
PHYSICAL REVIEW B 95, 064106 (2017)

Using capillary forces to determine the elastic properties of mesoporous materials
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CNRS, 24 rue Lhomond, 75005 Paris, France

A. Grosman
Institut des NanoSciences de Paris, CNRS, UPMC Université Paris 6, 4 Place Jussieu, 75005 Paris, France
(Received 15 November 2016; revised manuscript received 19 January 2017; published 15 February 2017)

The capillary forces in mesoporous materials, when imbibed with liquid, are large enough to induce mechanical
deformations. Using anisotropic porous silicon, we show that systematic measurements of strain as a function
of the pore pressure can yield most of the elastic constants characterizing the porous matrix. The results of
this poroelastic approach are in agreement with independent standard stress-strain measurements. The porosity
dependence of Young’s moduli as well as the values of Poisson’s ratios are qualitatively consistent with porous
silicon having a honeycomb structure. For a quantitative comparison, we performed finite element modeling
of realistic pore geometries. The calculated elastic moduli are found to be much smaller than the measured
ones. This is presumably due to both (i) finite-size effects, the Young’s modulus of the 5-nm thick walls of the
honeycomb could be notably smaller than the Young’s modulus of bulk Si, and (ii) defects of the honeycomb
structure along the pore axis.
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I. INTRODUCTION

The mechanical response of mesoporous materials during
fluid adsorption has attracted much interest in recent years,
driven by its importance in the context of CO2 sequestration
[1,2] and by other applications such as sensing or actuation
[3,4]. Here, we focus on the case where pores are saturated
with liquid at pressure PL. In the limit of elastic deformation,
the response of the porous structure to changes in PL is char-
acterized by the so-called pore-load modulus M = dPL/dε, a
poroelastic coefficient that was introduced by Biot in 1941 [5]
in the context of soil mechanics.

In the present work, we use mesoporous silicon (PoSi)
as a model system to show how the response to pore
pressure can be used to determine the elastic properties of
the porous matrix. The validity of this approach, rarely used
for anisotropic materials, is demonstrated by comparing these
elastic coefficients with the results of ordinary stress-strain
tests that we performed independently. We find that the PoSi
compliance matrix is consistent with the honeycomb geometry
observed in transmission electron microscopy [6] (see Fig. 1).
This is in strong contrast with the usual assumption that PoSi
is isotropic, which is made in the analysis of nanoindentation
experiments [7–10], or the assumption that PoSi has a cubic
symmetry, which is made in acoustic velocity measurements
[11], either direct or through Brillouin scattering [12].

In the context of mesoporous materials, it was recently
proposed that the measurement of the pore-load modulus for
porous silica [13,14] and porous silicon [15,16] can yield the
effective elastic modulus ES of the walls forming the solid
matrix, provided that the pore geometry is known. Since these
walls are only a few nanometers thick, one expects that their
effective modulus can be quite different from that of the bulk,
similarly to a single nanowire [17] or nanocantilever [18].
The relevance of finite-size effects for mesoporous materials
has been recently discussed [19,20], but experimental data are
scarce. For mesoporous silica, the wall material (chemical

composition, microstructure) depends on the synthesis, so
that changes in modulus are difficult to interpret. PoSi is a
better candidate since pores are etched in a single crystal, but
experiments have reached contradictory results. Gor et al. [16]
measured the strain transverse to the pore axis for a single
sample and concluded that ES is close to the Young’s modulus
of bulk silicon. On the contrary, based on strain measurements
both transverse and parallel to the pore axis performed on
samples with different porosities, we concluded in a previous
work that strong finite-size effects exist in the 5-nm-thick
silicon walls [15].

In order to clarify this issue, we have performed finite
element modeling (FEM) of the PoSi honeycomb geometry, as
determined by transverse electron microscopy (TEM). Using
bulk silicon properties for the pore walls, the calculated moduli
are found to be much smaller than the experimental ones,
which is a strong indication of the finite-size effect. However,
we also find that the measured moduli are not rescaled by
a single factor and that the measured Poisson’s ratios are
different from those of an ideal honeycomb [21]. This could
be due to a small disorder along the pore axis, and this makes
it difficult to extract the magnitude of finite-size effects.

