H, i.e., the
energy operator on a fixed-time surface. In the continuum limit, one may
freely choose the time direction. In CFT this is most conveniently done by
giving full honours to the scale invariance of the theory, viz., by using for H
the dilation operator

D =
1

2πi

∮
C

z T (z) dz +
1

2πi

∮
C

z̄ T̄ (z̄) dz̄ = L0 + L̄0 , (10.67)

where C is a counterclockwise contour enclosing the origin. The following
choice of additive and multiplicative normalisations defines H precisely:

H = (2π/L)(L0 + L̄0 − c/12) . (10.68)

This is called the radial quantisation scheme: the constant-time surfaces are
concentric circles around the origin. Under the map (10.62) the time becomes
simply the coordinate along the cylinder axis. The usual time ordering of
operators then becomes a prescription of radial ordering.

Using the radial ordering, the OPE (10.59) can be turned into a commu-
tation relation [Ln, Lm].

Consider first the action of LnLm on an operator Φ(z). By (10.66) we
have

LnLmΦ(z) =
1

(2πi)2

∮
Cz,ξ1

dξ2

∮
Cz

dξ1 (ξ2 − z)n+1(ξ1 − z)m+1T (ξ2)T (ξ1)Φ(z) ,

where the first integration contour Cz encircles only z, whereas the second
Cz,ξ1 encircles both z and ξ1. We can deform the latter contour as follows:

z ξ1 ξ2 = z ξ1 ξ2
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so that

z ξ1 ξ2 − z ξ2 ξ1 = z ξ1 ξ2

This implies that

[Ln, Lm]Φ(z) =
1

(2πi)2

∮
Cz

dξ1(ξ1− z)m+1

∮
Cξ1

dξ2(ξ2− z)n+1T (ξ2)T (ξ1)Φ(z) .

But in the innermost integral—the one over Cξ1—the points ξ1 and ξ2 can
be taken arbitrarily close, so that it is appropriate to replace T (ξ2)T (ξ1) by
the OPE (10.59). The innermost integral therefore reads

1

2πi

∮
Cξ1

dξ2(ξ2 − z)n+1

[
c/2

(ξ2 − ξ1)4
+

2T (ξ1)

(ξ2 − ξ1)2
+
∂T (ξ1)

ξ2 − ξ1

+O(1)

]
=

c

2

n+ 1

3

n

2

n− 1

1
(ξ1 − z)n−2 + 2(n+ 1)(ξ1 − z)nT (ξ1) + (ξ1 − z)n+1∂T (ξ1) ,

where we have used the Cauchy theorem on each of the three singular terms.
Performing now the outermost integral—the one over Cz—gives us back the
mode operators (10.66):

[Ln, Lm] =
c

12
n(n2−1)δn+m,0+2(n+1)Lm+n+

1

2πi

∮
Cz

dξ1(ξ1−z)n+m+2∂T (ξ1) .

In this expression, the remaining integral can be found by partial integration:

− 1

2πi

∮
Cz

dξ1(n+m+ 2)(ξ1 − z)n+m+1T (ξ1) = −(n+m+ 2)Lm+n .

Inserting this gives us the final form of the commutation relations:

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 . (10.69)

A similar expression holds for [L̄n, L̄m], whereas [Ln, L̄m] = 0. The algebra
defined by (10.69) is called the Virasoro algebra. Importantly, the decoupling
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into two isomorphic Virasoro algebras, one for Ln and another for L̄n, means
that in the geometry chosen we can focus exclusively on Ln. It should be
stressed that in the geometry of a torus, the two algebras couple non-trivially,
in a way that is revealed by imposing modular invariance (see section 10.7
below).

We now describe the structure of the Hilbert space in radial quantisa-
tion. The vacuum state |0〉 must be invariant under projective transforma-
tions, whence L±1|0〉 = 0, and we fix the ground state energy by L0|0〉 = 0.
Non-trivial eigenstates of H are created by action with a primary field,
|h, h̄〉 = φ(0, 0)|0〉. Translating (10.58) into operator language implies then
in particular L0|h, h̄〉 = h|h, h̄〉. We must also impose the highest-weight
condition Ln|h, h̄〉 = L̄n|h, h̄〉 = 0 for n > 0. Excited states with respect to
the primary φ then read

φ{n,n̄} ≡ L−n1L−n2 · · ·L−nk L̄−n̄1L̄−n̄2 · · · L̄−n̄k̄ |h, h̄〉 (10.70)

with 1 ≤ n1 ≤ n2 ≤ · · · ≤ nk and similarly for {n̄}. These states are called
the descendents of φ at level {N, N̄}, where N =

∑k
i=1 ni. A primary state

and its descendents form a highest weight representation (or Verma module)
of the Virasoro algebra.

Correlation functions of descendent fields can be obtained by acting with
appropriate differential operators on the correlation functions of the corre-
sponding primary fields. To see this, consider first for n ≥ 1 the descendent(
L−nφ

)
(w) of the primary field φ(w), and let X =

∏
j φj(wj) be an arbitrary

product of other primaries as in the conformal Ward identity (10.57). Using
(10.66) and (10.58) we have then〈(

L−nφ
)
(w)X

〉
=

1

2πi

∮
Cz

dz (z − w)1−n 〈T (z)φ(w)X〉 (10.71)

= − 1

2πi

∮
C{wj}

dz (z − w)1−n ×

∑
j

{
∂wj

z − wj
+

hj
(z − wj)2

}
〈φ(w)X〉 ,

where the minus sign comes from turning the integration contour inside out,
so that it surrounds all the points {wj}. In other words, a descendent in a
correlation function may be replaced by the corresponding primary〈(

L−nφ
)
(w)X

〉
= L−n 〈φ(w)X〉 (10.72)
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provided that we act instead on the correlator with the linear differential
operator

L−n ≡
∑
j

{
(n− 1)hj
(wj − w)n

−
∂wj

(wj − w)n−1

}
(10.73)

It is readily seen that a general descendent (10.70) is similarly dealt with by
replacing each factor L−ni by the corresponding factor of L−ni in (10.72).

We can now write the general form of the OPE of two primary fields φ1

and φ2. It reads

φ1(z, z̄)φ2(0, 0) =
∑
p

C12p

∑
{n,n̄}∪{∅,∅}

C
{n,n̄}
12p zhp−h1−h2+N z̄h̄p−h̄1−h̄2+N̄φ{n,n̄}p (0, 0) ,

(10.74)

where the summation is over a certain set of primaries φp ≡ φ
{∅,∅}
p as well

as their descendents. The coefficients C
{n,n̄}
12p (we have set C

{∅,∅}
12p = 1) can be

determined by acting with all combinations of positive-index mode operators
on both sides of (10.74) and solving the resulting set of linear equations.

In view of (10.69) it actually suffices to act with L1 and L2. Determining

the C
{n,n̄}
12p is then a nice exercise of contour integration. (The answer can be

found in Appendix B of [BPZ84].)

In contradistinction, the coefficients C12p are fundamental quantities.
Contracting both sides of (10.74) with φp and using the orthogonality of
two-point functions (10.27) we see that the coefficients C12p coincide with
those appearing in the three-point functions (10.31).

The C12p can be computed by the so-called conformal bootstrap method,
i.e., by assuming crossing symmetry of the four-point functions. In concrete
terms, this amounts to writing a well-chosen four-point function, mapping
three of its points to 0, 1,∞ by means of a projective transformation (10.44),
and comparing all possible limits of the remaining point z. When computing
those limits, one successively uses (10.74).

10.6 Minimal models

Denote by V(c, h) the highest weight representation (Verma module) gener-
ated by the mode operators {Ln} acting on a highest weight state |h〉 in a
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CFT of central charge c. The Hilbert space of the CFT can then be written⊕
h,h̄

nh,h̄V(c, h)⊗ V(c, h̄) , (10.75)

where the multiplicities nh,h̄ indicate the number of distinct primaries of
conformal weights (h, h̄) that are present in the theory. A minimal model is
a CFT for which the sum in (10.75) is finite.

The Hermitian conjugate of a mode operator is defined by L†n = L−n; this
induces an inner product on the Verma module. The character χ(c,h) of the
module V(c, h) can then be defined as

χ(c,h)(τ) = Tr qL0−c/24 , (10.76)

where τ ∈ C is the so-called modular parameter (see section 10.7 below) and
q = e2πiτ . Since the number of descendents of |h〉 at level N is just the
number p(N) of integer partitions of N , cf. (10.70), we have simply

χ(c,h)(τ) =
qh−c/24

P (q)
, (10.77)

where
1

P (q)
≡
∞∏
n=1

1

1− qn
=
∞∑
n=0

p(n)qn (10.78)

is the generating function of partition numbers; this is also often expressed
in terms of the Dedekind function

η(τ) = q1/24P (q) . (10.79)

However, the generic Verma module is not necessarily irreducible, so further
work is needed.

For certain values of h, it may happen that a specific linear combination
|χ〉 of the descendents of |h〉 at level N is itself primary, i.e., Ln|χ〉 = 0 for
n > 0. In other words, |χ〉 is primary and descendent at the same time, and
it generates its own Verma module Vχ(c, h) ⊂ V(c, h).

The states in Vχ(c, h) are orthogonal to those in V(c, h),

〈χ|L−n1L−n2 · · ·L−nk |h〉 = 〈h|Lnk · · ·Ln2Ln1 |χ〉∗ = 0 , (10.80)

and so in particular they have zero norm. A Verma module V(c, h) containing
one or more such null fields |χ〉 is called reducible, and can be turned into
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an irreducible Verma module M(c, h) by quotienting out the the null fields,
i.e., by setting |χ〉 = 0. The Hilbert space is then given by (10.75) with V
replaced by M; since it contains fewer states the corresponding characters
(10.76) are not given by the simple result (10.77).

