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In this Supplementary Online Material, we describe the technical details of the results provided
in the main paper. First, we discuss how to compute capillary forces in the vicinity of the contact
line within the Density Functional Theory, in case the solid and the liquid phases can be considered
as perfect wedges. In this framework, we determine the equilibrium of a liquid when the solid is
not a flat substrate, but a wedge. We show how Young’s law and Neumann’s law are recovered in
particular limits. Second, we present a macroscopic linear model for the elastic response of the solid
to capillary forces. This is the basis for the analytical and numerical results presented in the main
paper.

CALCULATION OF CAPILLARY FORCES IN WEDGES

The DFT framework in which we perform our analysis separates the molecular interactions into a long-range
attractive potential and a short-range hard core repulsion [1, 2]. The short-range repulsion is described by an internal
repulsive pressure pr that ensures incompressibility of both the liquid and the solid – this is a reasonable approximation
for elastomers. This pressure acts as a purely normal contact force, and is continuous across the interfaces. Using
Eq. 2 of the main text to define ΦSL and ΦLL, the mechanical equilibrium allows one to express pr in the liquid as
(see [2] for the derivation):

pr + ΦSL + ΦLL = cst . (1)

The force ~FLS exerted by a wedge of liquid on a subsystem of the solid of volume VS , can be expressed as the
resultant of the volumetric attraction and the repulsion at the liquid-solid interface SLS . Within the same framework,
one can compute the force ~FSL exerted by a wedge of solid on a subsystem of the liquid of volume VL. One writes:

~FLS = −
∫
VS

~∇ΦLS(r) d3r −
∫
SLS

pr~n d
2r , (2)

~FSL = −
∫
VL

~∇ΦSL(r) d3r −
∫
SLS

pr~n d
2r . (3)

When the liquid and the solid domains are perfect wedges, these integrals can be evaluated explicitly, and expressed
in terms of the surface tensions γ, γSL, γSV . This will be derived below and lead to the equations of the main paper,
in particular Eqs. 3, 5 and 6.

FIG. 1: Definition of the attractive potential ΦW
12(z, α), created by a wedge (of angle α) of phase 1 on a point of phase 2. The

expression is given in (4).

First, we determine the equilibrium shape of a liquid wedge on a given solid wedge, and the force exerted by
the liquid on the solid in the vicinity of the contact line. This calculation can be reduced entirely in terms of the
interactions between wedges, as in Fig. 1. The attractive potential ΦW

12(z, α) created by a wedge of a phase 1, and



2

characterized by an angle 0 < α < π/2, on a point of phase 2, at a distance z from the corner, and aligned with one
of the two edges (see Fig. 1) can be analytically expressed as:

ΦW
12(z, α) =

∫ ∞
z

r
[
α− arcsin

(z
r

sinα
)]
ϕ̃12(r)dr . (4)

where ϕ̃12(r) = ρ1ρ2
∫∞
−∞ ϕ12(

√
r2 + y2)dy is the potential created by an infinite line at a distance r from it. Note

that by construction, this function must be even with respect to the angle. The more general case when a point is not
aligned with an edge of the wedge can be easily deduced from the above case by adding (or subtracting) two different
wedges. Furthermore, as the surface tensions are calculated from the interactions between a column and half a space,
we can obtain certain important relations governing ϕ̃12(r) [3]:∫ ∞

0

r2ϕ̃LL(r)dr = − γ , (5)∫ ∞
0

r2ϕ̃LS(r)dr =

∫ ∞
0

r2ϕ̃SL(r)dr = − γ + γSV − γSL
2

= −γ 1 + cos θY
2

. (6)

Here θY is the Young’ angle. These two integrals can now be used in (4) to obtain:∫ ∞
0

ΦW
LL(z, α)dz = − γ 1− cosα

sinα
, (7)∫ ∞

0

ΦW
LS(z, α)dz =

∫ ∞
0

ΦW
SL(z, α)dz = − γ 1 + cos θY

2

1− cosα

sinα
. (8)

The attractive potential ΦH
12(z) created by a half-space of a phase 1, on a point at a distance z from its flat boundary

can be expressed independently or by using two wedges of 90◦ :

ΦH
12(z) = 2

∫ ∞
z

r arccos
z

r
ϕ̃12(r) dr = 2 ΦW

12

(
z,
π

2

)
. (9)

This quantity (noted Π12(z) in [2]) can be interpreted as a disjoining pressure. Furthermore, we have some useful
symmetry properties that we can easily interpret from geometrical arguments (here we dropped the subscripts to
clarify the notations):

ΦH(z < 0) = 2ΦH(0)− ΦH(−z) , (10)

ΦW (z, α > π/2) = ΦH(z sinα)− ΦW (z, π − α) , (11)