II. SAMPLES AND SETUP

Notations. Some experiments have been performed on
Vycor, which is an isotropic material. In this case, the response
to a pore pressure PL is characterized by a single pore-load
modulus M ≡ dPL/dε. In contrast, PoSi is an anisotropic
material. We note by ε‖ the strain parallel to the pore axis ([001]
axis); this is called the out-of-plane strain in the honeycomb
literature [21]. Due to the underlying cubic symmetry of
silicon, the response to PL is a priori different along [100]
and [110] axis, but, as discussed below, we could not detect
any difference between these two orientations. Hence we note
by ε⊥ the strain transverse to the pore axis (or in-plane strain).
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FIG. 1. Binarized TEM images of two porous silicon samples:
(left) 50% porosity, (right) 85% porosity, from Ref. [22]. The pores
of the honeycomb structure are straight and parallel to the [001] axis.
The actual size of the images is 150×150 nm2.

The response to pore pressure is therefore characterized by
two moduli : M‖ = dPL/dε‖ and M⊥ = dPL/dε⊥.

Samples. Samples are prepared by electroetching of highly
p-doped (100) Si wafers in HF-ethanol solutions. The wafer
resistivity lies in the range 0.027–0.033 � cm. The resulting
porosity is obtained through gravimetry. The mechanical
properties depend very strongly on etching conditions, so great
care has been taken to use exactly the same etching conditions
as for previous samples which were used for the determination
of the pore geometry [22]. Pores are straight, nonconnected
[23], and perpendicular to the surface wafer, hence along
the [001] axis. The pore cross section is irregular and the
pore-size distribution is large. Samples with three different
porosities p were used (nominal values of 50%, 70%, and
85%) corresponding to mean pore diameter of 12, 26, and
50 nm, respectively. The thickness of the walls separating
pores is 5–6 nm, independent of the porosity. Binarized TEM
images of the samples are shown in Fig. 1.

The porous layers were studied both detached from the
wafer (membranes) or still attached to the underlying Si wafer
(supported layers). Samples were used as prepared, at most a
few hours after etching, so that the walls are Si-H terminated.
The membrane thickness, that is, the sample dimension
along the pore axis, was about 65 μm. We checked that
30-μm-thick samples display the same mechanical properties,
within experimental reproducibility. The sample dimension
transverse to the pore axis was about 25 mm, as only the
central part of 2-in. wafers was used in order to avoid possible
edge effects.

Experimental setup and protocol were assessed by measur-
ing M⊥ for ten different 50% porosity samples. In the end, we
estimate the dispersion to be about 5%. For the other porosities,
measurements have been performed on at least two samples.
In total, about 30 samples have been analyzed, excluding
those which have been rejected because of nonstandard etching
parameters.

Direct measurement of transverse properties. Standard
stress-strain measurements are performed at room tempera-
ture. Rectangular membranes (10×25 mm2) are glued at both
short ends, one on a fixed frame, the other one on a translation
stage submitted to a variable force. E⊥ and ν⊥ are obtained
by measuring optically the strains along both directions of the
sample. Note that we have performed numerical calculations
of the strain field in order to correct the raw experimental data
for the finite aspect ratio of our sample.

FIG. 2. Schematic view of the setup for transverse (a) and parallel
(b) strain measurement. Transverse (c) and parallel (d) strains as a
function of the pore pressure PL for a 50% sample (fluid: heptane).