The concept of null states is instrumental in constructing unitary repre-
sentations of the Virasoro algebra (10.69), i.e., representations in which no
state of negative norm occurs. An important first step is the calculation of
determinant of the Gram matrix of inner products between descendents at
level N . This is known as the the Kac determinant detM (N). Its roots can
be expressed through the following parameterisation:

c(m) = 1− 6

m(m+ 1)

h(m) = hr,s(m) ≡ [(m+ 1)r −ms]2 − 1

4m(m+ 1)
(10.81)

where r, s ≥ 1 are integers with rs ≤ N . The condition for unitarity of
models with c < 1, first found by Friedan, Qiu and Shenker [FQS84] reads:
m, r, s ∈ Z with m ≥ 2, and (r, s) must satisfy 1 ≤ r < m and 1 ≤ s ≤ m.

To get an idea of the origin of (10.81) it is instructive to compute the
Kac determinant at the first few levels. For instance, at level N = 1 the only
state is L−1|h〉, while at level N = 2 there are two states: L2

−1|h〉 and L−2|h〉.
The Kac determinants read

detM (1) = 2h ,

detM (2) = 32(h− h1,1)(h− h1,2)(h− h2,1) . (10.82)

The general result is

detM (N) = αN

rs≤N∏
r,s≥1

[h− hr,s(c)]p(N−rs) , (10.83)

where p(n) was defined in (10.78) and αN > 0 is independent of h and c.

According to (10.72) the presence of a descendent field in a correlation
function can be replaced by the action of a differential operator (10.73). Now
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let
χ(w) =

∑
Y,|Y |=N

αYL−Y φ(w) (10.84)

be an arbitrary null state. Here, αY are some coefficients, and we have
introduced the abbreviations

Y = {r1, r2, . . . , rk} ,
|Y | = r1 + r2 + . . .+ rk , (10.85)

L−Y = L−r1L−r2 · · ·L−rk

with 1 ≤ r1 ≤ r2 ≤ · · · ≤ rk. A correlation function involving χ must vanish
(since we have in fact set χ = 0), and so

〈χ(w)X〉 =
∑

Y,|Y |=N

αYL−Y (w) 〈φ(w)X〉 = 0 . (10.86)

Solving this Nth order linear differential equation is a very useful practical
means of computing the four-point correlation functions of a given CFT,
provided that the level of degeneracy N is not too large. Indeed, since the
coordinate dependence is through a single anharmonic ratio η, one has simply
an ordinary linear differential equation.

Moreover, requiring consistency with (10.74) places restrictions on the
primaries that can occur on the right-hand side of the OPE. One can then
study the conditions under which this so-called fusion algebra closes over a
finite number of primaries. The end result is that the minimal models are
given by

c = 1− 6(m−m′)2

mm′

hr,s =
(mr −m′s)2 − (m−m′)2

4mm′
(10.87)

with m,m′, r, s ∈ Z, and the allowed values of (r, s) are restricted by 1 ≤ r <
m′ and 1 ≤ s < m. The corresponding hr,s are referred to as the Kac table
of conformal weights. The corresponding fusion algebra reads (for clarity we
omit scaling factors, structure constants, and descendents):

φ(r1,s1)φ(r2,s2) =
∑
r,s

φ(r,s) , (10.88)
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where r runs from 1 + |r1− r2| to min(r1 + r2− 1, 2m′− 1− r1− r2) in steps
of 2, and s runs from 1 + |s1 − s2| to min(s1 + s2 − 1, 2m − 1 − s1 − s2) in
steps of 2.

The Kac table (10.87) is the starting point for elucidating the structure of
the reducible Verma modules Vr,s for minimal models, and for constructing
the proper irreducible modules Mr,s. The fundamental observation is that

hr,s + rs = hr,−s . (10.89)

This equation holds true for any value of c. It means that for r, s ∈ Z
the Verma module Vr,s contains a singular vector at level rs that generates
the submodule Vr,−s. Quotienting out this submodule, we get an irreducible
representation with character

Kr,s(τ) =
q−c/24

P (q)

(
qhr,s − qhr,−s

)
. (10.90)

For r, s ∈ Z this replaces the generic character χc,h(τ) defined in (10.77).
The case of minimal models is however different. Using the symmetry

property hr,s = hm′−r,m−s and the periodicity property hr,s = hr+m′,s+m it is
seen that hr,s+rs = hm′+r,m−s and that hr,s+(m′−r)(m−s) = hr,2m−s. This
means that Vr,s contains two submodules, Vm′+r,m−s and Vr,2m−s, at levels rs
and (m′− r)(m− s) respectively, and these must correspond to null vectors.
To construct the irreducible module Mr,s one might at first think that it
suffices to quotient out these two submodules. However, iterating the above
observations, the two submodules are seen to share two sub-submodules, and
so on. So Mr,s is constructed from Vr,s by an infinite series of inclusions-
exclusions of pairs of submodules. This allows us in particular to compute
the irreducible characters of minimal models as

χ(r,s)(τ) = K(m,m′)
r,s (q)−K(m,m′)

r,−s (q) , (10.91)

where the infinite addition-subtraction scheme has been tucked away in the
functions

K(m,m′)
r,s (q) =

q−1/24

P (q)

∑
n∈Z

q(2mm′n+mr−m′s)2/4mm′ . (10.92)

This should be compared with the generic character (10.77) and with (10.90).
Note also the similarity between (10.89) and (10.91) on the level of the in-
dices.
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It is truly remarkable that the above classification of minimal models has
been achieved without ever writing down the action S appearing in (10.19).
In fact, an effective Landau-Ginzburg Lagrangian description for the unitary
minimal models (m′ = m+1) has been suggested a posteori by Zamolodchikov
[Za86]. It suggests that the minimal models can be interpreted physically as
an infinite series of multicritical versions of the Ising model. Indeed, the
Ising model can be identified with the first non-trivial member in the series,
m = 3, and the following, m = 4, with the tricritical Ising model.

To finish this section, we comment on the relation with self-avoiding walks
and polygons. In section 11 we shall see that these (to be precise, the dilute
O(n→ 0) model) can be identified with the minimal model m = 2, m′ = 3.
Note that this is not a unitary theory. The central charge is c = 0, and
the only field in the Kac table—modulo the symmetry property given after
(10.89)—is the identity operator with conformal weight h1,1 = 0. Seemingly
we have learnt nothing more than the trivial statement Z = 1. However, the
operators of interest are of a non-local nature, and it is a pleasant surprise to
find that their dimensions fit perfectly well into the Kac formula, although
they are situated outside the “allowed” range of (r, s) values, and sometimes
require the indices r, s to be half-integer. So the Kac formula, and the sur-
rounding theoretical framework, is still a most useful tool for investigating
these types of models.

10.7 Modular invariance

In section 10.3 we have seen that conformal symmetry makes the stress ten-
sor decouple into its holomorphic and antiholomorphic components, T (z)
and T̄ (z̄), implying in particular that the corresponding mode operators, Ln
and L̄n, form two non-interacting Virasoro algebras (10.69). As a conse-
quence, the key results of section 10.6 could be derived by considering only
the holomorphic sector of the CFT. There are however constraints on the
ways in which the two sectors may ultimately couple, the diagonal coupling
(10.75) being just the simplest example in the context of minimal models.
As first pointed out by Cardy [Ca86], a powerful tool for examining which
couplings are allowed—and for placing constraints on the operator content
and the conformal weights—is obtained by defining the CFT on a torus and
imposing the constraint of modular invariance.

154



In this section we expose the principles of modular invariance and apply
them to a CFT known as the compactified boson, which is going to play a
central role in the Coulomb gas approach of section 11. Many other appli-
cations, including a detailed study of the minimal models, can be found in
Ref. [DMS87].

Let ω1, ω2 ∈ C \ {0} such that τ ≡ ω2/ω1 /∈ R. A torus is then defined as
C/(ω1Z+ω2Z), i.e., by identifying points in the complex plane that differ by
an element in the lattice spanned by ω1, ω2. The numbers ω1, ω2 are called
the periods of the lattice, and τ the modular parameter. Without loss of
generality we can assume ω1 ∈ R and =τ > 0.

Instead of using the radial quantisation scheme of section 10.5 we now
define the time (resp. space) direction to be the imaginary (resp. real) axis
in C. The partition function on the torus may then be written Z(τ) =
Tr exp [−(=ω2)H− (<ω2)P ], where H = (2π/ω1)(L0 + L̄0 − c/12) is the
Hamiltonian and P = (2π/iω1)(L0 − L̄0 − c/12) the momentum operator.
This gives

Z(τ) = Tr
(
qL0−c/24q̄L̄0−c/24

)
, (10.93)

where we have defined q = exp(2πiτ). Comparing with (10.75)–(10.76) we
have also

Z(τ) =
∑
h,h̄

nh,h̄ χ(c,h)(τ)χ̄(c,h̄)(τ) . (10.94)

An explicit computation of Z(τ) will therefore give information on the cou-
pling nh,h̄ between the holomorphic and antiholomorphic sectors. In many
cases, but not all, the coupling turns out to be simply diagonal, nh,h̄ = δh,h̄.

