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Spinodal decomposition can be observed only in systems whose dynamics are slow enough to

quench through the metastable region where the phase transition occurs by nucleation. We discuss

the capillary rise of a fluid in a cone inserted into a bulk fluid, with the wide end down. The rise

displays a first-order phase transition with a spinodal and is easily accessible both theoretically and

experimentally. VC 2011 American Association of Physics Teachers.
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I. INTRODUCTION

Two phases coexisting at a first-order phase transition have
equal free energies. If the thermodynamic conditions (such as
temperature or pressure) differ slightly from the conditions for
coexistence, the two phases remain local minima of the free
energy, but one phase will have a slightly higher free energy
than the other: this phase is metastable (see Fig. 1). Examples
of metastable states, such as a liquid superheated above its
equilibrium boiling point, are common. For the transition
from the metastable state to the stable state to occur, the sys-
tem must overcome a free energy barrier that must be over-
come by thermal fluctuations (for a superheated liquid, for
instance, these will be thermally excited density fluctuations).
Typically, the transition occurs by means of the formation of
a nucleus of the stable phase. For example, for a superheated
liquid, the minimum work needed to form a bubble of radius r
has a positive contribution proportional to r2, due to the cost
of creating the bubble’s surface, and a negative contribution
proportional to r3, due to the energy gained from converting
the interior of the bubble to the stable vapor phase. For small
r, the surface tension term dominates, and thus the bubble
shrinks; the nucleus must be above its critical size before it
can grow, as illustrated in Fig. 2. The energy of the critical nu-
cleus is the free energy barrier.1–3

Far from the equilibrium coexistence curve, one of the
phases ceases to be a local minimum of the free energy, and
is no longer metastable, but becomes unstable. In this case,
there is no energy barrier to the phase transition, and the
transition takes place due to the growth of fluctuations at
some characteristic (usually microscopic) length scale. The
locus of points at which the metastable phase passes into
instability forms a curve in the thermodynamic plane called
the spinodal,4 as illustrated schematically in Fig. 1(a). (The
spinodal is not a thermodynamically sharp transition except
in the mean-field limit. When the energy barrier for decay of
a metastable state is on the order of kBT, the lifetime of the
metastable state is too short for its free energy to be well
defined, and the thermodynamic description is not self-
consistent.5)

If the system is quenched rapidly enough, it is possible to
avoid nucleation and go into the unstable region of the phase
diagram. Examples include the separation of glassy solutions
and metal alloys,6 and polymer blends with immiscible com-
ponents.7 When the phase transition involves chemical sepa-
ration of immiscible components, as in these examples, it is
called spinodal decomposition, which can be used to produce
metals and ceramics with nanoscale porosity, which have im-
portant uses such as catalysis and filtration.8

In this paper, we discuss a system consisting of a liquid
rising in a cone by capillarity. This system provides a con-
crete illustration of these ideas and is accessible both experi-
mentally and theoretically to undergraduate physics majors.

II. CAPILLARY RISE IN A CONE

In the usual case of capillary rise in a cylindrical tube, the
position of the meniscus is determined by minimizing the
free energy of the system, which is the sum of the gravita-
tional potential energy and a term due to surface tension.9

For capillary rise in a tube of non-uniform cross section,
another term arises from the minimization of the free energy.
Where the tube narrows, the surface area A and the surface
free energy of the meniscus are both reduced, leading to a
force proportional to the derivative of the cross section with
height @A/@z, which moves the meniscus in the direction of
smaller cross section.

To make these ideas concrete, we consider the energy of
the system consisting of a cone with a liquid rising in it, as
shown in Fig. 3. We define H to be the height of the apex of
the cone above a liquid bath, a the half-angle of the cone, w
the contact angle of the liquid, and h the height of the menis-
cus with respect to the bath. (The contact angle, the angle at
which the free surface of a liquid meets the surface of a solid
when they are in contact, depends on the materials involved,
and is governed by the Young-Dupré law.10) It will be con-
venient to study the energy of the cone with the meniscus at
height h, compared to the energy of the cone when it is com-
pletely filled, as a function of the distance from the meniscus
to the tip of the cone, Dh¼H – h. Lowering the liquid level
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from the tip to the height h will cost the energy of baring the
wall surface at the top of the cone, and creating the free sur-
face of the liquid; both terms are proportional to some sur-
face area, and thus are proportional to Dh2. In contrast,
lowering the liquid gives a gravitational potential energy
gain which varies as the volume of the liquid lowered, times
the distance it is lowered; thus we expect a potential energy
gain that varies roughly as Dh3(H – Dh). For sufficiently
small Dh, the surface tension term wins, and the meniscus
will be drawn up to the apex of the cone, as was noted by
Tsori.11 This transition is not restricted to conical geometry,
and can arise whenever the cross section of the capillary is
not constant. The transition is analogous to the phenomenon
of capillary condensation in porous media or wetting transi-
tions in confined geometries, because both transitions origi-
nate from competition between potential energy (here,
gravity) and interfacial tension energy.12