Principle of pore-load measurement. Samples are held at a
regulated temperature (18 ◦C) in a cell filled with vapor at a
pressure P . The fluid is usually n-heptane, but some runs have
been performed with ethanol or hexane. First, the samples are
saturated with liquid by increasing the vapor pressure almost
up to the saturated vapor pressure Psat . Then the gas pressure
is ramped up and down at constant rate in a pressure range
such that the PoSi remains full of liquid on the so-called
saturation plateau [15]. Since no evaporation occurs in the
pores, equilibrium is reached very fast.

As long as PoSi is saturated with liquid, we find that the
strain varies reversibly and linearly with the pore pressure
PL, which is assumed to be equal to that of a bulk liquid in
equilibrium with the vapor: PL = RT

VM
ln(P/Psat ), where R is

the ideal gas constant, T the cell temperature, and VM the
liquid molar volume, which is assumed constant.

Measurement of the transverse strain of membranes. Mem-
branes are cut in two pieces with a polygonal shape displaying
edges both along [100] and [110] directions. These pieces are
clamped on the bottom of the cell, facing each other, so that
the free ends of the two pieces form a slit with parallel edges
[Fig. 2(a)]. The slit is imaged with a long working distance
microscope. Standard image analysis yields a resolution of
50 nm of the slit width, and hence of the sample deformation,
the maximum deformation being about 50 μm. Measuring the
slit width instead of the position of the free end of a membrane
piece automatically cancels any drift of the cell with respect
to the lens. As seen in Fig. 2(c), ε⊥ is perfectly linear in PL

and perfectly reversible.
Deformations along the [100] and [110] directions can

be measured simply by changing the orientations of the
two pieces. [For instance, in Fig. 2(a), the deformation is
measured along the [110] axis.] Measuring both deformations
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on the same sample allows us to get rid of sample-to-sample
variations, which limits the final accuracy on the pore-load
modulus.

Measurement of the parallel strain of membranes. The
sample size parallel to the pore axis, that is, the thickness
of the membranes, is only a few tens of micrometers, three
orders of magnitude smaller than the sample size transverse to
the pore axis. So the parallel deformation has to be measured
using an interferometric setup. A small piece of sample is
used as a spacer between a mirror and a semireflecting plate,
forming a small-angle wedge [see Fig. 2(b)]. The reflection
of a monochromatic beam on the wedge creates interference
fringes which shift when the spacer thickness changes. The
amplitude of the deformation being of the order of 10 nm,
the fringe shift is small, of the order of a tenth of a fringe.
The accuracy is limited by thermal drifts. The entire setup,
including the CCD camera, is contained in a temperature-
controlled box. The fringe shift is corrected for the pressure
dependence of the optical index of the gas phase, which
we measured prior to the adsorption experiment. As seen in
Fig. 2(d), the noise in ε‖(PL) is larger than in ε⊥(PL), but the
final uncertainty on the pore-load modulus is still smaller than
sample-to-sample variations.

Measurement of the curvature of supported samples. If the
PoSi layer is not detached from the underlying wafer, changes
in ε⊥ with PL are small; the main effect of a variation in PL is to
change the transverse stress in the porous layer, which in turn
changes the curvature of the bilayer PoSi-Si. The curvature κ

of the bilayer can be easily obtained by using the wafer as a
mirror in an interferometer and measuring Newton’s rings.

Vycor. Complementary experiments have been performed
on commercial Vycor samples (Code 7930, Corning, Inc.).
Vycor is an isotropic disordered porous silica. The porosity is
about 30% and the mean pore diameter is about 5 nm [24]. To
remove organic impurities from the pores, the rods were boiled
in a 30% solution of hydrogen peroxide for several hours, then
rinsed in water. Samples have been cut in a cylindrical rod
(diameter 3.8 mm).

For Vycor, the single pore-load modulus was measured
with the same setup as used for measuring ε⊥. The fluid was
either water or pentane. The Young’s modulus was obtained
independently by measuring the bending of a rod in a cantilever
geometry.