The fundamental remark is now that Z(τ) is invariant upon making a
different choice ω′1, ω

′
2 of the periods, inasmuch as they span the same lattice

as ω1, ω2. Any two set of equivalent periods must therefore be related by
ω′i =

∑
j aijωj, where {aij} ∈ Mat(2,Z) with det aij = 1. Moreover, an

overall sign change, aij → −aij is immaterial, so the relevant symmetry
group is the so-called modular group SL(2,Z)/Z2 ' PSL(2,Z).

The remainder of this section is concerned with the the construction
of modular invariant partition functions for certain bosonic systems on the
torus. As a warmup we consider the free boson, defined by the action

S[φ] =
g

2

∫
d2x (∇φ)2 (10.95)
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and φ(x) ∈ R. Comparing (10.93) with (10.76)–(10.78), and bearing in mind
that c = 1, we would expect the corresponding partition function to be of
the form Z0(τ) ∝ 1/|η(τ)|2. Fixing the proportionality constant is somewhat
tricky [IZ86]. In a first step, φ is decomposed on the normalised eigenfunc-
tions of the Laplacian, and Z0(τ) is expressed as a product over the eigen-
values. This product however diverges, due to the presence of a zero-mode,
and must be regularised. A sensible result is obtained by a shrewd analytic
continuation, the so-called ζ-function regularisation technique [IZ86]:

Z0(τ) =

√
4πg√

=τ |η(τ)|2
. (10.96)

The CFT which is of main interest for the CG technique is the so-called
compactified boson in which φ(x) ∈ R/(2πaRZ). In other words, the field
lives on a circle of radius aR (the reason for the appearance of two parame-
ters, a and R, will become clear shortly). In this context, suitable periodic
boundary conditions are specified by a pair of numbers, m,m′ ∈ aZ, so that
for any k, k′ ∈ Z

φ(z + kω1 + k′ω2) = φ(z) + 2πR(km+ k′m′) . (10.97)

It is convenient to decompose φ = φm,m′ + φ0, where

φm,m′ =
2πR

τ̄ − τ

[
z

ω1

(mτ̄ −m′)− z̄

ω̄1

(mτ −m′)
]

(10.98)

is the classical solution satisfying the topological constraint, and φ0 represents
the quantum fluctuations, i.e., is a standard free boson satisfying standard
periodic boundary conditions.

Integrating over φ0 as before, and keeping m,m′ fixed, gives the partition
function

Zm,m′(τ) = Z0(τ) exp

(
−2π2gR2 |mτ −m′|2

=τ

)
. (10.99)

It is easy to see that this is not modular invariant. A modular invariant is
however obtained by summing over all possible values of m,m′:

Z(τ) ≡ R√
2
Z0(τ)

∑
m,m′∈aZ

exp

(
−2π2gR2 |mτ −m′|2

=τ

)
(10.100)
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The prefactor R/
√

2 is again a subtle effect of the zero-mode integration. It
is actually most easily justified a posteriori by requiring the correct normal-
isation of the identity operator in (10.101) below.

A more useful, and more physically revealing, form of (10.100) is obtained
by using the Poisson resummation formula to replace the sum over m′ ∈ aZ
by a sum over the dual variable e ∈ Z/a. The result is

Z(τ) =
1

|η(τ)|2
∑

e∈Z/a, m∈aZ

qhe,m q̄h̄e,m , (10.101)

with

he,m =
1

2

(
e

R
√

4πg
+
mR

2

√
4πg

)2

, h̄e,m =
1

2

(
e

R
√

4πg
− mR

2

√
4πg

)2

.

(10.102)
Comparing now with (10.93) and (10.76)–(10.78) we see that (10.102) is
nothing else than the conformal weights of the CFT at hand.

The requirement of modular invariance has therefore completely speci-
fied the operator content of the compactified boson system. An operator is
characterised by two numbers, e ∈ Z/a and m ∈ aZ, living on mutually dual
lattices. A physical interpretation will be furnished by the CG formalism of
section 11: e is the “electric” charge of a vertex operator (spin wave), and
m is the “magnetic” charge of a topological defect (screw dislocation in the
field φ). Let us write for later reference the corresponding scaling dimension
and spin:

∆e,m =
e2

4πgR2
+m2πgR2, se,m = em (10.103)

Observe in particular that the spin is integer, as expected for a bosonic
system.

The reader will notice that the three constants R, a and g are related by
the fact that they always appear in the dimensionless combination R2a2g.
Field-theoretic literature often makes the choice a = 1 and g = 1/4π in order
to simplify formulae such as (10.102). In the CG approach—the subject of
section 11—one starts from a geometrical construction (mapping to a height
model) in which a convention for a must be chosen. The compactification
radius aR then follows from a “geometrical” computation (identification of
the ideal state lattice), and the correct coupling constant g is only fixed in the
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end by a field-theoretic argument (marginality requirement of the Liouville
potential). Needless to say, the results, such as (10.103) for the dimensions of
physical operators, need (and will) be independent of the initial choice made
for a.

To conclude, note that the roles of e and m in (10.102) are interchanged
under the transformation Ra

√
2πg → (Ra

√
2πg)−1, which leaves (10.101) in-

variant. This is another manifestation of the electro-magnetic duality. Ulti-
mately, the distinction between e and m comes down to the choice of transfer
direction. In the geometry of the torus this choice is immaterial, of course.
In sections 11.3–12.3 we shall compare the geometries of the cylinder and the
annulus; these are related by interchanging the space and time directions,
and accordingly the electric and magnetic charges switch role when going
from one to the other.
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11 Coulomb gas construction

It has been known since the 1970’s [LP75, Ka78, KB79, Kn81] that the critical
point of many two-dimensional models of statistical physics can be identified
with a Gaussian free-field theory. A general framework for the computation
of critical exponents was first given in 1977 by José et al. in the so-called spin
wave picture [Jo77]. This was further elaborated in the early 1980’s by den
Nijs [Ni83, Ni84] and Nienhuis [Nh84] into what has become known as the
Coulomb gas (CG) construction. These developments have been reviewed by
Nienhuis [Nh87].

The CG approach is particularly suited to deal with the continuum limit
of lattice models of closed self-avoiding loops, in which each loop carries a
Boltzmann weight n. There are two prototype models which can be repre-
sented in terms of such loops. The Potts model has already been discussed
at length in chapter 8. Another useful example is the O(n) model, which can
be reformulated elegantly as a loop model on the hexagonal lattice [Nh82].

The marriage between the CG and conformal field theory (CFT) hap-
pened in 1986–87, when Di Francesco, Saleur and Zuber [DSZ87a, DSZ87b]
made the loop model ↔ CG correspondence more precise and showed how
the ideas of modular invariance [Ca86, IZ86] can be put to good use in the
study of loop models. At the same time, Duplantier and Saleur developed a
range of applications to self-avoiding walks and polygons (see in particular
[DS87]).

Any model of oriented self-avoiding loops is equivalent to a height model
on the dual lattice. It is the continuum limit of this height which acts as
the conformally invariant free field. The underlying lattice model implies
that this height field is compactified, thus making contact with the modular
invariance results of section 10.7. The naive free field action however needs
to be modified with extra terms, traditionally known as background and
screening electric charges [Nh87]. The resulting CFT, known as a Liouville
field theory, is written down in section 11.2.

The requirement that the Liouville potential be RG marginal determines
the coupling constant of the free field as a function of n, as first pointed
out by Kondev [Ko97]. This is an important ingredient, since otherwise one
would have to rely on an independent exact solution to fix the coupling. We
discuss these developments in section 11.3.
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11.1 From loops to a compactified boson

In chapter 8 we have seen how to transform the Potts model into a model of
oriented loops on the medial lattice. The weight

n =
√
Q = 2 cos γ (11.1)

per loop was transformed into local complex weights at the vertices.
The oriented loop model can easily be turned into a height model. For

this, assign a scalar variable h(x) to each lattice face x (i.e., to each vertex of
the lattice dual to the one on which the loop model has been defined), so that
h increases (resp. decreases) by a each time one traverses a left-going (resp.
right-going) edge. This definition of the height h is consistent, since each
vertex is incident on as many ingoing as outgoing edges. Since this defines
only height differences, one may imagine fixing h completely by arbitrarily
fixing h(0) = 0.

In the continuum limit, we expect the local height field h to converge
to a free bosonic field φ(x), whose entropic fluctuations are described by an
action of the form (10.95), with coupling g = g(n) which is a monotonically
increasing function of n. In particular, for n → ∞ the lattice model is
dominated by the configuration where loops of the minimal possible length
cover the lattice densely; the height field is then flat, φ(x) = constant, and the
correlation length ξ is of the order of the lattice spacing. For finite but large
n, φ will start fluctuating, loop lengths will be exponentially distributed, and
ξ will be of the order of the linear size of the largest loop. When n → n+

c ,
for some critical nc (we shall see that nc = 2), this size will diverge, and for
n ≤ nc the loop model will be conformally invariant with critical exponents
that depend on g(n). The interface described by φ(x) is then in a rough
phase. The remainder of this section is devoted to making this intuitive
picture more precise, and to refine the free bosonic description of the critical
phase.

As a first step towards greater precision, we now argue that φ(x) is in
fact a compactified boson, cf. section 10.7. To see this, it is convenient to
consider the oriented loop configurations that give rise to a maximally flat
microscopic height h; following Henley and Kondev [KH95] we shall refer to
them as ideal states. For the Potts model (11.4), an ideal state is a dense
packing of length-four loops, all having the same orientation. There are four
such states, corresponding to two choices of orientation and two choices of
the sublattice of lattice faces surrounded by the loops.
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Figure 24: An ideal state (panel 1) in the oriented loop model is gradually
changed into another (panel 4). The large loop created in panels 2 and 3 is
annihilated via the periodic boundary conditions to obtain panel 4, which
is a different ideal state. In the process the mean height changes from φ to
φ+ a (with a = 1 in the figure).

