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Cavitation in superfluid helium-4 at low temperature
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Abstract. We have studied the nucleation of bubbles in pure superfluid helium-4 at temperatures down
to 65 mK. We have found that the nucleation is a stochastic process, and that at temperatures below 600
mK the nucleation rate is independent of temperature. These results are consistent with the assumption
that the nucleation takes place via quantum tunneling.

PACS. 67.20.+k Quantum effects on the structure and dynamics of nongenerate fluids (e.g., normal phase
liquid 4He) – 47.55.Bx Cavitation – 64.60.Qb Nucleation

1 Introduction

The liquid-gas transition is a first order phase transition.
It follows that there is an energy barrier to overcome for
the nucleation of the gas phase, and consequently liquids
exist below their saturated vapor pressure Psv for a cer-
tain time before nucleation of the gas phase takes place.
If special care is taken with purity and container walls,
liquids can be stressed down to large negative pressures,
i.e. far below Psv, before cavitation occurs. A spectac-
ular example is water which has been stressed down to
−1000 bars [1]. However, there is an absolute limit known
as the “spinodal line” for the metastability of a liquid.
This is the spinodal pressure Psp, or spinodal density ρsp,
where the compressibility diverges. Indeed, as one applies
an increasing stress to a liquid, one works against the in-
ternal forces which are responsible for the liquid cohesion;
these cohesive forces decrease with distance so that, as
the density decreases, one has to reach a point where the
liquid breaks, i.e. where the gas phase appears. Since the
spinodal pressure depends on temperature, the spinodal
lies on a curve in the phase diagram in the (P, T ) plane.
Spinodal lines exist for all first order phase transitions,
and the question “how close can one approach the spin-
odal line?” is much more general than a problem just re-
lated to the stability of a liquid. However, the liquid-gas
spinodal and the nucleation of the gas from the liquid is
of special interest because the liquid-gas transition is the
simplest type of first-order phase transition. In addition,
cavitation in liquids is an important practical problem in
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modern hydraulics, which is still without complete under-
standing [2].

On the spinodal line, the compressibility is infinite,
the sound velocity is zero, there is no energy barrier be-
tween the liquid and the gas phase, and the liquid is totally
unstable. For pressures slightly positives with respect to
the spinodal (P > Psp), the energy barrier against nu-
cleation of gas is finite, but at finite temperatures it can
be overcome as a result of thermal fluctuations. This pro-
cess is often referred to as thermal nucleation. Because
of this thermal nucleation, the spinodal line can only be
approached in experiments performed at very low tem-
peratures. However, for most liquids such experiments are
impossible because the liquid solidifies. From this point
of view, liquid helium is a very interesting exception. Due
to the small mass of a helium atom and to the weakness
of attractive forces between atoms, liquid helium is stable
down to absolute zero and only freezes above a pressure of
+ 25 bars [3] . Furthermore, at 2.17 K a transition takes
place to a superfluid quantum state with no viscosity and
infinite thermal conductivity. This superfluid liquid can be
easily prepared in a very pure state, and has been so well
studied and modelled that the spinodal limit at T = 0 can
be accurately predicted. Sound velocity extrapolations [4],
sophisticated density functional calculations [5], as well as
Monte Carlo simulations [6] have shown that, at T = 0,
the spinodal point is close to − 9.5 bars. At this pres-
sure, Maris [4] predicts that the spinodal density ρsp is
about 0.095 g cm−3, significantly less than 0.145 g cm−3,
the liquid density at P = 0 and T = 0. It is thus an ex-
perimental challenge to determine if superfluid helium at
very low temperature can be stressed down to pressures
in the vicinity of Psp.



382 The European Physical Journal B

It is also expected [7–9] that nucleation of the gas can
occur via quantum tunneling through the energy barrier:
the quantitative prediction [8,9] is that, at a pressure a few
tenths of a bar higher than Psp, a macroscopic quantity of
liquid helium can tunnel from a metastable state with a
reduced homogeneous density to an inhomogeneous state
with an essentially empty cavity of the volume of the order
of 1000 atoms. Liquid helium thus offers a unique oppor-
tunity to approach the spinodal limit as closely as possi-
ble, and, in the vicinity of the spinodal, one should ob-
serve a spectacular and macroscopic quantum effect. The
probability for this “quantum cavitation” was calculated
[8,9], and the crossover temperature T ∗ from quantum to
thermal cavitation was estimated to be about 200 mK.