Based on the preceding physical arguments, we expect
that the form of the free energy of the system is given by

E

clvL2
c

¼ A

4

Dh

Lc

� �4

þB

3

H

Lc

� �
Dh
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� �3
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2

Dh
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; (1)

where we have expressed all lengths in terms of the capillary
length, which is the characteristic length scale for problems
in hydrostatics involving gravity and surface tension.13 The

capillary length is given by Lc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
clv=qg

p
, where clv is the

liquid-vapor surface tension, q is the liquid density, and g is
the acceleration of gravity. The characteristic energy scale is

clvL2
c . Hereafter, we choose units such that clvL2

c ¼ 1 and
Lc¼ 1.

In Appendix A, we show that the expansion in Eq. (1) is
exact in the approximation that the meniscus is spherical and
calculate the coefficients A, B, and C explicitly (they depend
only on the half-angle of the cone a and the contact angle w.)
For the physically relevant range of parameters, A> 0 and
B< 0; C> 0 if w<p /2, but may have either sign, depending
on the value of a if w> p/2. In Appendix B, we investigate
the validity of the approximation that the meniscus is
spherical.

Equation (1) can be generalized to the case where the
pressure in the open space at the tip of the cone exceeds
the pressure over the external bath by an amount DP (as in
the classical problem of a cylindrical barometer). The work
done by the gas on the meniscus when it moves can be taken
into account by a term –DPVopen in the free energy, where
Vopen is the volume of the open space. Because Vopen ! Dh3,
this term has the same effect in Eq. (1) as offsetting H by a
constant. We take DP¼ 0 (equal pressure inside and outside
the cone) in what follows.

We now turn to the solution of the problem posed by the
minimization of the free energy in Eq. (1). The equilibrium
positions of the meniscus are determined by the condition
that the generalized force Fgen¼ –@E/@Dh equals zero,

Fgen ¼ �ADh3 � BHDh2 � CDh ¼ 0; (2)

Fig. 3. Capillary rise in a cone. The liquid is indicated by shading. H is the

height of the cone’s apex above the bulk liquid surface, h is the height of the

meniscus, hC is the height of the contact line, rC is the radius of the contact

line, a is the half-angle of the cone opening, w is the contact angle of the liq-

uid, Dh is the distance from the bottom of the meniscus to the tip, RS is the

radius of the spherical meniscus, and RC is the distance from the contact line

to the tip.

Fig. 1. (a) Phase diagram in the pressure–temperature plane showing the va-

porization curve (solid) and the spinodal lines (dashed). At coexistence

(point 1), the liquid and vapor are in equilibrium. When the liquid is slightly

superheated (point 2) it is metastable; beyond the spinodal (point 3), the liq-

uid is unstable. (b) The Landau free energy X as a function of density for

values of p and T corresponding to the same three points shown in (a). At

coexistence (1), both the equilibrium vapor density qv and liquid density q‘
represent minima of X (and hence are stable states), with equal free energy.

If the liquid is slightly superheated (2), both liquid and vapor are local min-

ima of X, but only the vapor phase is stable (the liquid is metastable).

Beyond the spinodal line (3), the free energy has only one minimum, and the

liquid state is unstable.

Fig. 2. Minimum work required to form a bubble nucleus as a function of

its radius. Below a critical radius rc the nucleus shrinks instead of growing.