III. COMPLIANCE TENSOR FROM THE RESPONSE
TO PORE PRESSURE

Experiments directly yield the pore-load moduli M‖ and
M⊥. As a first result, systematic measurements of M⊥ do not
reveal any dependence with the orientation; the PL-induced
deformations along [100] and [110] axes are the same. Elastic
properties appear to be dominated by the random disorder of
the honeycomb structure rather than by the underlying cubic
symmetry. In the following, we thus assume that PoSi is a
transverse isotropic material. On the contrary, M‖ and M⊥
values are quite different, especially at high porosity; PoSi
appears to be stiffer along the pore axis. Table I summarizes all
of the experimental values, which are close to our preliminary
measurements [15].

TABLE I. Measured elastic coefficients.

E⊥ M‖ M⊥ dκ

dPL

Sample Porosity p (GPa) ν⊥ (GPa) (GPa) (GPa−1 m−1)

50% 0.49 14.6 58 55 16.3
70% 0.70 3.1 0.50 19 11 33.6
85% 0.84 0.57 0.63 7.7 2.8 43.2

Assuming that PoSi is a transverse isotropic material and
choosing [100], [010], and [001] as the axes ([001] is the pore
axis), the compliance tensor can be written as

⎛
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where shear components are omitted. Besides E⊥, E‖, ν⊥,
and ν, the compliance tensor involves an independent shear
modulus.

For a biaxial transverse stress (σ1 = σ2 = σ⊥), one has ε1 =
ε2 = ε⊥. The transverse biaxial modulus B = E⊥/(1 − ν⊥) is
defined by ε⊥ = σ⊥/B.

A. Transverse biaxial modulus

It is not possible to obtain any engineering elastic constant
of the porous matrix from the pore-load moduli M‖ and M⊥
only, but measuring also the response to pore pressure of
supported samples allows us to obtain the biaxial modulus B.
Indeed, following [25,26], the curvature dependence dκ/dPL

on the liquid pressure reads

dκ

dPL

= 2 dε⊥
dPL[

d + 1
3d

(
1

BSidSi
+ 1

BdP

)(
BSid

3
Si + Bd3

P

)] , (2)

where dSi and dP are the thicknesses of the two layers and d the
total thickness. BSi and B are the biaxial moduli of bulk Si and
PoSi, respectively. For [100] wafers, BSi = 180 GPa (E⊥Si =
130 GPa and ν⊥Si = 0.28 [27]). As shown below, B for PoSi
is much smaller. With dSi � 220 μm and dP � 65 μm, the
term proportional to B/BSi in the bracket in Eq. (2) can be
neglected. This leads to

B = M⊥
dκ

dPL

BSid
3
Si

6dP d

1

1 − M⊥ dκ
dPL

d
2

(
1 + d2

P +d2
Si

3d2

) . (3)

The last factor in the right-hand side of Eq. (3) is a small
correction.

In this way, the responses of membranes and of supported
samples to pore pressure yield the value of B directly: the
knowledge of the pore geometry, and even of the porosity, is
not needed. The results for the biaxial modulus are shown in
Fig. 3 as a function of the normalized density 1 − p.

Also plotted in Fig. 3 are B values derived from the
measurements of E⊥ and ν⊥ in direct stress-strain tests.
Both determinations of B are consistent within experimental
uncertainty. This confirms that the response to the pore
pressure provides some of the elastic constants of the porous
matrix.
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FIG. 3. Transverse biaxial modulus B as a function of the
normalized density 1 − p. Open and closed circles: experimental
data (left scale); diamonds: results of finite elements modeling (right
scale). The dashed line is only a guide for the eye.