In this paper we describe in detail an experiment which
was designed to look for quantum cavitation. It was actu-
ally started in our laboratory by Pettersen, and an article
describing results at high temperature (T > 0.8 K) has al-
ready been published [10]. As we shall explain below, our
new results are consistent with the prediction of quantum
tunneling close to the spinodal limit. We have considered,
and ruled out to a reasonable degree of certainty, various
possible artefacts which could mimic quantum cavitation.

2 Experiment

The experimental cell is attached to the mixing chamber
of a dilution refrigerator. This cell has previously been
used for the study of the surface of helium crystals [11].
The cell has four large windows providing optical access
in two perpendicular directions. A limiting temperature of
20 mK can be reached as a result of the careful control of
thermal radiation. We produce large pressure oscillations
in superfluid helium by focusing ultrasonic waves, and we
detect cavitation by light scattering, as previously done
by Nissen et al. [12].

2.1 Acoustic transducer

The sound waves are generated by a hemispherical piezo-
electric transducer or “ceramic” [13] with an inner radius
rtran of 8 mm and a wall thickness of 2 mm. It resonates
in a thickness mode at a frequency close to 1 MHz. At the
acoustic focus, the local pressure oscillates by several bars
around the static pressure Pstat in the cell. This acoustic
focus is very close to the center of the hemisphere [14]. Its
typical size is half of the wavelength of the acoustic wave,
i.e. ∼ 0.12 mm at this frequency and near Pstat = 0. The
transducer sits on three horizontal wires, with its concave
side facing down. Attenuated light from a 10 mW He-Ne
laser is focussed onto the acoustic focus and then, after
going through the cell, is detected by a photomultiplier.
To enable the light to reach and to leave the acoustic fo-
cus two small slits have been cut in the lower rim of the
transducer. These slits are about 1 mm by 1 mm. They
are large enough to pass the light beam, but still suffi-
ciently small that their effect on the acoustic modes of
the ceramic is unimportant.

We used pulses of sound with a duration between 30
and 70 µs and a repetition rate in the range 0.1 to 1 Hz.
As described in the next section, one of our main obser-
vations was that cavitation was stochastic: some sound
pulses produce cavitation, some do not. By counting cav-
itation events, we measure how the cavitation probability
depends on the sound amplitude, and repeat this measure-
ment for different static pressures and temperatures. For
measurements of the cavitation probability to be of value,
it is necessary for the wave amplitude to be constant from
one pulse to the next.

2.1.1 The generator

To generate the pulses we used a low level RF generator
(Toellner model 7711) followed by a power amplifier. The
amplifier was made in our laboratory and used an APEX
type PA09 chip. In a push-pull operating mode, this am-
plifier could deliver an RF pulse of amplitude 70 V, i.e. an
average power of 50 W in 50 Ω. For an accurate measure-
ment of the cavitation probability, we needed to stabilize
the amplitude of the RF pulse applied to the transducer.
The power amplifier was enclosed in a box with temper-
ature regulation. The RF pulse was measured by a digi-
tal oscilloscope (Tektronix model 2221A) before and after
each measurement of the nucleation rate. To improve the
base resolution of the oscilloscope (8 bits), the RF pulse
waveform was fit to a sine function. This procedure gave a
resolution of one part in 104 for the amplitude and the fre-
quency. The fluctuation in amplitude from pulse to pulse
was of the order of 0.1%, and the long term drift in the
amplitude was typically about 0.1% per hour. Since we
observed that the cavitation probability goes from 0 to 1
in a voltage interval of about 2% of the cavitation voltage
itself, the stability of the electronic system was adequate
for the purposes of the experiment.