Ecr is the free energy barrier which must be overcome by thermal fluctua-

tions so that the nucleus can grow.
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which has one or three real roots, depending on the discrimi-

nant D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBHÞ2 � 4AC

q
, as shown in Fig. 4. One root is

Dh¼ 0, which corresponds to the cone being completely
filled. The other two roots are

Dh� ¼
�BH � D

2A
: (3)

The condition for equilibrium to be stable is that the energy
be a minimum, @2E/@Dh2> 0. For the root Dh¼ 0,
@2E/@Dh2|Dh¼ 0¼ 2C. For the other roots, we have

@2E

@Dh2

����
Dh�

¼ DðD� BHÞ
2A

: (4)

We first consider C> 0, which is the case if the contact angle
w< p/2 (see Fig. 4). If C> 0, the totally filled cone (Dh¼ 0)
is always stable. Because BH< 0 and 0<D< –BH, we find
that the root at Dhþ is always stable, and Dh- is unstable. The
free energy in the state Dh- is a maximum, not a minimum,
and corresponds to the free energy barrier for the transition
between the two stable states. This barrier vanishes when the
state Dhþ ceases to be a local minimum, which occurs when
D¼ 0, which is thus a spinodal in this mean-field model. The
height of the cone at the spinodal is given by

Hsp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4AC=B2

p
: (5)

As the system approaches the spinodal, the free energy bar-
rier vanishes as DE � 4

3
jBj3=2C5=4A�7=4ðH � HspÞ3=2

. At the
spinodal, the height of the meniscus is given by

Dhsp ¼
ffiffiffiffiffiffiffiffiffi
C=A

p
: (6)

Finally, we ask which root is globally stable, Dh¼ 0 or Dhþ.
The crossover point occurs when E(0)¼E(Dhþ), which

occurs when the cone is at height Heq �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9AC=2B2

p
.

As we lower the cone slowly into the liquid, we trace out
the heavy solid curve in Fig. 4 if the meniscus is always in
equilibrium, with the meniscus jumping to the top of the
cone at the point labeled EQ, which is the coexistence point.
For a macroscopic system, the barrier for the jump is large
compared to kBT (clvL2

c=kBT is on the order of 1010 for our
system), and we should be able to come close to the spinodal
Hsp before jumping to the filled cone at the point labeled SP
(the dashed arrow in Fig. 4).

In principle, there is no spinodal for the reverse jump
when the cone is drawn out of the liquid. The reverse jump
will occur when the cone has been drawn high enough that
the energy barrier for forming a gas bubble at the tip of the
cone is small enough to be overcome by vibrations or other
perturbations of the system. In our experiment the tip of the
cone is cut off, and hence the cone is not quite in the stable
minimum represented by Dh¼ 0 when it is filled, and the
“filled” state may become unstable at some point as the cone
is raised slowly out of the bath.

If C< 0, which may occur if w> p/2, then the totally filled
cone (Dh¼ 0) is always an unstable state. The discriminant

Fig. 4. (a) The energy as a function of the meniscus height h, expressed in units of the capillary length Lc, for various values of the cone height H. (The curves

are offset vertically for clarity.) When the position of the cone is above the equilibrium point (H>Heq), the energy has two local minima: the partially filled

cone is stable and the filled cone is metastable. When the cone is at the equilibrium point (H¼Heq), the partially filled cone and the completely filled cone

have equal energies. When the cone is between the equilibrium point and the spinodal (Hsp<H<Heq), the filled cone is the stable state, and the partially filled

cone is metastable. If the cone is lower than the spinodal (H<Hsp), the only stable state is the filled cone. (b) The equilibrium heights of a wetting meniscus

(contact angle w¼ 0) in a cone of half-angle a¼ 12�. The heavy solid line shows the globally stable root of Eq. (2), the light solid line is locally stable, and the

dashed branch is unstable. As the cone is lowered in the liquid, EQ indicates the point where the meniscus would jump to the top of the cone if the system

were always in the state of lowest energy. In practice, the energy barrier is too high for the jump to occur at EQ, and the meniscus may not jump until the sys-

tem reaches the spinodal at SP.
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D is always real and greater than BH, so that both Dh� are
real. However, Dh–< 0, so this root is not physical. The state
Dh¼Dhþ is stable and is the only allowed state. For such
non-wetting surfaces, there is no attraction to draw the me-
niscus to the apex of the cone.

III. EXPERIMENT

The transition of the meniscus height is easily observed by
dipping a transparent cone into a liquid, as illustrated in Fig.
5. (The cone may be dipped by hand, with care.) Alterna-
tively, the cone may be fixed and the level of the liquid
raised. The tip of the cone must be open to allow air to
escape as the cone is dipped into the liquid bath. A plastic
pipette cap with the tip cut off is suitable, or a cone may be
cast in transparent polydimethysiloxane (PDMS) on a
machined metal cone in a rectangular external mold.