B. Parallel Young’s modulus

At first, we consider the isotropic case which is relevant
for the Vycor case. When both the pore geometry and the
microscopic structure of the solid skeleton are isotropic, the
solid strain ε is a linear function of the applied hydrostatic
stress σH and the pore pressure PL:

ε = 1

3K
σH + 1

M
PL, (4)

where K is the bulk modulus of the porous material at zero
(or constant) pore pressure and M the pore-load modulus.
In the standard framework of poroelasticity, and under the
assumption that the solid phase is homogeneous and isotropic
at microscopic scale, it can be shown that [28]

1

M
= 1

3K
− 1

3KS
, (5)

where KS is the bulk modulus of the solid phase.
For Vycor, we have measured the pore-load modulus

M = 36.3 GPa, in agreement with Amberg and McIntosh
(M = 37 GPa for water [29]) and the Young’s modulus
E = 14.5 GPa, in agreement with Vichit-Vadakan and Scherer
(E = 15.4 GPa for water [24]). Note that we find the same
value of M for pentane and water, within experimental
uncertainty. Following [30], we assume that the Poisson’s
ratio of the porous matrix is 0.16. This gives K = 7.1 GPa.
From Eq. (5) we find KS = 18 GPa. This bulk modulus for
the solid forming the porous matrix is in agreement with
the value derived from the study of liquid diffusion due to
mechanical stress (KS = 19.6 ± 3.1 GPa for water [24]).
So the knowledge of both the pore-load modulus and the
average elastic properties of the porous matrix provides a very
simple way to obtain the bulk modulus of the solid phase,
as pointed out long ago in the context of rock mechanics
[31].

Inversely, for porous silicon, we are looking for properties
of the porous matrix. The generalization of Eq. (5) for a

TABLE II. Comparison of the elastic moduli for porous Si
obtained from experimental data and calculated for a honeycomb
structure. (ν⊥ for 70% and 85% samples have been calculated for
Voronoı̈ honeycomb [21].)

B (GPa) ν⊥ E‖ (GPa) ν

Sample Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp.

50% 39.8 17.4 0.46 66.3 11 0.28 0.39
70% 13.4 6.8 (0.80) 0.50 37.3 6.2 0.28 0.33
85% 4.9 2.0 (0.92) 0.63 20.4 2.6 0.28 0.33

transverse isotropic material reads [33]

1

M⊥
= 1

B
− ν

E‖
− 1

3KS
, (6)

1

M‖
= 1 − 2ν

E‖
− 1

3KS
. (7)

Since B, M⊥, and M‖ are known, the missing engineering
constants E‖ and ν can be obtained from these equations
provided that KS is known. As a first guess, neglecting any
possible finite-size effects, we choose for KS the bulk modulus
of bulk silicon (KSi = 97.8 GPa [27]). Actually, the final values
for E‖ depend weakly on KS : a change of KS by a factor 3
changes E‖ by 10% in the worst case (porosity 50%). This has
long been recognized: for highly porous materials, the term
1/KS is often negligible compared to 1/K in Eq. (5) [31].

The final values for the elastic parameters of PoSi are given
in Table II, and E‖ is plotted as a function of the normalized
density 1 − p in Fig. 4. The relative uncertainty in B and E‖ is
about 15%, and the uncertainty in the Poisson’s ratio is 0.02.
Thus a complete characterization of the mechanical properties
of porous silicon has been obtained.

The values of the transverse moduli are consistent with
the early work of Barla et al. [25]. By measuring both the
lattice mismatch between bulk Si and PoSi and the curvature
of supported samples, they obtained for B the following values:

FIG. 4. Parallel Young’s modulus E‖ as a function of the
normalized density 1 − p.
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12 and 8 GPa for 54% and 72% porosity samples, respectively
[32].

It is rather difficult to compare with data obtained by other
groups as (i) the pore topology of PoSi can be very different
from the topology in our sample and/or (ii) PoSi has often been
assumed to be isotropic or to have a cubic symmetry. Selecting
only reports using PoSi samples etched from highly doped
wafers, hence presumably having a honeycomb structure,
the reported value of the elastic modulus is about 10 GPa
[7,10,12] for a porosity of 70%, which is consistent with our
measurements.