An ideal state can be gradually changed into another by means of ∼ N
local changes of the transition system and/or the edge orientations. This
is shown in Fig. 24. As a result, the mean height will change, φ → φ ± a.
Repeating this, one sees that one may return to the initial ideal state whilst
having φ → φ ± 2a. For consistency, we must therefore require φ(x) ∈
R/(2aZ), i.e., the field is compactified with radius R = 1/π, cf. (10.97).

In section 10.7 we have seen in detail that the normalisation constant a
drops out from the final physical results. We shall therefore follow standard
conventions and set a = π in what follows.

11.2 Liouville field theory

The essence of the above discussion is that the critical properties of the loop
model under consideration can be described by a continuum-limit partition
function that takes the form of a functional integral

Z =

∫
Dφ(x) exp (−S[φ(x)]) . (11.2)

Here S[φ(x)] is the Euclidean action of the compactified scalar field φ(x) ∈
R/(2πZ). The hypothesis that the critical phase is described by bounded
elastic fluctuations around the ideal states means that S must contain a
term

SE =
g

4π

∫
d2x (∇φ)2 (11.3)
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with coupling constant g > 0. Higher derivative terms that one may think of
adding to (11.3) can be ruled out by the φ → −φ symmetry, or by arguing
a posteriori that they are RG irrelevant in the full field theory that we are
about to construct.

Note that the partition function (11.2) does not purport to coincide with
that of the critical Potts model

Z = Q|V |/2
∑
E′⊆E

nl(E
′) (11.4)

on the scale of the lattice constant. (A similar remark holds true for the
correlation functions that one may similarly write down.) We do however
claim that their long-distance properties are the same. In that sense, the CG
approach is an exact, albeit by no means rigorous, method for computing
critical exponents and related quantities. A more precise equivalence between
discrete and continuum-limit partition functions can however be achieved on
a torus [DSZ87b] or on an annulus (see chapter 13).

The action (11.3) coincides with (10.95) for the compactified boson. To
obtain the full physics of the loop model one however needs to add two more
terms to the action, as we now shall see.

We consider the underlying lattice model as being defined on a cylinder,
x = (x, t). This has the advantage of making direct contact with the radial
quantisation formalism of section 10.5. The boundary conditions are thus
periodic in the space direction, x = x+L, and free in the time (t) direction.
Ultimately, the results obtained on the cylinder can always be transformed
into other geometries by means of a conformal mapping.

We have seen in section 8.8 that with this geometry, in order to obtain
the correct weighting of non-contractible loops, the corresponding six-vertex
model must be twisted across a seam that runs along the cylinder. Consider
now adding a term

SB =
ie0

4π

∫
d2xφ(x)R(x) (11.5)

to the effective action S, whereR is the scalar curvature28 of the space x. The
parameter e0 is known in CG language as the background electric charge. On
the cylinder, one has simply SB = ie0 (φ(x,∞)− φ(x,−∞)), meaning that in

28We consider the scalar curvature in a generalised sense, so that delta function contribu-
tions may be located at the boundaries. Implicitly, we are just applying the Gauss-Bonnet
theorem.

162



the partition function (11.2) an oriented loop with winding number q = 0,±1
(all other winding numbers are forbidden by the self-avoidance of the loops)
can equivalently be assigned an extra weight of exp(iπqe0). This leaves the
weight n of non-winding loops unchanged, while winding loops get a modified
weight

n1 = 2 cos γ1 , with γ1 = πe0 , (11.6)

as in (8.37). The choice γ1 = γ will thus lead to n1 = n. Note however that
the possibility of having n1 6= n is useful in some applications of the CG
technique.

Verify the above argument for more than one non-contractible loop, bear-
ing in mind that the orientation of each loop has to be summed over inde-
pendently!

The object eieφ (or more precisely, its normal ordered product : eieφ :)
is known in CFT as a vertex operator of (electric) charge e. The boundary
term (11.5) thus corresponds to the insertion of two oppositely charged vertex
operators at either end of the cylinder (and more generally at the root vertices
of section 8.8).

At this stage two problems remain: the field theory does not yet take
account of the weight n of contractible loops, and the coupling constant g
has not yet been determined. These two problems are closely linked, and
allow [Ko97] us to fix exactly g = g(n). The idea is to add a further Liouville
term

SL =

∫
d2xw[φ(x)] (11.7)

to the action, which then reads in full

S[φ(x)] = SE + SB + SL . (11.8)

In (11.7), e−w[φ(x)] is the scaling limit of the microscopic vertex weights wi
that we now identify.

Due to the compactification, SL[φ] is a periodic functional of the field,
and as such it can be developed as a Fourier sum over vertex operators

w[φ] =
∑
e∈Lw

w̃e eieφ , (11.9)
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where Lw is some sublattice of L0 ≡ Z. Note that Lw may be a proper sub-
lattice of L0 if w[φ] has a higher periodicity than that trivially conferred by
the compactification of φ. By inspecting Fig. 24 we see that this is indeed the
case here: the (geometric) averages of the miscroscopic weights coincide on
panels 1 and 4, indicating that the correct choice is Lw = 2L0. This intuitive
derivation of Lw demonstrates the utility of the ideal state construction.

Some important properties of the compactified boson with action SE have
already been derived in section 10.7. In particular, its central charge is c = 1
and the dimension ∆e,m of an operator with electromagnetic charge (e,m) is
given by (10.103). Having now identified the electric charge e with that of the
vertex operator eieφ, one could alternatively rederive (10.103) by computing
the two-point function

〈
eieφ(x)e−ieφ(y)

〉
by standard Gaussian integration.

The physical interpretation of the magnetic charge m is already obvious
from (10.97): it corresponds to dislocations in the height field φ due to the
presence of defect lines. In section 11.4 we shall see how such defects are
used in the computation of critical exponents.

It remains to assess how the properties of the compactified boson are mod-
ified by the inclusion of the term SB. Physical reasoning consists in arguing
that the vertex operators e±ie0φ will create a “floating” electric charge of
magnitude 2e0 that “screens” that of the other fields in any given correlation
function. We infer that (10.103) must be changed into

∆e,m =
1

2

[
e(e− 2e0)

g
+ gm2

]
. (11.10)

Note that to obtain (11.10) we have changed our normalisation so that both
e and m are integers. This is consistent with the normalisation (11.3) of the
coupling constant, rather than (10.95), which is the standard choice in the
CG literature.

11.3 Marginality requirement

Following Kondev [Ko97] we now claim that the Liouville potential SL must
be exactly marginal. This follows from the fact that all loops carry the
same weight n, independently of their size, and so the term SL in the action
that enforces the loop weight must not renormalise under a scale transfor-
mation. The most relevant vertex operator appearing in (11.9) has charge
ew = 2π/a = 2, and so ∆ew,0 = 2. Using (11.10), this fixes the coupling
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constant as g = 1− e0. In other words, the loop weight has been related to
the CG coupling as

n =
√
Q = −2 cos(πg) , (11.11)

with 0 < g ≤ 1 for the critical Potts model.
The term SB shifts the ground state energy with respect to the c = 1

theory described by SE alone. The corrected central charge is then c =
1+12∆e0,0, where the factor of 12 comes from comparing (10.63) and (10.65).
This gives

c = 1− 6(1− g)2

g
. (11.12)

It should be noted that the choice ew = 2 is not the only one possible.
Namely, the coefficient w̃ew of the corresponding vertex operator in (11.9)
may be made to vanish, for instance by driving the Potts model to tricriti-
cality via the introduction of a carefully tuned coupling to non-magnetic va-
cancies. The next-most relevant choice is then ẽw = −2, and going through
the same steps as above we see that one can simply maintain (11.11), but
take the coupling in the interval 1 ≤ g ≤ 2 for the tricritical Potts model.

The electric charge ew whose vertex operator is required to be exactly
marginal is known as the screening charge in standard CG terminology.

The central charge (11.12) can now be formally identified with that of the
Kac table (10.87), with m′ = m+ 1. The result is a formal relation between
the minimal model index m and the CG coupling g, valid for integer m. We
have

m =

{ g
1−g for the critical Potts model

1
g−1

for the tricritical Potts model
(11.13)

11.4 Critical exponents

We shall now see how to use the Coulomb gas technology to compute a
variety of critical exponents in loop models.

The watermelon exponents were derived by Nienhuis [Nh87] and by Du-
plantier and Saleur (see [DS87] and references therein). The issues of their
relation to the standard exponents of polymer physics [Ge79], and to the Kac
table (10.81), were discussed in [DS87].

Although the watermelon exponents are essentially magnetic-type expo-
nents in the CG, they do not produce the standard magnetic exponent of the
Potts model. The latter was derived by den Nijs [Ni83], but we present here
a somewhat different argument.
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x1 x2

Figure 25: Watermelon configuration with ` = 6 legs.