Suitable liquids include isopropanol, silicone oil (Rhodor-
sil V50), and tetradecane, which wet the cone materials (con-
tact angle w¼ 0). The experiment would be difficult to
perform with non-wetting liquids, because the meniscus
would be pinned on any defects in the surface of the cone.
The capillary length Lc¼ 1.48, 1.64, and 1.88 mm for sili-
cone oil,14 isopropanol,15 and tetradecane,15 respectively. If
PDMS cones are used, they should be immersed in the liquid
for at least 5 days before experiments are made, because
PDMS is a highly porous material that absorbs a large
amount of liquid. During swelling, large deformations occur,
and the apparent contact angle is nonzero. If the polymeriza-
tion is homogeneous, the shape of the cone is not modified,

although the increase in linear dimensions is of the order of
15%.

Some other precautions must be taken to ensure reproduci-
bility of the experiment. The cone must be lowered (or the
liquid level raised) slowly to ensure that the meniscus is in
local equilibrium. If the rate of descent is too fast (5 lm/s or
more), viscous effects make the position of the mensicus lag
behind the equilibrium position. Furthermore, for isopropa-
nol/plastic and tetradecane/PDMS, we have observed that
the meniscus sticks at certain points in some of our cones.
For these materials it might be that the liquid does not wet
the cone perfectly (the contact angle w is small but not
exactly zero), so the meniscus can be temporarily pinned on
defects in the cone’s surface. As long as the jump does not
take place near a sticking point, and the cone is lowered
slowly enough, the position of the jump is reproducible for
most of our cones to within 10 lm from run to run–a negligi-
ble error compared to the uncertainty of the position of the
cone tip.

Some typical results are presented in Figs. 6–9. In these
experiments, the cone is dipped slowly into the liquid bath
using a computer controlled translation stage at rates from
0.2 to 10 lm/s. The position of the meniscus is determined
directly from video images. The height h of the meniscus
must be measured with respect to the height of the liquid
bath, which varies during the experiment due to the volume
of the fluid displaced by the cone as it descends. The height
of the free surface is measured by looking at the meniscus
outside the cone or, as illustrated in Fig. 5, by observing the
capillary rise h0 in a straight cylindrical capillary of known
radius r using Jurin’s law,16 h0¼ 2Lc

2/r. The height of the
apex of the cone H is initially determined by extrapolating
the sides of the cone in the image. When the cone is in
motion, the displacement of the apex is determined from the
position of the translation stage. The extrapolation is
the largest source of error in the experiment, especially when
the half-angle a of the cone is small and the cone is cut far
from the apex. For our experiments in a cone made from a
plastic pipette cap, the extrapolated position of the apex may
be off by a constant as large as 0.5 mm. For the PDMS cone
the uncertainty is smaller by a factor of 2.

Figure 6 illustrates the effect of dipping a plastic cone
(a¼ 5.5�) into isopropanol. For up to 53 s, the meniscus
gradually rises as the cone descends. After 55 s, the meniscus
starts to ascend rapidly toward the tip of the cone. Therefore,
between these two frames the partially filled state has
changed from metastable to unstable.

Fig. 5. Experimental apparatus. A cone is lowered into a liquid bath; the

height of the meniscus in the cone (h) and the position of the bath level with

respect to the cone (H) are determined from optical images, or from the cap-

illary rise h0 in a straight capillary.

Fig. 6. A plastic pipette cap is slowly lowered into isopropanol. After 53 s, the meniscus starts to move toward the tip of the cone. Vertical scale: 7.1 mm
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Figure 7 illustrates the experimental results for silicone oil
in a PDMS cone with a¼ 12�. Because the main uncertainty
is locating the position of the tip of the cone and the reference
level of the liquid, we show in Fig. 8 the data for the cone de-
scending with an offset determined by fitting the data to the
prediction of Eq. (6) (the offsets are 0.32Lc in H and 0.44Lc

in h). Plotting the data on logarithmic axes shows that the
system comes within� 2.5	 10–3 Lc of Hsp before jumping.

The results for several values of a and combinations of liq-
uid and substrate are summarized in Fig. 9. The agreement
between theory and experiment is good, with the exception
of the data for isopropanol on the plastic pipette tip, where
the liquid may not be perfectly wetting.