ΦW (z < 0, α) = ΦH(0)− ΦW (−z, π − α) . (12)

Force exerted by the solid on the liquid near the contact line

We denote by SLV , SSV and SSL the liquid-vapor, solid-vapor and solid-liquid interfaces, respectively. The subsys-
tem of liquid subject to forces is bounded on the liquid side by a surface perpendicular to the liquid-solid interface,
denoted SLL (see Fig. 2). The angle of the liquid wedge is 0 < θL < π/2 and the angle of the solid wedge is 0 < θS < π.
The force exerted by the solid wedge on the liquid subsystem in the vicinity of the corner is given by (3). Using Os-
trogradsky’s theorem, the volume integral in (3) reduces to a surface integral, in terms of the surfaces bounding the
volume of the liquid subsystem:

~FSL = −
∫
SLV

Φ
(1)
SL (− sin θL~ux + cos θL~uz) dS −

∫
SLL

Φ
(2)
SL ~ux dS +

∫
SSL

(
Φ

(3)
SL + p(3)r

)
~uz dS , (13)

where ~ux and ~uz are the tangential and the normal unit vectors to the solid-liquid interface, both directed toward

the interior of the liquid. We thus have to calculate the three different attractive potentials Φ
(i)
SL created by the

solid wedge on different locations of the liquid wedge, and the repulsive pressure p
(3)
r in the liquid at the liquid-solid

interface. Let us first concentrate on the liquid at the liquid-solid interface. The liquid is at equilibrium, so we can
use Eq. (1) to obtain (in the entire liquid) pr + ΦSL + ΦLL = ΦH

LL(0), which can be simplified to obtain:

p(3)r + Φ
(3)
SL = ΦW

LL(x, π − θL) . (14)
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FIG. 2: Distribution of capillary forces induced in a subsystem of the liquid wedge near the contact line.

Then, we can express the solid-liquid attractive potentials Φ
(2)
SL and Φ

(1)
SL respectively far from the contact line at a

distance z from the solid-liquid interface, and along the liquid-vapor interface at a distance s from the contact line:

Φ
(2)
SL = ΦH

SL(z) , (15)

Φ
(1)
SL = ΦW

SL(s, π − θL) + ΦW
SL(s, θL + θS − π) . (16)

Using the different expressions of the potentials above (14-16) and the integrals (7,8), we can finally explicitly express
the force (13) per unit L of contact line along the two directions normal and tangential to the solid-liquid interface:

f tSL =
~FSL · ~ux
L

= γ (1 + cos θY )
sin θL

2

[
1− cos θL

sin θL
+

1 + cos(θL + θS)

sin(θL + θS)

]
, (17)

fnSL =
~FSL · ~uz
L

= γ

[
(1 + cos θY )

cos θL
2

(
1 + cos θL

sin θL
− 1 + cos(θL + θS)

sin(θL + θS)

)
− 1 + cos θL

sin θL

]
. (18)

Liquid equilibrium

As explained in the main text, the equilibrium condition for the liquid is obtained by balancing the solid-on-liquid
force with the forces due to liquid-liquid interactions. The system on which the forces act is taken as the liquid corner
depicted in Fig. 2). The liquid-liquid interactions can be separated in two contributions. First, there are attractive
liquid on liquid forces, which act at the liquid-liquid and the solid-liquid interfaces, far from the contact line. Each
of these two forces are equal to γ per unit contact line, and are pulling on these two corners along the liquid-vapor
and liquid-solid interfaces. The second is due to repulsive liquid-liquid interactions, acting near the boundary normal
to the solid-liquid interface far from the contact line. It originates from the presence of the attractive solid. The
resulting tangential force (per length unit of contact line) is γ + γSV − γSL = γ(1 + cos θY ) and is directed toward the
interior of the subsystem [4]. The balance of these forces, tangential and normal to the interface, read:

γ(1 + cos θL)− γ (1 + cos θY ) + f tSL = 0 , (19)

γ sin θL + fnSL = 0 . (20)

These two equations come from the projections of the gradient of a scalar: it implies that they represent a single
independent equation that reduces to [using for instance (17) and (19)]:

1 + cos θY = (1 + cos θL)

(
1 +

tan(θL/2)

tan(θS/2)

)
. (21)
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The unique physical solution of this equation is given by:

cos θL =
1

2

[
cos θY [1− cos θS ]− sin θS

√
2

1− cos θS
− cos2 θY

]
, (22)

which is Eq. (3) in the main paper.

Young’s law and Neumann’s law

One easily shows that in the case of a flat substrate, θS = π, the tangential force f tSL vanishes due to symmetry
reasons: the solid spans an infinite half-space in the tangential direction. We then recover θL = θY , [either from (19)
or (22)], which is Young’s law. In addition we note that fnSL = γ sin θY , ensuring that we have a force balance in the
liquid subsystem in both directions.