11.4.1 Watermelon exponents

An important object in loop models is the operator O`(x1) that inserts `
oriented lines at a given point x1. Microscopically, this can be achieved by
violating the arrow conservation constraint at x1. In the Potts model, or
rather the equivalent six-vertex model, a vertex with four outgoing and zero
ingoing arrows furnishes a microscopic realisation of the case ` = 2. Higher
` can be obtained by inserting several defects in a small region around x1.29

If one had strict arrow conservation at all other vertices, the insertion of
O`(x1) would not lead to a consistent configuration. However, also inserting
O−`(x2), the operator that absorbs ` oriented lines in a small region around
y, will lead to consistent configurations (see Fig. 25) in which ` defect lines
propagate from x1 to x2. Let Z`(x1,x2) be the corresponding constrained
partition function. One then expects

〈O`(x1)O−`(x2)〉 ≡ Z`(x1,x2)

Z
∼ 1

|x1 − x2|2∆`
for |x1 − x2| � 1 . (11.14)

The corresponding critical exponents ∆` are known as watermelon (or
fuseau, or `-leg) exponents. To compute them we first notice that the sum
of the height differences around a closed contour encircling x1 but not x2

will be a`. Equivalently, one could place the two defects at the extremities
of a cylinder [i.e., taking x1 = (x,−∞) and x2 = (x,∞)], and the height
difference would be picked up by any non-contractible loop separating x1

and x2. This latter formulation makes contact with the defect lines (10.97)
introduced when studying the compactified boson, the equivalent magnetic
charge being m` = `a

2π
= `

2
.

A little care is needed to interpret the configurations of Z`(x1,x2) in
the model of un-oriented loops. The fact that all ` lines are oriented away

29The Potts model only allows for defects with even `. In the closely relate O(n) model,
any parity of ` is permitted.
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from x1 prevents them from annihilating at any other vertex than x2. One
should therefore like to think about them as ` marked lines linking x1 and x2,
where each line carries the Boltzmann weight 1. This is consistent with not
summing over the orientations of the defect lines in the oriented loop model.
However, each oriented line can also pick up spurious phase factors w(α/2π),
due to the local redistribution of loop weights, whenever it turns around
the end points x1 and x2. These factors are however exactly cancelled if we
insert in addition a vertex operator eie0φ (resp. e−ie0φ) at x1 (resp. x2) [Nh84].
Note that these vertex operators do not modify the weighting of closed loops:
these must encircle either none of both of x1, x2, since otherwise they would
intersect the ` watermelon legs. We conclude that ∆` = ∆e0,m` , and using
(11.10) this gives

∆` =
1

8
g`2 − (1− g)2

2g
. (11.15)

Interestingly, these exponents can be attributed to the Kac table under
the identification (11.13). One has

∆` =

{
2h0,`/2 for the dense O(n) model
2h`/2,0 for the dilute O(n) model

(11.16)

The Kac indices (r, s) appearing in hr,s are integer valued, since ` ∈ 2N.
When the loop model coincides with a minimal model—i.e., when g is such
that m ∈ N in (11.13)—some of these exponents are located outside the
fundamental domain of the Kac table. This reflects the fact that the corre-
sponding watermelon operators are of intrinsic non-local nature.

11.4.2 Application to percolation clusters

The watermelon exponents can be used to elucidate the fractal properties of
the Fortuin-Kasteleyn (FK) clusters defined in section 8.2. Here we limit the
discussion to the special case of percolation clusters.

We have seen in section 8.4.1 that bond percolation is the Q → 1 limit
of FK clusters. We have therefore g = 2

3
from (11.11). The watermelon

exponents (11.15) are therefore

∆` =
`2 − 1

12
. (11.17)
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Marking a point x on the hull of a percolation cluster corresponds to the
insertion of the operator O2(x). The fractal dimension of the hull is therefore

dh = 2−∆2 =
7

4
. (11.18)

A pivotal edge is defined as an edge belonging to a percolation cluster which is
such that the removal of the edge makes the cluster break into two connected
components. In the literature on percolation pivotal edges are also known as
red bonds. Cutting the loop strands on either side of any edge belonging to
the cluster looks like an ` = 4 leg insertion. Note however that only is the
edge is pivotal will the four legs propagate to “infinity” without contracting
among themselves. Therefore the fractal dimension of red bonds is

drb = 2−∆4 =
3

4
. (11.19)

11.4.3 Magnetic exponent

The watermelon exponents can be said to be of the “magnetic” type, since
they induce a magnetic type defect charge m` in the CG. The standard
magnetic exponent, describing the decay of the spin-spin correlation function
in the Potts model, is however not of the watermelon type. It can nevertheless
be inferred from (11.10) as follows:

The probability that two spins situated at x1 and x2 are in the same Potts
state is proportional, in the random cluster picture, to the probability that
they belong to the same cluster. In the cylinder geometry this means that
no winding loop separates x1 from x2. This can be attained in the CG by
giving a weight n1 = 0 to such loops. We have seen that inserting a pair of
vertex operators with charge ±e at x1 and x2 leads exactly to this situation
with n1 = 2 cos(πe), and so we need e = 1

2
. The scaling dimension of this

excitation, with respect to the ground state which has e = e0, is then

∆m = ∆ 1
2
,0 −∆e0,0 =

1− 4(1− g)2

8g
. (11.20)

In particular for the Ising model, with g = 3
4
, this yields the magnetic

exponent ∆m = 1
8
, or in standard notation

β =
1

8
. (Ising model) (11.21)
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For bond percolation, with g = 2
3
, we find ∆m = 5

48
. The fractal dimension

of a percolation cluster is thus

dc = 2−∆m =
91

48
. (11.22)

The location in the Kac table (10.81) of the magnetic exponent (11.20)
can be found using (11.13):

∆m = 2h1/2,0 . (11.23)

Note that this differs from the lowest possible watermelon excitation ∆2 =
2h0,1. Indeed, the two-leg excitation corresponds to a cluster that propa-
gates along the length direction of the cylinder without wrapping around the
transverse periodic direction. The dominant configurations participating in
the magnetic correlation function have no propagating legs, since the cluster
containing x1 and x2 will typically wrap around the cylinder.
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12 Basic aspects of boundary CFT

The aspects of CFT exposed to this point pertain to unbounded geometries,
either that of the of the infinite plane (Riemann sphere) or, in section 10.7,
that of the torus (which is really a finite geometry made unbounded through
the periodic boundary conditions). In contrast, boundary conformal field
theory (BCFT) describes surface critical behaviour, i.e., a critical system
confined to a bounded geometry. The simplest such geometry, is that of the
upper half plane {z | =z ≥ 0}, where the real axis R acts as the boundary
(one-dimensional “surface”).

The foundations of BCFT were set by Cardy [Ca84b] who also initiated
many of the subsequent developments and applications (see [DMS87, Ca05]
for reviews). A useful review of the status of boundary critical phenomena
before the advent of CFT was given by Binder [Bi83].

12.1 Qualitative discussion

To convey an idea of which phase transitions may result from the interplay
between bulk and boundary degrees of freedom, and what may be the cor-
responding boundary conditions, we begin by a qualitative discussion of a
simple magnetic spin system. We denote the local order parameter (mag-
netisation) by φ. When the boundary spins enjoy free boundary conditions,
they interact more weekly than the bulk spins, since microscopically they
are coupled to fewer neighbouring spins. Upon lowering the temperature,
the bulk will therefore order before the surface: this is the so-called ordinary
transition. Now consider placing the system slightly below the bulk critical
temperature. Then φ is non-zero deep inside the bulk, and will decrease upon
approaching the boundary. One can argue that in the continuum limit φ will
vanish exactly on the boundary. Thus, the Dirichlet boundary condition
φ|R = 0 is the appropriate choice for describing the ordinary transition.

Let us now introduce a coupling Js between nearest-neighbour spins on
the boundary which may be different from the usual bulk coupling constant J .
Taking Js > J one may “help” the boundary to order more easily.30 When Js

takes a certain critical value we are at the special transition, at which the bulk
and the boundary order simultaneously. Finally, when Js →∞ the boundary

30A similar effect could be obtained by adding a surface magnetic field, but here we
do not wish to break the symmetry of the model [typically O(n) in applications to loop
models].
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spins are always completely ordered31, a fact which changes the nature of
the ordering transition of the bulk, now referred to as the extraordinary
transition. This corresponds to the Dirichlet boundary condition φ|R = ∞
in the continuum limit. Note that in the application of boundary CFT to
loop models (see section 12.5) the meaning of Js is to give a specific fugacity
to monomers on the boundary.

The control parameter Js can be thought of in a renormalisation group
sense, and is readily seen to be irrelevant at the ordinary and extraordinary
transitions. Accordingly we expect a boundary RG flow to go from the special
to either of the two other transitions. (In the case of the Ising model, the
special and extraordinary transitions actually coincide.)

In our subsequent application to loop models (see section 12.5) we rather
think of φ as a height field which is dual to the system of oriented loops (this
construction is at the heart of the Coulomb gas approach, see section 11).
In other words, the loops are level lines of φ. Dirichlet boundary conditions
then describe a situation in which loops are reflected off the boundary, and
adjoining two different Dirichlet conditions forces one or more “loop ends”
to emanate from the boundary. One may also impose Neumann boundary
conditions, ∂φ/∂y|R = 0, meaning that the “loops” coming close to the
boundary must in fact terminate perpendicular to it. Clearly the non-local
aspects of these situations call for a more detailed discussion, which will be
postponed to section 12.5.

12.2 Comparison of bulk and boundary CFT

The formalism of boundary CFT is very similar to the bulk case. In this
section we briefly outline a few but important differences.