IV. SUMMARY

Spinodal decomposition plays a role in many applications
of technological importance. We have presented a macro-
scopically observable experiment on wetting in a conical ge-
ometry, illustrating a first-order phase transition and a
spinodal point. Both experiment and theory for the wetting
system are accessible to undergraduates.17

A variety of avenues for further exploration of this inter-
esting system are available for advanced students. By impos-
ing vertical oscillations on the system, the susceptibility
@h/@H as a function of frequency can be measured. The reso-
nant frequency of the system vanishes at the spinodal, and
the DC susceptibility diverges. A white noise source would
model the effects of temperature.
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APPENDIX A: THE ENERGY OF A PARTIALLY FILLED
CONE

The energy difference between a partially filled cone
and a completely filled cone can be calculated as follows.
Let H be the height of the cone, a its half-angle, w the

Fig. 9. Measurements of the height of the cone at the spinodal, Hsp (solid

symbols), compared to the prediction of Eq. (5) (solid curve), and measure-

ments of the height of the mensicus at the spinodal, hsp (open symbols),

compared with the prediction of Eq. (6) (dashed curve), as a function of the

half-angle of the cone, a. Circles: tetradecane/PDMS; squares: isopropanol/

plastic; triangles: silicone oil/PDMS. The error bars are comparable to the

size of the symbols.

Fig. 7. The meniscus height as a function of cone position as measured for

silicone oil in a PDMS cone of half-angle a¼ 12� (every third point is

shown for clarity). Filled circles: cone descending (decreasing H); open

circles: cone ascending (increasing H). The height of the meniscus in the

“filled cone” state is not equal to the height of the cone, because the tip of

the cone is truncated.

Fig. 8. The meniscus height as a function of the cone position as measured

for silicone oil in a descending PDMS cone of half-angle a¼ 12�. The

circles show the same data as in Fig. 7, offset by a constant to match the cal-

culation (inset). The main graph shows that the meniscus approaches within

2.5	 10–3 Lc of the spinodal before jumping, and that the critical behavior

at the spinodal matches the calculation.
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contact angle of the liquid, and h the height of the meniscus,
as shown in Fig. 3. It is convenient to determine the energy
in terms of the distance of the meniscus from the apex,
Dh¼H – h. We start with the assumption that the meniscus
is spherical (we will show in Appendix B that this assump-
tion is very good) and has radius RS. In that case, it is useful
to note that the open volume above the meniscus scales in
proportion to Dh3, but does not change shape when the me-
niscus moves.

The cost of creating the free surface of the liquid and
baring part of the cone wall is

Esurface ¼ clvAl þ ðcwv � clwÞAw; (A1)

where clv, clw, and cwv are the liquid-vapor, liquid-wall, and
wall-vapor surface tensions, respectively, and Al and Aw

are the surface areas of the meniscus and of the bare
part of the cone wall. The Young-Dupré law10 yields
(cwv – clw)¼ clvcos w. The surface areas are given by
Al ¼ 2pR2

S½1þ sinða� wÞ
, where Aw ¼ pR2
Csin a, and RC is

the distance from the tip of the cone to the contact line, as
illustrated in Fig. 3. The geometry of Fig. 3 gives
RC¼RScos(a–w)/sina and RS¼Dh/(1þ cosw/sina). Note
that Esurface is proportional to Dh2.

The gain in gravitational potential energy due to lower-
ing the meniscus from the top of the cone to height h is given
by

Egrav ¼ �
ð

Vopen

qgzdV ¼ �qg

ðH

h

pr2zdz; (A2)

where q is the density of the liquid (minus the density of the
gas, if the latter is non-negligible), Vopen is the open volume
above the meniscus, and r(z) is the radius of the open volume at
height z. From the geometry, r2 ¼ R2

S � ðRS þ h� zÞ2 for
h< z< hC and r¼ (H – z)tana for hC< z<H, where hC is the
height of the contact line, given by hC¼ hþ RS[1þ sin(a–w)].
If we change the variable of integration in Eq. (A2) to
z0 ¼H – z, where z

0
measures the height downward from the tip

of the cone, then

Egrav ¼ �
ð

Vopen

qgðH � z0ÞdV

¼ qg

ðDh

0

pr2z0dz0 � qgH

ðDh

0

pr2dz0: (A3)

The first term on the right-hand side of Eq. (A3) is propor-
tional to Dh4 and the second to HDh3.

