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Apparent dewetting due to superfluid flow
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PACS. 68.08.Bc – Wetting.
PACS. 68.15.+e – Liquid thin films.
PACS. 83.10.Bb – Kinematics of deformation and flow.

Abstract. – We have investigated the wetting behaviour of superfluid helium-4 on silicon.
Surprisingly, we observe pseudo-dewetting: though a thick superfluid film covers the substrate,
the meniscus diplays a finite contact angle which decreases from about 5◦ at low temperature
down to zero at the superfluid transition. We show that this behaviour can be explained by a
pressure decrease due to a superfluid flow, closely related to the Kontorovich effect.

Wetting properties of superfluid helium-4 have been under intense investigation since the
theoretical prediction by Cheng et al. [1] that cesium is not wetted by helium-4 at low tem-
perature. After the first experimental check by Nacher and Dupont-Roc [2], the contact angle
at low temperature was found to range between 25◦ [3,4] and 48◦ [5]. More surprisingly, Alles
et al. have measured recently a small but finite contact angle during the spreading of 4He on
evaporated SiO2 [6]. Herminghaus suggested that this effect could be due to the Bernouilli
pressure [7]. This mechanism does not account for the contact-angle hysteresis observed by
Alles et al., and superfluid vortices are more likely to be responsible for this unconventional
non-wetting behaviour, as proposed by Luusalo et al. [8].

In this letter, we report on apparent dewetting of superfluid helium-4. This is a quite
unexpected situation where bulk liquid drops with a finite contact angle do coexist with
a thick liquid film. This pseudo-dewetting situation is qualitatively different from the one
observed by Alles. First, the value of the pseudo-contact angle θ is of the order of 5◦ at
T = 1.2 K, while Alles reports values below 1◦. Second, we do not observe any hysteresis. We
think that this pseudo-dewetting is due to a superfluid flow, as proposed by Herminghaus.
This flow is likely to be driven by residual temperature gradients in the experimental cell.
We show that the experimental data are consistent with a pseudo-dewetting due to a kinetic
effect, though a quantitative analysis leads to a critical superfluid flow larger than usually
reported.

Our experiments are performed in an optical helium-4 cryostat equipped with an inter-
ferometer, so that the meniscus profile can be obtained from the interference pattern. The
substrate is slightly tilted with respect to the horizon by an angle α, which can be varied be-
tween 1 and 10◦. Examples of interferometric images and profiles of the meniscus are shown
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Fig. 1 – Interferometric images and corresponding profiles of the meniscus (actual size: 3.2 mm ×
2.4 mm). Left: T = 1.15 K, α = 1.5◦, θ = 5◦, M2 substrate. Right: T = 2.0 K, α = 4.5◦, θ = 1.8◦,
M1 substrate. The dashed line in the images is the position of the pseudo-contact line. The solid line
is obtained by fitting the experimental profile with the exponential solution of eq. (1).

in fig. 1. Away from the pseudo-contact line, the height z(x) is very close to the equilibrium
profile (solid line in fig. 1) which is controlled by the balance between gravity and surface
stiffness:

0 = −ρgz + γ∂2z/∂x2 ; (1)

ρ is the liquid density, g is the acceleration of gravity and γ is the liquid-vapor surface tension
(the zero-temperature value of γ is 0.375 mN/m [9]). The capillary length is LC ≡ (γ/ρg)1/2 ≈
500µm. Note that the slope of the interface is small, so that the curvature can be approximated
by ∂2z/∂x2. The pseudo-contact angle θ is defined by extrapolating the equilibrium profile
down to the substrate. Close to the substrate, the meniscus matches smoothly a superfluid
film. The rounding of the meniscus at the pseudo-contact line changes from one image to the
other, because of residual vibrations and dust particles on the mirror. This blurs the edge
of the meniscus, and prevents us from analyzing the shape of the matching region. Though
the film is too thin to be measured, its presence is demonstrated by the fast formation of
large liquid drops on dust particles. On a non-wetted substrate, such drops condense from
the vapor phase, and their dynamics is much slower.