2.1.2 Resonance frequencies

As a first step towards the analysis of the transducer
we measured its electrical impedance as a function of
frequency. The measured impedance revealed resonances
from a large number of modes. The fundamental thick-
ness mode is at ω0 ≈ 1 MHz, and the lowest frequency
breathing mode is at 100 kHz. An isolated resonance of a
transducer can be modeled by a capacitance C0 in parallel
with the three elements of a “motional branch”, a resis-
tance R, an inductance L and a capacitance C [15]. Thus
the impedance is given by the equation

1

Z
= iωC0 +

1

R+ i(Lω − 1/ωC)
· (1)

Since ωC0 is usually small compared to 1/R, the magni-
tude of the impedance can be approximated by

|Z| = R
[
1 + 4Q2

0(ω − ω0)2/ω2
0

]1/2
, (2)



H. Lambaré et al.: Cavitation in superfluid helium-4 at low temperature 383

1.008

1.009

1.01

1.011

1.012

1.013

1.014

0 1 2 3 4 5

R
E

SO
N

A
N

C
E

 F
R

E
Q

U
E

N
C

Y
 (

M
H

z)

TEMPERATURE (K)

Fig. 1. Resonance frequency of the transducer as a function
of temperature.
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Fig. 2. The cavitation threshold (in Volts applied to the trans-
ducer) as a function of frequency. This particular series of
measurements was performed with a pulse width of 70 µs, at
Pstat = 0.1 bar and Tstat = 250 mK.

where ω0 = (LC)−1/2 is the resonance frequency, and
Q0 = 1/RCω0 is the quality factor. We noticed that
even at temperatures of a few K, the parameters of the
transducer have a significant variation with temperature.
The resonance frequency of the transducer ω0, defined by
means of a fit to the measured impedance, was found to
vary by about 1.6 kHz per K (see Fig. 1). It was found
that there was a small but significant difference between
this frequency and the frequency ωc at which the voltage
required to produce cavitation was a minimum. Sample re-
sults of measurements of the frequency dependence of the
voltage required to produce cavitation are shown in Fig-
ure 2. In order to be able to study the variation of the cav-
itation threshold as a function of T , it was advantageous
to choose to work at the frequency ωc (1.019 MHz) which
gives a minimum cavitation threshold Vc for the lowest
temperature, rather than at the frequency at which the
electrical impedance was a minimum. This choice means
that a shift in the resonance frequency of the transducer
gives only a second order change in the sound amplitude,
rather than a first order effect.

2.1.3 Pulse width

The next problem was the choice of a pulse width τp. In the
experiments reported here we used much shorter pulses, 30
to 70 µs, than Pettersen et al. [10]. Short pulses were used
so that the total amount of heat deposited into the cell
is reduced, and so that heat dissipated in the transducer
cannot reach the acoustic focus in time to affect the nucle-
ation process. While investigating the effect of variation
in the pulse length we made the interesting discovery that
with sufficiently long pulses multiple cavitation events can
be seen. The time interval between two events was about
68 µs. We believe that the explanation of these observa-
tions is as follows. When the first cavitation event occurs,
a part of the sound pulse is reflected by the cavitation
bubble. The reflected sound returns to the transducer af-
ter a time rtran/c which is approximately 34 µs. It is then
reflected back towards the acoustic focus and arrives there
at 68 µs after the first cavitation event. If this reflected
acoustic wave arrives in phase with the waves arriving at
the same time and coming directly from the transducer
surface, there will be a sudden temporary increase in the
sound amplitude at the transducer focus. A second cav-
itation event will then take place. A reflection from this
second event can lead to a third event and so on.

2.1.4 Repetition rate

The repetition rate of the acoustic pulses was chosen
within the range 0.1 to 1 Hz. Since we usually counted
bubbles by watching oscilloscope traces, rather than by an
automated method, it was not convenient to use repeti-
tion rates larger than 1 Hz. Moreover, for the experiments
at the lowest temperatures, we had to be careful with the
energy dissipated in the cell. A pulse of amplitude 20 V
gave a dissipation rate inside the cell during the pulse of
2 W. Hence, for a pulse duration of 50 µs and a repeti-
tion rate of 1 Hz the average power is 100 µW. To make
measurements below 100 mK it was therefore necessary to
reduce the repetition rate below 1 Hz.