IV. GEOMETRY AND ELASTIC PROPERTIES
OF THE SILICON WALLS

The next step is to compare the experimental values of
elastic constants with what is expected for a honeycomb
structure. For a perfect honeycomb, that is invariant along
the pore axis, E‖ and ν are independent of the honeycomb
transverse structure: E‖ = (1 − p)ES and ν = νS [21]. The
pore axis being here along the [001] axis, it gives: E‖ =
(1 − p)130 GPa and νS = 0.28 [27]. In contrast, transverse
properties are strongly dependent on the pore wall geometry
[21]. Few studies are devoted to random honeycomb, and,
to our knowledge, they are restricted to Voronoı̈ honeycomb
[34,35], often in the limit of low-density materials. We
have thus performed FEM for “real” PoSi structures, i.e., as
reconstructed from TEM images: the transverse structure is
well described, but we neglect disorder along the pore axis
and assume a perfect honeycomb structure.

Finite element modeling. Since the pore length is 3 orders
of magnitude larger than the typical transverse dimension of
the pores, we performed a two-dimensional (2D) calculation
in the transverse plane. To limit edge and finite-size effects, we
use large systems consisting of roughly 1000 pores. The mesh
is irregular because of the randomness of the honeycomb, the
typical mesh size being 1 nm. This is not very small compared
to the wall thickness (5–6 nm), but we checked that using a
mesh size 2 times smaller does not change the deformation
by more than a few percent. In the calculation, the material
properties of the walls were that of silicon single crystal with
the same orientation as real samples ([001] axis parallel to the
pore axis).

In order to obtain the transverse biaxial modulus, the
same stress σext is applied on the boundary in [100] and
[010] directions [36]. Calculations are done with COMSOL

software in the “plane stress” condition, that is, imposing
a zero parallel stress. Rather than the displacement of the
system boundary, we measure the average radial displacement
u from the center of the system. We find u to increase linearly
with the distance r to the center for r smaller than half the
system size, the transverse strain is then defined as du/dr and
B = σext /(du/dr). As a test, we have performed simulation
for regular hexagonal honeycombs and we recover the classical
result at low density [21]. We find that the disorder in PoSi
leads to a strong reduction in B compared to a hexagonal
honeycomb. We hypothesize that this is due to the bending of
walls in PoSi structures, which does not occur in a periodic
structure submitted to a biaxial stress.

Predicted and experimental values are gathered in Table II.
FEM results for B are also plotted in Fig. 3. PoSi, especially
at low density, presents the generic features of a honeycomb
structure: a Young’s modulus smaller in the transverse than
in the parallel direction, and a large transverse Poisson’s
ratio. Let us make a few detailed comments about our
findings:

(1) The calculated and measured density dependence of
B are very similar (B varies roughly like (1 − p)2), but
the calculated value is about 2.3 times larger. This is an
indication that the elastic modulus of the walls is reduced
compared to that of bulk Si. Finding such a strong reduction
is not very surprising for a system where the walls are a
few nanometers thick. It is well known from experiments
performed on nanowires or nanocantilevers that finite-size
effects decrease the effective Young’s modulus [17,18,37],
and a reduction by a factor 3 has already been observed for a
12-nm-thick cantilever etched in crystalline silicon [18].

(2) The calculated and measured density dependence of
E‖ are the same (E‖ ∝ (1 − p)), but the calculated value is
now larger than the measured one by a factor 6. Here, it seems
unlikely that finite-size effects alone can be responsible for
such a strong variation. Rather, we think that PoSi samples are
softer than expected along the pore axis because the PoSi is
not a perfect honeycomb. Indeed, TEM pictures reveal defects
of the pore walls which are not taken into account in 2D
FEM. Presumably, these defects trigger wall bending when
the structure is submitted to uniaxial stress along the pore
axis, which would lead to a strong decrease in the parallel
Young’s moduli.