Two different runs have been performed. In the first one, the Si mirror (M1) was coated
by 40 atomic layers of cesium evaporated at 20 K. The Cs coating was presumably very rough
since it did not display any true dewetting. In the second one, we used a bare Si mirror (M2).
We have not measured any significant difference in the value of the pseudo-contact angle. We
have also checked that the value of θ is independent of the tilt α of the substrate. We could
not detect any hysteresis. θ has been measured as a function of the temperature T (fig. 2). We
find θ = 5.5◦ at T = 1.15 K; θ decreases with T and vanishes close to the superfluid transition
(Tλ = 2.17 K).

Such a behaviour has never been reported previously. We think that it is observed in
our experiment because of the thermal decoupling of the substrate: since earlier experiments
(see ref. [3]), the cell has been modified so that the bottom of the cell, where the substrate
lies, is now thermally decoupled from the cell walls. Thus the substrate is warmer than the



M. Poujade et al.: Apparent dewetting due to superfluid flow 839

0

1

2

3

4

5

6

1 1.2 1.4 1.6 1.8 2 2.2

Substrate M1
Substrate M2 (α=1.5˚)
Substrate M2 (α=5˚)

P
se

u
d

o
-c

o
n

ta
ct

 a
n

g
le

 (
d

eg
re

es
)

Temperature (K)

Fig. 2 – Temperature dependence of the pseudo-contact angle θ for various experiments. The solid
curve is the pseudo-contact angle induced by the Bernouilli pressure, assuming that the flow current
is equal to 2 × 10−8 m2s−1 at low temperature and varies like the superfluid fraction.

surrounding walls of the cell. The heat load to the substrate may have two different origins.
In a preliminary report [10], we had suspected 300 K black-body radiation and illumination
light to be responsible for heat absorption by silicon. However, we have added an IR filter
without changing the situation. We have observed that the residual gas in the vacuum can
is responsible for a heat leak between the cell and the 4 K thermal shield. The total heat
input on the substrate is difficult to estimate, and we can give only a lower bound of 150 µW.
At first sight, we thought that pseudo-dewetting was directly associated to some thermal
gradient in the substrate, since the substrate below the bulk superfluid is presumably colder
than the part of the substrate which is only covered by the film. It turns out that pseudo-
dewetting can also be observed when a small diameter laser beam causes localized heating of
the substrate (fig. 3). For a large enough heat input q̇, isolated droplets are stable. In this
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Fig. 3 – Image and profile of a sessile drop, which is stabilized with a localized heat source. The
contact angle is of the order of 4.5◦. Actual size of the image: 3.2 mm × 2.4 mm.
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Fig. 4 – A sessile drop repels the meniscus! When a laser beam hits the substrate close to the
meniscus, it creates a droplet and also causes a local increase in the flow outwards the meniscus. As a
consequence, the contact angle in A is larger than in B. The dashed circle corresponds to the position
of the laser spot. Actual size of the image: 3.2 mm × 2.8 mm.

case, the substrate covered by the droplet is warmer than the substrate covered by the film,
and the temperature gradient is opposite to the one existing in fig. 1. However, one finds
roughly the same pseudo-contact angle.

We propose the following interpretation. Because of the illumination or heat leaks, the
heating of the substrate is not homogeneous. This creates a superfluid flow towards the heat
sources, where the superfluid component is converted into normal fluid [11]. As long as the
heat input is small enough, the flow is non-dissipative, and there is no temperature gradient.
As suggested by Herminghaus, the superfluid flow decreases the pressure in the liquid and
leads to pseudo-dewetting. As the Bernouilli pressure is quadratic in velocity, this scenario
is consistent with a dewetting which does not depend on the direction of the flow. It is also
consistent with the surprising observation that a sessile droplet repels the meniscus (fig. 4).
When a laser beam hits the substrate close to the meniscus, it creates a droplet and also
causes a local increase in the flow outwards the meniscus. This leads to a local increase of θ.
Such a situation shows clearly that the slope of the interface is not sensitive to the direction
of the heat current. For an isolated droplet, the incoming flow can be easily estimated. The
typical heat input due to the laser beam is of the order of q̇ = 80µW for a droplet of radius
r = 0.6 mm. Assuming that the heat is carried away by evaporation at the surface of the
droplet, the flow divided by the perimeter is found to be: j � 7 × 10−9 m2/s. This value is
of the order of critical currents in films [11], so that finite-temperature gradients are likely to
exist at the substrate.