The allowed conformal mappings in BCFT must keep invariant both the
boundary itself and the boundary conditions imposed along it. For the global
conformal transformations (10.44) the invariance of the real axis forces aij ∈
R, i.e., they form the group SL(2,R) and the number of parameters is halved
from 6 to 3. For an infinitesimal local conformal transformation z → w(z) =
z + ε(z) the requirement reads ε(z̄) = ε̄(z). This property can be used to
eliminate the ε̄(z) part altogether, since it is just the analytic continuation

31This should not (as is sometimes seen in the literature) be confused with imposing fixed
boundary conditions, which would rather correspond to an infinite symmetry-breaking field
applied on the boundary.
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of ε(z̄) into the lower half plane. It follows that L̄n = L−n, and so one half
of the conformal generators has been eliminated.

At the level of the stress tensor, the requirement is T (z̄) = T̄ (z). In
Cartesian coordinates this reads Txy = 0 on the real axis, the so-called con-
formal boundary condition. Its physical meaning is that there is no energy-
momentum flow across R. This has important consequences on the conformal
Ward identity (10.57) where T (z) is applied to a product of primary fields
X =

∏
j φj(zj, z̄j) situated in the upper half plane. The contour C surround-

ing all zj can then be taken as a large semicircle with the diameter parallel
to the real axis. However, writing the same identity for T̄ (z̄) yields another
Ward identity involving the conjugate semicircle contour C̄, and since T̄ = T
when z ∈ R, the two contours can be fused into a complete circle surrounding
both zj and z̄j. The end result, cf. (10.58), is thus

T (z)X =
∑
j

(
hj

(z − zj)2
+

∂zj
z − zj

+
h̄j

(z̄ − z̄j)2
+

∂z̄j
z̄ − z̄j

)
X . (12.1)

In conclusion, everything happens as if each primary field in the upper
half plane were accompanied by a mirror field in the lower half plane. This
means that computations in the BCFT can be done using a method of images
similar to that used in electrostatics when solving the Laplace equation with
boundary conditions. Correlation functions are computed as if the theory
were defined on the whole complex plane, and governed by a single Virasoro
algebra (10.69): the physical fields are then situated in the upper half plane,
and their unphysical mirror images in the lower half plane. The simplification
of getting rid of L̄n has thus been achieved at the price of doubling the num-
ber of points in correlation functions. In practice, the former simplification
largely outweighs the latter complication.

In particular, the n-point boundary correlation functions satisfy the very
same differential equations (10.86) as 2n-point bulk correlation functions, but
with different boundary conditions. The most interesting cases are n = 1 and
n = 2, both tractable in the bulk picture in several situations of practical
importance. As examples of the physical information which can be extracted
from these cases we should mention, for n = 1, the probability profile of
finding a monomer of a loop at a certain distance from the boundary, and
for n = 2, the probability that a polymer comes close to the boundary at
two prescribed points [BE94]. A particularly celebrated application of the
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n = 2 case is Cardy’s computation [Ca92] of the crossing probability that
a percolation cluster traverses a large rectangle, as a function of the aspect
ration of the latter.

The radial quantisation scheme of section 10.5 still makes sense in BCFT.
The associated conformal mapping

w(z) =
L

π
log z (12.2)

transforms the upper half plane into a semi-infinite strip of width L with
non-periodic transverse boundary conditions. The two rims of the strip are
then the images of the positive and the negative real axis, and the time (resp.
space) direction is parallel (resp. perpendicular) to the axis of the strip. The
dilatation operator readsD = L0 and the HamiltonianH = (π/L)(L0−c/24).
Non-trivial eigenstates of H are formed by a boundary operator φj(0) acting
on the vacuum state, |h〉 = φj(0)|0〉.

In general, we expect boundary operators to have different scaling di-
mensions than bulk operators. This can be understood from the method of
images: when a primary field approaches the boundary it interacts with its
mirror image and, by the OPE (10.74), produces a series of other primaries
which then describe the boundary critical behaviour.

Likewise, a field φ(r,s) with a given interpretation in the bulk will typically
have a different interpretation when situated on the boundary. Examples
pertinent to loop models will be given in section 12.5.

The finite-size formulae (10.63) and (10.65) can be adapted to the case of
a strip of width L. For this, one uses the method of images and the mapping
(12.2). The end results read:

f0(L) = f0(∞) +
fS

0

L
− πc

24L2
+ o(L−2) ,

fφ(L)− f0(L) =
fS
φ − fS

0

L
+
π∆

L2
+ o(L−2) , (12.3)

where there is now a non-universal 1/L dependence due to the presence of
surface free energies fS. For some (but not all) choices of excited levels fφ(L)
it can be argued that fS

φ = fS
0 , thus simplifying the second of these formulae.

Note that (10.45) applied to a boundary operator is the reason why we
have not discussed finite Dirichlet boundary conditions at the beginning of
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this section. More generally, any uniform boundary condition is expected
to flow under the renormalisation group towards a conformally invariant
boundary condition. It is one of the goals of BCFT to classify such boundary
conditions. One of the main results obtained is the following [Ca05]: For
diagonal models (i.e., nh,h̄ = δh,h̄ in (10.75)) there is a bijection between
the primary fields in the bulk CFT and the conformally invariant boundary
conditions in the BCFT.

For example, for the Ising model (m = 3 and m′ = 4 in (10.87)) the three
different bulk primary operators (the identity I = φ(1,1), the spin σ = φ(1,2),
and the energy ε = φ(2,1)) correspond to three types of uniform boundary
conditions in the lattice model of spins (fixed s = +1 and s = −1, and free
boundary conditions).

To this point we have discussed only uniform boundary conditions. It
is important to realise that the radial quantisation picture with a boundary
operator φj(0) situated at the origin is compatible also with mixed boundary
conditions, i.e., one boundary condition on the negative real half-axis and
another on the positive half-axis. In this case, φj(0) is called a boundary
condition changing operator. One then needs a second operator φj(∞) situ-
ated at infinity to change back the boundary condition. A more symmetric
picture is obtained by mapping the upper half plane to the strip, through
(12.2). There are then different boundary conditions on the two sides of the
strip, and a boundary condition changing operators is located at either end
of the strip. More generally, one may study a BCFT on any simply connected
domain with a variety of different boundary conditions along the boundary,
each separated by a boundary condition changing operator.

For bulk CFT, crucial insight was gained by considering the theory on a
torus. The analogous tool for BCFT is to consider the theory on an annulus.32

In analogy with the torus case, we denote by ω1 ∈ R the width of the annulus
and by ω2 ∈ iR its length (in the periodic direction), defining τ = ω2/ω1 ∈ iR.
The boundary conditions on the two rims are denoted, symbolically, a and

32It makes sense to think of this in the radial quantisation, or transfer matrix, picture.
The theories are initially considered on a semi-infinite cylinder (resp. a strip) with specified
transverse boundary conditions (periodic, resp. non-periodic) and unspecified longitudinal
boundary conditions. This gives access to the transfer matrix eigenvalues. To access the
fine structure, such as amplitudes of the eigenvalues, one must impose periodic longitudinal
boundary conditions and take the length of the cylinder (resp. strip) to be finite.
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b. Then
Zab(τ) = Tr

(
qL0−c/24

)
(12.4)

with q = exp(πiτ). This should be compared with (10.93). The analogue of
(10.94),

Zab(τ) =
∑
h

n
(ab)
h χ(c,h)(τ) , (12.5)

then becomes linear in the characters. Equivalently, one might exchange the
space and time direction and view the annulus as a cylinder of circumference
ω2 and finite length ω1, with boundary conditions a (resp. b) in the initial
(resp. final) state. This leads to

Zab(τ) =
〈
b
∣∣∣eτ−1Hbulk

∣∣∣ a〉 , (12.6)

where now Hbulk is the Hamiltonian of the bulk CFT propagating between
boundary states |a〉 and 〈b|. The links between bulk and boundary CFT
result from a detailed study of the equivalence between (12.4) and (12.6).

12.3 Coulomb gas on an annulus

Consider now instead the loop model defined on an annulus which we shall
take as an L × M rectangle with coordinates x ∈ [0, L] and y ∈ [0,M ].
The boundary conditions are free (f) in the x-direction and periodic in the
y-direction. Cardy [Ca06] has shown how to impose the correct marginality
requirement for this geometry.

Consider first the continuum-limit partition function Z = Zff(τ) from
(12.4) in the limit M/L� 1 of a very long and narrow annulus. The modular
parameters τ = iM/L and q = exp(iπτ) = exp(−πM/L). We expect in this
limit that only the identity operator contributes to Z, and so

Z ∼ q−c/24 ∼ exp

(
πcM

24L

)
. (12.7)

The central charge c is (11.12) from the bulk theory, and in particular is
known to vary with the coupling constant g.

The question then arises how (12.7) is compatible with the continuum-
limit action (11.3). According to Cardy [Ca06] the answer is that there
is a background magnetic flux m0, a sort of electromagnetic dual of the
background electric charge e0 present in the cylinder geometry. Thus, in the

175



continuum limit there is effectively a number (in general fractional) m0 of
oriented loops running along the rims of the annulus, giving rise to a height
difference between the left and the right rim. Accepting this hypothesis, we
can write

φ(x, y) = φ̃(x, y) +
πm0x

L
, (12.8)

where φ̃ is a “gauged” height field that still contains the elastic fluctuations
but obeys identical Dirichlet boundary conditions on both rims, say φ̃(0, y) =
φ̃(L, y) = 0.