If we add Eqs. (A1) and (A3), we find that the energy
difference between the partially filled cone and the com-
pletely filled cone is given by

E

clvL2
c

¼ A

4

Dh

Lc

� �4

þB

3

H

Lc

� �
Dh

Lc

� �3

þC

2

Dh

Lc

� �2

; (A4)

where Lc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
clv=qg

p
, and the coefficients A, B, and C are

given by

A ¼ p sin2 a

6 1þ sinðaþ wÞ½ 
2
f7þ 2 cosð2aÞ � cos½2ða� wÞ


� 2 cosð2wÞ � 4 sinða� wÞ þ 8 sinðaþ wÞg; (A5)

B ¼ p sin2 a

2 1þ sinðaþ wÞ½ 
2
½cosð2wÞ þ sinða� wÞ

� 3 sinðaþ wÞ � 3
; (A6)

and

C ¼ 2p½2þ 2 sinða� wÞ þ cos2ða� wÞ cos w= sin a

ð1þ cos w= sin aÞ2

:

(A7)

In the wetting case (contact angle w¼ 0), Eqs. (A5)–(A7)
simplify (the derivation is simplified if we make this assump-
tion from the start),

A ¼ p sin2 að3� sin aÞ
3ð1þ sin aÞ ; (A8)

B ¼ � p sin2 a
1þ sin a

; (A9)

and

C ¼ 2p sin a: (A10)

From the form of Eq. (A3), it is clear that for the physically
relevant range of parameters, 0 <a<p /2, 0 <w<p, A> 0,
and B< 0, the coefficient C> 0 in the wetting case (w¼ 0).
Numerical investigation of Eq. (A7) shows that C> 0 for all
contact angles 0<w< p /2. For contact angles w>p /2, C
can have either sign (note that @C=@aja¼0 ¼ 2p cos w).

APPENDIX B: THE EXACT SHAPE OF THE MENISCUS

Here, we discuss the assumption made in Appendix A
that the meniscus is spherical in shape, which is valid if the
meniscus is not too large compared to Lc. However, near the
spinodal, the size of the meniscus is comparable to Lc, and
the approximation must be checked. The exact shape, illus-
trated in Fig. 10(a), is governed by the Laplace equation,
which for a surface of revolution can be written as

2	mean curvature ¼ d/=dsþ sin /=r ¼ z=L2
c ; (B1)

where r and z are the coordinates of the surface in cylindrical
coordinates (z measured from the bulk liquid surface), / is the
angle between the local surface normal and the vertical direc-
tion, and s is the arc length along the meniscus. Equation (B1)
can be integrated numerically using the parametric equations:
dr/ds¼ cos/, dz/ds¼ sin/, and d/=ds ¼ � sin /=r þz=L2

c .
The integration starts at the bottom of the meniscus, with z
equal to some arbitrary h and r¼ 0, and the initial conditions
given by the requirement that the two curvatures start out equal
at the bottom of the meniscus for a surface of revolution:
d//ds¼ sin//r¼ h/2 (thus / also has an initial value of 0). The
integration ends when the meniscus is tangent to the cone, that
is, when /¼ aþ p/2 (see Fig. 3). The terminal point of the
integration is the position of the contact line (hC, rC) shown in
Fig. 3. The height of the apex H is determined by extrapolating
the tangent line back to r¼ 0, that is, H¼ hCþ rC/tana, as illus-
trated in Fig. 10(a). The value of the cone height H determined
by this procedure from the starting meniscus height h is plotted
in Fig. 10(b). The result is double-valued, corresponding to the
stable and unstable roots h�. (The integration of the Laplace
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equation does not yield any results for non-equilibrium posi-
tions of the meniscus, because the shape of the meniscus it
describes is an extremum of the free energy, and can be derived
from a variational principle.18 It is nevertheless unusual that
Laplace’s equation can be used to find unstable equilibrium
positions of the meniscus, as approximated by the root h-.) It
can be seen that the spherical approximation accurately predicts
the capillary rise near the spinodal, but it is less valid far from
the spinodal (for instance, the spherical approximation implau-
sibly predicts h< 0 for H� Hsp).
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Fig. 10. The effect of approximating the shape of the meniscus by a sphere for a cone of half-angle a¼ 30� and contact angle w¼ 0. (a) The light solid line

shows the shape of the meniscus (height as a function of radius on a 1:1 scale) calculated from Laplace’s equation, taking capillary forces and gravity into

account exactly (light solid curve); the dashed line shows the spherical approximation. The side of the cone is drawn as a heavy solid line. (b) A plot of the

equilibrium meniscus height as a function of cone position shows that near the spinodal, the spherical meniscus approximation (dashed curve, representing the

meniscus positions h�) is close to the results of the numerical integration of the Laplace equation (solid curve).
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