By assuming the substrate is a perfect liquid, we will now show that the above formulation is equivalent to Neu-
mann’s law [5]. Denoting this liquid substrate as phase 2, and the liquid wedge on top of it as phase 1, Neumann’s
law is given by the two following equations:

γ1 sin θ1 − γ2 sin θ2 = 0 , (23)

γ1 cos θ1 + γ2 cos θ2 + γ12 = 0 , (24)

where γ1 and γ2 are the surface tensions of liquids 1 and 2, γ12 is the interfacial tension, and (θ1, θ2) are the positive
angles made by the liquid wedges 1 and 2. Neumann’s law is in fact ruled by two independent parameters, which we
denote according to Young’s law by:

cos θY 1 =
γ2 − γ12
γ1

, (25)

cos θY 2 =
γ1 − γ12
γ2

. (26)

With these notations, we get γ1/γ2 = (1 + cos θY 2)/(1 + cos θY 1) and γ12/γ2 = (1− cos θY 1 cos θY 2)/(1 + cos θY 1), and
Neumann’s law (23,24) can be rewritten as:

sin θ1(1 + cos θY 2)− sin θ2(1 + cos θY 1) = 0 , (27)

cos θ1(1 + cos θY 2) + cos θ2(1 + cos θY 1) = cos θY 1 cos θY 2 − 1 , (28)

The unique physical solution can then be explicitly expressed as:

cos θ1 =

[
2 + (1− cos θY 2) cos θY 1

]
cos θY 1 − (1 + cos θY 2)

2(1− cos θY 1 cos θY 2)
. (29)

or equivalently by a function of the form θ1 = N(θY 1, θY 2). The second angle is given by symmetry, i.e., θ2 =
N(θY 2, θY 1).

Let us now show that the DFT formulation indeed reduces to Neumann’s law when both the phases are liquid. For
a given substrate wedge of angle θ2, we can see from (22) that the liquid 1 is at equilibrium when it forms a wedge of
angle θ1 = f(θY , θ2). If the phase 2 is a liquid as well, then we can use the same equation (22) with exchanged roles
of phase 1 and 2. This gives two equations for the contact angles:

θ1 = f(θY 1, θ2) , (30)

θ2 = f(θY 2, θ1) , (31)

where θY 2 is defined in (26). Therefore, θ1 obeys the following implicit equation:

θ1 = f
(
θY 1, f(θY 2, θ1)

)
. (32)

We can easily verify that this equation has a unique solution in the interval [0, π], which is given explicitly by (29).
By analogy, we also recover the second angle θ2 with the symmetry θY 1|θY 2.
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Force exerted by the liquid on the solid near the contact line

Contrarily to the liquid, the capillary forces on the solid need not be at equilibrium for the solid: a resultant force
can be balance by the elasticity. By analogy with the determination of the solid on liquid force, we compute the
capillary force (2) exerted by the entire wedge of liquid to a subsystem of solid bounded by a surface perpendicular
to the liquid-solid interface, noted SSS :

~FLS = −
∫
SSV

Φ
(1)
LS (− sin θS~ux − cos θS~uz) dS −

∫
SSS

Φ
(2)
LS ~ux dS −

∫
SSL

(
Φ

(3)
LS + p(3)r

)
~uz dS . (33)

The attractive potentials Φ
(1)
LS = ΦW

LS(s, π − θS) + ΦW
LS(s, θL + θS − π) and Φ

(2)
LS = ΦH

LS(z) are analogous to what we
obtained in (16) and (15). The only fundamental difference is that for this case the pressure is determine by the liquid
(and not the solid) equilibrium (14), so that:

p(3)r + Φ
(3)
LS = ΦW

LL(x, π − θL) + ΦW
SL(x, π − θS)− ΦW

LS(x, π − θL) . (34)

Therefore, after some simplifications, we can determine [from (33)] the normal and the tangential components of the
liquid on solid force (per unit length of the contact line):

f tLS =
~FLS · ~ux
L

= γ
1 + cos θY

2

[
1− cos θS + sin θS

1 + cos(θL + θS)

sin(θL + θS)

]
, (35)

fnLS =
~FLS · ~uz
L

= γ

[
1 + cos θY

2

(
sin θS + cos θS

1 + cos(θL + θS)

sin(θL + θS)

)
+

1− cos θY
2

1 + cos θL
sin θL

]
. (36)

These expressions can be rewritten in a more compact form as Eqs. (5) and (6) of the main paper. When θS = π, then
θL = θY [using (22)] and fnLS = γ sin θY [using (36)], as we would expect from the vertical action-reaction interaction
of two full wedges, and f tLS = γ(1 + cos θY ) [using (35)], as was shown in [2, 6].