According to the functional integrations in section 10.7, the field φ̃ con-
tributes q−1/24 to Z, corresponding to c = 1. The last term in (12.8) modifies
the action (11.3) by ∆S = g

4π
(πm0)2M

L
and thus multiplies Z by a factor

e−∆S = qgm
2
0/4, which correctly reproduces the contribution of the last term

in (11.12) to (12.7) provided that we set

m0 = ±(1− g)

g
. (12.9)

This value of m0 can be retrieved from a marginality requirement which
has the double advantage of being more physically appealing and of not
invoking the formula (11.12) for c. Indeed, if m0 is too large a pair of ori-
ented loop strands will shed from the rims, corresponding to a vortex pair of
strength m = ±2 situated at the top and the bottom of the annulus. This
vortex pair can then annihilate in order to reduce the free energy. And if
m0 is too small the opposite will occur. The equilibrium requirement is then
that inserting such a vortex pair must be an exactly marginal perturbation in
the RG sense, i.e., the corresponding boundary scaling dimension is ∆v = 1.

The free energy increase for creating the vortex pair is, by the same gauge
argument as before,

∆S =
g

4π

(
(m0 ± 2)2 −m2

0

) (π
L

)2

ML , (12.10)

and noting the factor of 24 between c and the scaling dimension ∆v in (12.3),
we now have e−∆S = q−∆v from (12.7), so that

∆v =
g

4

(
(m0 ± 2)2 −m2

0

)
= 1 (12.11)

and we recover (12.9). The ambiguity on the sign in (12.9) will be lifted in
section 12.6 below.
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12.4 O(n) model

The loop model originating from the Potts model does not allow for the
phenomenology described in section 12.1. By construction, the loops cover
all edges of the (medial) lattice, hence cannot be further attracted to the
boundary by enhancing the coupling at the surface. Clearly we need a model
in which loop coexist with some empty regions of space.

Notwithstanding these comments, the Potts model allows for a very rich
surface critical behaviour. This is obtained by assigning a weight nb to loops
touching (once or more) the boundary, different from the weight of bulk loops
[JS08a, JS08b, DJS09]. Discussing this in detail requires in particular the
introduction of boundary extensions of the Temperley-Lieb algebra.

The O(n) model is defined initially by associated with each vertex i ∈ V
of a regular planar lattice G = (V,E) a vector spin Si ∈ Rn of unit length,
|Si|2 = 1. It turns out convenient to absorb in the integration measure a
factor n/Ωn, where Ωn is the surface area of the unit sphere in Rn. Thus, if
Sαi and Sβi are components of a vector spin Si, we have the basic integration
rule ∫

dSi S
α
i S

β
i = δ(α, β) . (12.12)

The partition function of the O(n) model is defined by

Z =

∫
S

∏
(ij)∈E

e−V (Si,Sj) , (12.13)

where we have introduced a short-hand notation for the integration over all
spins ∫

S

≡
∏
i∈V

(∫
dSi

)
(12.14)

and V (Si,Sj) is some scalar potential describing the interaction between Si
and Sj. In most texts on the O(n) model in general dimension d, one takes

V (Si,Sj) = −K Si · Sj . (12.15)

In d = 2 it is however much more convenient to define

e−V (Si,Sj) = 1 +K Si · Sj , (12.16)
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1 K K K

Figure 26: Allowed vertices in the O(n) model on the hexagonal lattice with
their corresponding Boltzmann weights.

where K is a dimensionless coupling constant.
The high-temperature (K � 1) expansion of (12.13) with potential (12.16)

parallels the Fortuin-Kasteleyn cluster expansion of the Potts model parti-
tion function. To each term in the expansion we associate an edge subset
E ′ ⊆ E, with e = (ij) ∈ E if we take the term KSi · Sj in (12.16). For
each i ∈ V , by the symmetry Si → −Si, the contribution to Z of a term
associated with E ′ vanishes unless i is incident on an even number of edges
in E ′.

As a further simplification we now take G to be the hexagonal lattice.
Since each vertex i ∈ V has degree three, the only edge sets E ′ contributing
to the expansion of Z are those where the vertices of G′ = (V,E ′) all have
degree zero or two, as shown in Figure 26. In other words, G′ is a set of
self-avoiding and mutually avoiding loops. The contribution to Z of a loop
of length p edges is

Zp = Kp

∫
dS1 · · ·

∫
dSp

∑
α1,...,αp

Sα1
1 Sα1

2 Sα2
2 Sα2

3 · · ·Sα1
p S

αp
1 (12.17)

= Kp
∑

α1,...,αp

δ(α1, α2)δ(α2, α3) · · · δ(αp, α1) (12.18)

= Kpn , (12.19)

where we have used (12.12) repeatedly. We have then finally

Z =
′∑

E′⊆E

K |E
′|nl(E

′) , (12.20)

where l(E ′) is the number of cycles (loops), and the prime on the summation
reminds us that the summation is constrained to edge subsets E ′ such that
each vertex i ∈ V is incident on zero or two edges of E ′.
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The O(n) model partition function in the form (12.20) is quite similar
to the loop representation (8.24) of the Potts model, except that the loop
weight

√
Q has been replaced by n, and that vertices are now allowed to be

empty of loops with a relative Boltzmann weight K−1 proportional to the
temperature.

At infinite temperature (K = 0), we have thus E ′ = ∅ and Z = 1. As
the temperature is lowered, loops will start appearing, and one would expect
that there exists some critical coupling Kc such that the average length of a
loop diverges. Obviously, this means that the correlation length will diverge
as well, and so Kc could be expected to be the locus of a second order phase
transition. The exact solution of the O(n) model however shows that these
hypotheses are only fulfilled for −2 ≤ n ≤ 2. Assuming this to be the case,
if Kc is small enough, one could hope that the critical behaviour is identical
to that of the generic O(n) model, since the two potentials (12.15)–(12.16)
agree to first order in K.

The exact solution implies that one has in fact

Kc =
(
2±
√

2− n
)−1/2

. (12.21)

The plus (resp. minus) sign is referred to as the dilute (resp. dense) phase.

The Coulomb gas treatment of the O(n) model is almost identical to
that of the Potts model. The only subtle difference is at the level of critical
exponents. Indeed, the O(n) model allows for watermelon configurations with
any number ` of legs, whereas for the Potts model only even ` is allowed.
Apart from that the central charge and the `-leg exponents are identical.

The dense (resp. dilute) phase of the O(n) model has the same Coulomb
gas coupling—hence belongs to the same universality class—as the critical
(resp. tricritical) Potts model.

The fact that ∆4 > 2 in the dilute phase means that loop crossings are
irrelevant in the RG sense. This justifies a posteriori the truncation made
when going from (12.15) to (12.16). In particular for d = 2, the dilute phase
of the O(n) model on the hexagonal lattice correctly describes the continuum
limit of the generic O(n) model.

12.5 Surface critical behaviour of loop models

The O(n) model with suitably modified surface couplings permits one to
realise the ordinary, special, and extraordinary surface transitions described

179



Figure 27: Hexagonal lattice in an annular geometry. The top and the bottom
of the figure are identified. Boundary edges on the left are shown in red
colour.

qualitatively in section 12.1. To this end, one studies the model defined in
the annular geometry of section 12.3.

To be precise, the special transition requires the loops to be in the dilute
phase, and so we shall assume this to be the case throughout section 12.5.
The results for the ordinary and extraordinary transitions hold true in the
dense phase as well.

A well-studied case is the hexagonal-lattice loop model (12.20). The
lattice is oriented such that one third of the lattice bonds are parallel to the
x-axis, as shown in Fig. 27. The fugacity of a monomer is still denoted K
in the bulk, but we now take a different weight Ks for a monomer touching
the left rim of the annulus, x = 0. In contrast, the right rim of the annulus,
x = L, enjoys free boundary conditions, meaning that its surface monomers
still carry the usual weight K.

In this section we wish to limit the discussion to the case where only
the left boundary sustains particular ( 6= free) boundary conditions; this is
sometimes referred to as mixed boundary conditions. The case where both
boundaries are distinguished is also of interest [DJS09].

The loop model described above has been thoroughly studied by Batchelor
and coworkers [BS93, YB95, BY95, BC97], in particular using Bethe Ansatz
analysis. They find in particular that when Ks = K the model is integrable
and belongs to the universality class of the ordinary transition, while for

Ks = KS
s ≡ (2− n)−1/4 (12.22)
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it is also integrable and describes the special transition.33 This is consistent
with a boundary RG scenario, where KS

s is a repulsive fixed point that flows
towards either of the attractive fixed points KO

s < K and KE
s = ∞, the

former (resp. latter) point describing the ordinary (resp. the extraordinary)
transition.

12.6 Watermelon exponents

Surface watermelon exponents can be defined as in section 11.4.1, the only
difference being that the ` legs are inserted at the boundary. We shall denote
these exponents by ∆O

` , ∆S
` , ∆E

` at the ordinary, special, extraordinary surface
transition respectively. Whenever a result applies to any of these transitions,
we use the generic notation ∆′`, where the prime indicates a surface rather
than a bulk exponent.

For the ordinary transition, ∆O
` can be derived by a slight refinement

of the marginality argument given in section 12.3. First recall that in the
continuum limit there is a background flux m0 given by (12.9), corresponding
to a (fractional) number of oriented loop strands running along the rims of
the annulus. Suppose now that we wish to evaluate the scaling dimension
∆O
` corresponding to having ` > 0 non-contractible oriented loop strands

running around the periodic direction of the annulus. This can be done by
evaluating the free energy increase ∆S = S` − S0 due to these strands, as in
(12.10)

∆S =
g

4π

(
(`+m0)2 −m2

0

) (π
L

)2

ML (12.23)

and using e−∆S = q−∆O
` from (12.7).