Let us show that the change in pressure due to superfluid flow can explain the measured
value of θ(T ). In the two-fluid model [11], only the superfluid component can flow in a
film, so that the change in pressure due to Bernouilli’s law is ∆p = −ρSv2

S/2, where ρS and
vSare, respectively, the density and the velocity of the superfluid component. For a film of
thickness h, the experimental relevant quantity is the total flow current j = (ρS/ρ)vSh, so that
∆p = − ρ2

2ρS
j2/h2. The effective disjoining pressure Π for a film of thickness h is the sum of

the usual van der Waals term and ∆p. This leads to a thinning of superfluid films, known as
the Kontorovich effect [12]. In this paper, we are interested in films whose thickness h varies
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Fig. 5 – Schematic profile of the meniscus. For z � 1µm, both van der Waals interaction and
Bernouilli pressure are negligible so that the profile is the same as the equilibrium one.

spatially. The experimental situation (see fig. 1) is rather complicated since the substrate is
not horizontal. Fortunately, θ is found to be independent of the tilt angle α (this will be
discussed later), so we shall assume α = 0 in the following analysis. Thus, the local liquid
thickness h is equal to the height z (fig. 5).

We can also safely assume that, for large x, the thickness z∞ is large enough to neglect
van der Waals and Bernouilli effects, so that bulk liquid-vapor equilibrium is achieved. The
equilibrium condition for the interface then reads

−ρgz∞ = −ρgz + γ∂2z/∂x2 +
C

z3(z/d)
− ρ2

ρS

j2

2z2
. (2)

The left-hand side is not zero because we have chosen z = 0 at the substrate. In the
right-hand side, the first two terms are the same as in eq. (1). The disjoining pressure is
the sum of the last two terms, respectively, the van der Waals potential and the Bernouilli
effect. This equation is basically the same as the one derived by Herminghaus (eq. (2) in [7]).
We have simply added the gravitational term, and we have used the retarded van der Waals
interaction (z−4 instead of z−3 behaviour) [13]. Indeed, the crossover between those two
behaviours occurs for a film thickness of the order of 10 nm, which is smaller than the typical
values of zf that we obtain. The values of the parameters C and d for helium on silicon can
be estimated from the work of Sabisky and Anderson [14]; one finds C = 4.9 × 10−22 J and
d = 14 nm. The only adjustable parameter is the flow current j, whose value is expected to
be of the order of 10−8 m2/s. Let us stress that eq. (2) is valid only if the temperature is
homogeneous. Strictly speaking, this may be false: we have shown previously that the value
of the superfluid current is of the order of critical currents in films. However, we have shown
that the temperature gradient itself does not seem to change the value of the contact angle.
It may happen that temperature gradients are localized in the region where the film is thin,
and not in the vicinity of the pseudo-contact line, where θ is measured. This is a reasonable
assumption, since it is known that the value of the critical current decreases when the film
thickness gets smaller than a few hundred ångströms [11]. In the following, we will also make
the assumption that j is constant: we neglect mass transport through the vapor phase. Once
more, this is certainly false at the scale of the whole cell, but this is reasonable in the vicinity
of the contact line.

The disjoining pressure is negligible compared to ρgz as soon as z is larger than the
crossover length H defined by ρgH = ρ2

2ρS

j2

H2 . With j = 10−8m2/s and ρS = ρ, one finds
H = 1.7µm. So one expects the profile z(x) to be nearly identical to the equilibrium one, as
soon as z is larger than a few micrometers. This is in agreement with the experiment (see
fig. 1). This also means that it is not useful to integrate exactly eq. (2), since the accuracy of
the profile measurement is not good enough to allow a comparison with the theoretical profile
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in the crossover regime z ∼ H . Solving eq. (2) in the limit z � H is sufficient to compute θ.
First, let us rescale x by x0 ≡ (γρz5