MACROSCOPIC ELASTO-CAPILLARY MODEL

The description of the solid is more subtle than that of the liquid. The bulk of the elastic substrate is described as
a homogeneous incompressible elastic medium. However, one needs to define the effective boundary conditions to be
applied to the bulk elasticity equations to compute the deformations. As discussed in the main text, one can consider
two models that will be referred to as normal force transmission and vectorial force transmission respectively. Below
we present the expressions for the surface stress σs used for our numerical results.

Curved interfaces interactions

For later reference, we first determine the attractive potential at an interface between two phases 1 and 2 which
presents a curvature κ. For κa� 1, this potential (Eq. 2 in the main text) reduces to:

Φ12 = ΦH
12(0)− κ

∫ ∞
0

r2ϕ̃12(r)dr , (37)

where, κ is defined as positive when phase 1 is smaller than phase 2. In (37), the integral term is always negative, and
depending on whether one considers liquid-liquid, solid-solid or liquid-solid interaction, becomes equal to −γ, −γSV
or −γ(1 + cos θY )/2 [see (7,8)]. The Laplace pressure originates from this potential.

Normal force transmission model

An elastomer can be described as an incompressible soft solid within which the elastic stress can be written as:

σij = −prδij +
E

3
(∂iuj + ∂jui) , (38)
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FIG. 3: (a) Distribution of capillary induced forces inside the solid. (b) Equivalent representation allowing a distinction between
the forces at the contact line, and the forces that could be compensated by a Laplace pressure when the interfaces are curved.

where ui is the displacement vector, and E the Young’s modulus. This solid is assumed to be submitted to the
long-range attractive potential. Then it can be rigorously shown (see the proof below) that the the external solution
must have an effective boundary condition:

~σs =
(
ΦLS + ΦSS − ΦSL − ΦLL + ΦH

LL(0)− ΦH
SS(0)

)
~n . (39)

Note that this is the opposite of the surface force. When the liquid phase is expressed by a vapor phase, this expression
reduces to:

~σs =
(
ΦSS − ΦH

SS(0)
)
~n . (40)

The numerical solution presented in the main paper are based on numerical evaluations of the surface stress (39,40).
The surface stress σs acts as a generalized capillary pressure. At distances from the contact line much greater than

the molecular cut-off a, the curvature is small so that [using (37,40)] the capillary pressure on the dry part reduces
to the standard Laplace pressure:

~σs = γSV κ ~n . (41)

On the other hand, the Laplace pressure on the wet part is

~σs = γSL κ ~n . (42)

Proof – The incompressibility condition reads ∂lul = 0 or in vector notations:

~∇ · ~u = 0.
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We first assume that the constitutive equation holds in the interfacial zone where the elastomer is subjected to two
long range volumetric interactions which derive from the potentials ΦLS and ΦSS that are associated to liquid-solid
and solid-solid interactions respectively. The equilibrium condition reads:

−~∇(pr + ΦLS + ΦSS) + E~∇2~u = 0. (43)

ΦLS and ΦSS result from an integration over the volume of the liquid and the solid. They vary over a scale of few
molecular sizes along the normal to the solid interface and attain their bulk values at distances away from the interface.
Therefore, ΦLS and ΦSS are only important in a thin boundary layer across the interface. We pose p̃ = pr+ΦLS +ΦSS

and σ̃ij = σij − (ΦLS + ΦSS)δij . Then the equation reduces to:

−~∇p̃+ E~∇2~u = 0 (44)

in the whole domain. This is the standard elasticity problem. However the effective boundary conditions are modified.
More precisely, there is no excess quantity in the strain tensor, but the effective stress applied to the bulk is modified.
As the real stress σij is continuous, the pseudo-stress σ̃ij is not.

Vectorial force transmission model

We can alternatively propose a model of elastomeric surface that allows for a fully vectorial transmission of the
liquid-on-solid force. The polymeric chains are attracted in the direction of the liquid and thus transfer the total
force exerted by the liquid on the solid. There is no force gradient building up in the surface layer. Integrating the
equilibrium equation from the surface to the bulk, we see that the effective stress perfectly balances the excess forces
due to the long range interactions:

~σs = ~t · ~∇
[∫ ∞

0

ΦLSdh ~t

]
(45)

+
(
ΦLS + ΦSS − ΦSL − ΦLL + ΦH

LL(0)− ΦH
SS(0)

)
~n

This is the expression for σs used in the numerical solution of the vectorial force transmission model.
Again, looking at a distance from the contact line large compared to a and using

~t · ~∇~t = −κ~n,

we get in the dry region a surface stress:

~σs = (γSV + γ) κ ~n (46)

Beside, the Laplace pressure in the dry part is still

~σs = γSV κ ~n. (47)
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