The question now arises which sign for m0 to pick in (12.9). With the
plus sign we would have ∆2 = 1 independently of g, in clear contradiction
with numerical results [DS86]. Taking therefore the minus sign leads to the
result

∆O
` =

1

4
g`2 − 1

2
(1− g)` . (12.24)

The derivation just presented follows the argument of Cardy [Ca06], but
in fact (12.24) was found a long time before by other means. Duplantier
and Saleur [DS86] were the first to propose (12.24) for any `, by noting that

33Technically speaking this is the mixed ordinary-special transition, but we have sim-
plified the terminology according to the above remarks.
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their numerical transfer matrix results were in excellent agreement with the
following locations in the Kac table (10.81)

∆O
` =

{
h1,1+` for the dense O(n) model
h1+`,1 for the dilute O(n) model

(12.25)

from which (12.24) follows by the identification (11.13). On a more rigorous
level, (12.24) has been established by Bethe Ansatz (BA) techniques [SB89,
BS93, YB95].

For the special transition, ∆S
` does not seem to permit a CG derivation.

It is however known from the BA analysis [BY95, YB95] that one has

∆S
` =

1

4
g(1 + `)2 − (1 + `) +

4− (1− g)2

4g

= h1+`,2 for the dilute O(n) model (12.26)

in this case.
Alternatively, one may imagine producing the special `-leg operatorOS

` by
fusion of the ordinary `-leg operator OO

` and an ordinary-to-special boundary
condition changing operator φOS. The scaling dimension (12.26) pertains to
the insertion of this composite operator at either strip end. Comparing the
Kac indices in (12.25) and (12.26), and using the CFT fusion rules (10.88),
immediately leads to the identification φOS = φ1,2. If one wants special
boundary conditions on both the left and the right rim, two insertions of φOS

are needed (to change from special to ordinary and back again). One would
then expect h1+`,3, as is indeed confirmed by the BA analysis [BY95, YB95].

Finally, the extraordinary transition is rather trivially related to the ordi-
nary transition. Indeed, for Ks =∞ the entire left rim of the annulus will be
coated by a straight polymer strand, so that the remaining system (of width
L − 1) effectively sees free boundary conditions—this is dubbed the teflon
effect in [BC97]. Thus, for ` = 0 the coating strand will be the left half of a
long stretched-out loop, whose right half will act as a one-leg operator, and
one effectively observes the exponent ∆O

1 . For ` > 0, one of the legs will act
as the coating strand, and one observes ∆O

`−1.

12.6.1 Physical interpretation

We have seen in section 11.4.2 that the 2-leg operator marks a point on
a loop. Therefore the fractal dimension db of the points on the boundary
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covered by loop segments is related to ∆′2. Since we are now in a boundary
theory, the relation is

dO
b = 1−∆′2 . (12.27)

At the ordinary transition we thus find from (12.24) that db = 2(1− g).
But since 1 ≤ g ≤ 2 in the dilute phase this implies formally db ≤ 0. In
other words, at the ordinary transition loops are repelled from the boundary
in the continuum limit. This is consistent with the qualitative discussion
of section 12.1, and in particular the use of Dirichlet boundary conditions
φ|R = 0 to describe the ordinary transition.

At the special transition

dS
b = 1−∆S

2 =
7

2
− 3

4g
− 2g . (12.28)

Thus db decreases from 3
4

to 0 as n decreases from 2 to 0 (and g increases
from 1 to 3

2
). In other words, monomers are critically attracted towards the

boundary, and db is a non-trivial number.
The limit n→ 0 of the dilute O(n) model produces a self-avoiding walk.

Its bulk fractal dimension is dh = 2−∆2 = 4
3
, and since dS

b = 0 it is insensitive
to the special boundary condition.
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The goal of this last part is to exhibit various applications, obtained by
combining elements of the previous parts. There is a very large number
of possibilities for such combinations. Accordingly I hope to develop this
part over the years! Some ideas: critical exponents for the Potts model
obtained from Wiener-Hopf calculations, indecomposability and logarithmic
CFT, four-point functions from differential equations, crossing formulae in
percolation,. . . .

13 Exact CFT partition functions

By combining some key results of CFT (chapter 10) with the decomposition of
the Markov trace (chapter 9) it is possible to construct the exact continuum-
limit partition functions of the loop models defined on an annulus.

Consider the Potts loop model on an annulus of size L×M . The periodic
direction is that of size M . We recall that this model is defined by giving
a weight n = −2 cos(πg) to each contractible loop, and (possibly different)
weight n1 = 2 cos(πe0) to each non-contractible loop.

According to (12.5) we have

Z ≡ Zff(q) =
∑
h

nhχ(c,h)(q) , (13.1)

where the sum is over the boundary scaling dimensions h. Here χ(c,h)(q) is
the generic character (10.77). We recall that the modular parameter for the
boundary theory is q = exp(iπτ) = exp(−πM/L). The degeneracy factor nh
states how many times a given character appears in the partition function,
and as usual for non-minimal theories it needs not in general be an integer.
We omit in the following the subscript ff which reminds us that the boundary
conditions on both rims of the annulus are free.

The CFT partition function is then

Z[g, e0] =
q−c/24

P (q)

∑
`∈Z

sin
(
(1 + `)πe0

)
sin(πe0)

q
g`2

4
− (1−g)`

2 (13.2)

This expression was first obtained by Saleur and Bauer [SB89], using tech-
niques of integrability and quantum groups. It was later rederived and dis-
cussed by Cardy [Ca06] from a Coulomb gas point of view. We hold by now
all the necessary ingredients to prove this relation:
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• The front factor q−c/24

P (q)
is the usual contribution from the free boson,

viz., the “gauged” height field φ̃ of (12.8).

• The q∆O
` factor codes the critical exponents (12.24) of the `-leg (water-

melon) operators at the ordinary surface transition.

• The degeneracy factor

n` = U`(n̄/2) =
sin
(
(1 + `)πe0

)
sin(πe0)

(13.3)

comes from the algebraic decomposition (9.55) of the TL (Markov)
trace over ordinary matrix traces.

• The sum
∑

`∈Z is over the number of non-contractible lines on the
annulus.

The attentive reader may object that

1. Since the Kac labels (r, s) of ∆O
` = h1,1+` are integers, the expansion

(13.1) should not be over generic characters χ(c,h)(τ) of (10.77) but over
the irreducibles Kr,s(τ) of (10.90).

2. The sum in (13.2) should be over ` ∈ N and not ` ∈ Z.

While these observations are certainly correct, a little analysis shows that
taking both of them into account leads to exactly the same result (13.2).

13.1 A percolation crossing formula

The result (13.2) contains a lot of precious information in a very compact
form. To illustrate the scope of this expression, we consider the limit n→ 1,
which corresponds to bond percolation on the square lattice. In this case
c = 0.

The partition function itself is Z
[
g = 2

3
, e0 = 1

3

]
. The part of (13.2) under

the summation is ∑
`∈Z

sin
(
(1 + `)π/3

)
sin(π/3)

q
`2

6
− `

6 . (13.4)

185



The contributions are only non-zero in the following cases

` = 6r : q6r2−r

` = 6r − 2 : −q6r2−5r+1

` = 6r + 1 : q6r2+r

` = 6r + 3 : −q6r2+5r+1

Let us recall the Euler pentagonal number theorem:

P (q) =
∞∏
k=1

(1− qk) =
∞∑

k=−∞

(−1)kqk(3k−1)/2 . (13.5)

A term with even k = 2r reads q6r2−r, and a term with odd k = 2r+ 1 reads
q6r2+5r+1. Thus regrouping the contributions with ` = 6r and ` = 6r + 3
the above sum is simply P (q). One finds the same result by regrouping the
contributions with ` = 6r − 2 and ` = 6r + 1.

So seemingly Z
[
g = 2

3
, e0 = 1

3

]
= 2. But taking into account that the

equivalence between the TL loop model and the Potts model requires an
even number of strands N—whence also ` is even—we have simply

Z

[
g =

2

3
, e0 =

1

3

]
= 1 . (13.6)

Consider now the probability p that a percolation cluster connects the
two rims of the annulus. This happens if and only if there are no loops
wrapping around the periodic direction. Such loops can be suppressed by
setting e0 = 1

2
. In view of the trivial normalisation (Z = 1) we have then

p = Z

[
g =

2

3
, e0 =

1

2

]
=

1

P (q)

∑
`∈Z

sin
(
(1 + `)

π

2

)
q
p(p−1)

6

The degeneracy factor is +1 if ` = 4r and −1 if ` = 4r + 2. Thus

p =
1

P (q)

∑
r∈Z

(
q

4r(4r−1)
6 − q

(4r+2)(4r+1)
6

)
.
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This can in turn be rewritten by using the Jacobi triple product formula

∑
k∈Z

(−1)kakq
k(k−1)

2 =
∞∏
k=1

(
1− aqk−1

) (
1− a−1qn

)
(1− qn) (13.7)

in terms of the Dedekind function η(τ) = q1/24

P (q)
as

p =
η(− 1

3τ
)η(− 4

3τ
)

η(− 1
τ
)η(− 2

3τ
)

=

√
3

2

η(3τ)η(3τ
4

)

η(τ)η(3τ
2

)
. (13.8)

For a thin annulus, q = exp(−πM/L)→ 0, we have 1−p ∼ q1/3. In terms
of the conjugate modulus, q̃ = exp(−2πL/M), a long cylinder corresponds
to q̃ → 0. In that limit

p ∼
√

3

2
q̃

5
48 , (13.9)

where we recognise the magnetic exponent of the Q→ 1 state Potts model.
The result (13.8) can be seen as expressing all corrections to scaling for this
well-known result.
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