(3) For a perfect honeycomb, the Poisson’s ratio ν is
constant while ν⊥ increases with the porosity, up to 1 in
the limit of 100% porosity [21]. The experimental values
approximately satisfy these properties, although ν⊥ is smaller
than expected. Indeed, calculated values of ν⊥ are always
found to be larger than 0.9 for 85% porosity, and, moreover, to
be very weakly dependent on the transverse geometry [34,35].
Thus, the difference between experimental and theoretical
values probably does not stem from a poor model for the
transverse geometry but rather from the noninvariance parallel
to the pore axis.

(4) Finally, one should be aware that “experimental” values
of ν are slightly dependent on the choice of KS in Eq. (6). For
instance, dividing KS by a factor of 2 with respect to bulk
silicon leads to a Poisson’s ratio almost independent of the
porosity (ν � 0.3).

To summarize, the qualitative behavior of moduli and
Poisson’s ratios is consistent with a honeycomb structure, but
there is a quantitative disagreement between experiments and
FEM despite our efforts to take into account the structure of
PoSi. In particular, we find that measured elastic moduli of the
porous matrix are much smaller that expected. This is a strong
indication that the Young’s modulus ES of the 5–6-nm-thick
walls is smaller than that of bulk silicon. However, one
cannot reconcile FEM and experiment by simply rescaling
ES . It is very likely that the noninvariance of the structure
along the pore axis also contributes to the decrease of the
moduli, especially E‖. In the present stage of modeling, it is
not possible to disentangle the effects of nonideality of the
structure and of the finite size of the walls. Finally, note that
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defects along the pore axis could also impact the transport
properties along the pore, which have been recently measured
[38].

It is interesting to come back to ordered nanoporous silicas,
as these systems are exactly the opposite of PoSi: the pore
structure is simple but the microstructure and the very nature
of the solid is often not completely known. For MCM-41, Prass
et al. [13] have performed a simple analysis of M⊥, without
considering parallel strain, and inferred that the bulk modulus
of the walls is 88 GPa while the Young’s modulus for bulk
silica is 72 GPa. The difference was attributed to a higher
portion of small siloxane rings in thin walled nanoporous
silica as compared to fused silica. The same analysis for
SBA-15 yields 35 GPa, the difference with respect to bulk
silica being now attributed to the microporosity of silica walls.
Finally, let us mention that for disordered nanoporous silica
(Vycor) we find KS = 18 GPa, which is twice smaller than
KS for bulk silica. For Vycor, this low value was attributed
to the presence of hydroxyl groups [30]. So, the response
to pore pressure provides a measurement of the Young’s
modulus of silica nanowalls, but this modulus is system
dependent, which prevents concluding unambiguously about
any finite-size effect.

V. CONCLUSION

Using porous silicon, we have shown that, in a saturated
mesoporous material, the analysis of the response to pore

pressure yields elastic constants in agreement with direct
stress-strain tests. The standard framework of poroelasticity
has allowed us to determine the full set of PoSi elastic
constants, with the exception of one shear modulus, for various
porosities. The knowledge of the mechanical properties of the
matrix has practical purposes, for instance, in the design of
microelectromechanical systems devices or acoustic superlat-
tices with porous silicon [12].

From a more fundamental point of view, it is important
to determine whether the elastic properties of the nanometric
solid walls differ from the bulk properties. PoSi, which is a
single crystal, is a priori a good system since the nature of
the walls is perfectly known. However, its complex structure
precludes a quantitative conclusion regarding finite-size ef-
fects: it is likely that noninvariance along the pore axis has a
strong impact on the elastic properties of the porous matrix,
especially on E‖. Obtaining wall properties from those of the
matrix first requires to determine the pore geometry with a very
high resolution, better than in available data [6], and second
requires a full three-dimensional FEM. This is a difficult task;
a first step would be to study to what extent a modulation of the
pore size and/or wall thickness can account for the measured
values of E‖ and ν⊥. Another way to separate the contributions
of the wall properties and of the pore geometry would be to
perform a mild oxidation in order to change the hydrogen to
an hydroxyl termination. This would presumably modify the
effective modulus of the Si walls [37,39] without changing the
pore geometry very much.
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