0)1/2/Cd and z by z0 ≡ (2CdρS)1/2/ρj (z0 is the thickness
of a homogeneous film at coexistence). One is left with

−δ = z′′ +
1
z4

− 1
z2

, (3)

where δ =
(
z∞x2

0

)
/
(
z0L

2
C

)
. Experimentally, z∞ is at most 50 µm (see fig. 1a); this gives

δ ≤ 6 × 10−4. In first approximation, one can set δ = 0, and one is left with an equation
which is easily integrated. At large z (z � z0), one finds that z varies linearly with x, so
that the profile displays a pseudo-cusp very similar to the one found by Herminghaus in the
non-retarded case. In this approximation, the minimum film thickness zf is equal to z0, and
is found to be of the order of 15 nm. The pseudo-contact angle θ is given by

tan θ =
21/4

31/2

[(ρ2/ρS)j2]3/4

(Cd)1/4γ1/2
. (4)

The change δθ in the contact angle due to the shift from coexistence δ can then be esti-
mated. A calculation analogous to Herminghaus’ leads to δθ/θ = −√

3δ. With z∞ ≤ 50 µm,
the relative change in the contact angle is at most 4% smaller than the uncertainty.

Let us now compare these predictions with experimental data. First, one finds that θ is
weakly sensitive to the parameters C and d characterizing the van der Waals interaction. This
is consistent with the fact that we measure the same contact angle on bare silicon and silicon
coated with cesium. We find also that the change in θ due to the shift δ from coexistence
is small. This shift is related to the asymptotic height z∞ of the bulk liquid with respect
to the pseudo-contact line. In our experimental setup, this height depends on the tilt α
of the substrate: z∞ varies from z∞ � θ LC for α = 0 (as in fig. 5) down to z∞ � 0 for
α = θ. Experimentally, we find that θ is not dependent on α; this is consistent with the
model which leads to a very small variation of θ in the experimental range for z∞. At low
temperature, the normal component of the superfluid is almost negligible and ρ � ρS. Then
eq. (4) provides a simple relation between θ and j. Using the experimental value θ = 5.5◦,
one finds j � 2× 10−8m2/s [15]. This is larger than the flow estimated from the heat balance
in the droplet case. This is not very surprising: the droplet case is certainly more complex.
Direct temperature effects could play a non-negligible role, as the size of the heat source (i.e.
the laser spot) is of the same order as the droplet diameter. What is more surprising is that
we find a value for j which is about 3 times larger than most of the values of critical flow
reported in the literature [11].

At this point, we have to emphasize that the measured value of the contact angle is not
sensitive to the heat input to the substrate: changes in the illumination intensity or in the
residual pressure of the vacuum cannot lead to measurable changes in θ. This is a strong
indication that the superfluid flow in the film is critical at some distance from the meniscus
(otherwise, one expects the superfluid flow to be proportional to the heat input [11]). In many
experiments, the critical flow is found to vary with temperature roughly like the superfluid
fraction ρS/ρ [11]. If we assume that, in our experiment, the flow reaches a critical value,
and that this critical value varies like the superfluid fraction, we obtain from eq. (4) that
the pseudo-contact angle θ varies roughly like (ρS/ρ)3/2. The corresponding variation of θ is
plotted in fig. 2. Our model and hypothesis account for the vanishing of θ at Tλ. A precise
comparison is difficult since our data are restricted to a limited range of temperature. It would
be interesting to check whether θ saturates below 1 K, as expected from the temperature
dependence of the superfluid fraction.
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Many features of the experimental data are satisfactorily explained by the simple model
originally proposed by Herminghaus and the assumption that the superfluid flow reaches a
critical value away from the pseudo-contact line. This assumption is consistent with the fact
that we have neglected the temperature gradient in the vicinity of the contact line. However,
a quantitative agreement requires that, in our experiment, the critical flow is larger than
usually reported for thin films. A precise test of the model would require a better knowledge
of the superfluid current j. This could be achieved by controlling the heat current and using
a subcritical flow, for which θ is expect to vary like j3/2.
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