As well as considering the average dissipation it is im-
portant to consider what happens to the energy deposited
by each single RF pulse. Most of the pulse energy is dis-
sipated in the transducer either by the mechanical dissi-
pation or by dielectric loss. This changes the transducer
temperature. The heat capacity of lead zirconate has been
measured by Lawless [16]. Based on his results we esti-
mate that for a pulse of amplitude 20 Volts, duration 50
µs and total dissipation 1×10−4 J, the temperature of the
transducer rises to 3 K. If one half of this energy were im-
mediately released into the 1 cm3 volume of liquid inside
the hemisphere, it would raise the temperature to about
0.4 K. Fortunately, the heat release is delayed by the ther-
mal resistance of the ceramic material and by the Kapitza
resistance between the ceramic and the helium. The ther-
mal conductivity κ of lead zirconate between 2 and 4 K is
≈ 6.6×10−5T 2 W cm−1 K−1 [16]. Thus the thermal diffu-
sivity of the ceramic at 3 K is 4 cm2 s−1. The time for heat
to diffuse a distance of 1 mm is thus 2500 µs. Since the
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thickness of the transducer wall is 2 mm the fraction of the
heat which escapes into the helium during the period be-
fore the cavitation is observed will be very small. We have
performed a detailed calculation of the heat flow in the
ceramic, based on the assumption that heat is generated
uniformly throughout the thickness. For a drive time of
50 µs we find that the amount of heat which has escaped
from the inner surface of the transducer within the first
50 µs is less than 10−6 J. If this were distributed uniformly
through the liquid inside the hemisphere the temperature
would rise to around 180 mK; this rise would not appre-
ciably affect our experimental results. This calculation ne-
glects the effect of the Kapitza resistance at the boundary
between the ceramic and the helium, and inclusion of this
resistance would reduce the temperature rise. Since heat
must always travel more slowly than sound, heat which
escapes into the liquid after the end of the application of
the sound pulse cannot affect the nucleation process.

These considerations regarding the heat flow were the
reason for using short sound pulses, i.e. 30 to 70 µs.
Although it appears from the above discussion that the
pulses are sufficiently short that heating effects are not
of concern, it would certainly be of interest to perform a
systematic study to confirm that this is correct.

2.1.5 Amplitude of the pressure swing

In the vicinity of the operating frequency both the thick-
ness mode and high harmonics of the breathing mode are
excited. Because of the overlap of the thickness mode with
neighboring modes at nearby frequencies, it is not possi-
ble to calculate an exact value for the normal displace-
ment ζ of the transducer surface. Moreover, since the low
frequency breathing modes presumably have complicated
displacement patterns, ζ may vary by a significant amount
across the inner surface of the transducer. Despite these
difficulties, it is still interesting to make a rough estimate
of the magnitude of the pressure oscillation that would
arise at the acoustic focus if the thickness mode was the
only one excited. We have made a fit to the measured
impedance in the frequency range around the thickness
mode frequency using equation (2) with the parametersR,
Q0, and ω0 treated as adjustable parameters. The fit gives
Q0 = 121, R = 16 Ω, C = 81 pF, and ω0 = 1.014 MHz.
We can then calculate the displacement of the transducer
surface for an applied drive voltage of amplitude Vtran and
at the electrical resonance frequency ω0 [15]

ζ =
Vtran

8πω0R

√
RQ0

Mω0
, (3)

where M is the mass of the transducer (M = 7.5 g).
The voltage at the transducer is less than the voltage

V applied at the top of the cryostat because of the 44 Ω
resistance of the coaxial cable connecting the transducer.
Allowing for this effect we finally obtain the result that
the transducer displacement should be approximately 8 Å
for an applied voltage of 1 V. This occurs only after the
transducer has been driven for a time sufficient for the

amplitude to reach an equilibrium value, i.e. after a time
of order Q times the sound period. The characteristic time
for the transducer amplitude to build up should in prin-
ciple be affected by the impedance of the cable running
to the driving amplifier and by the output impedance of
the amplifier. However, we estimate that this time is ap-
proximately 5 µs, and hence is considerably less than the
duration of the applied pulses.

Given this displacement, we can try to estimate the
pressure swing ∆P at the focus. This is a very diffi-
cult problem because we are interested in pressure swings
which are so large that the liquid at the focus nearly
reaches the spinodal. As a consequence, the pressure swing
must be significantly affected by the non-linearity of the
sound propagation near to the focus. In addition, the mag-
nitudes of the positive and negative pressure swings will
differ. If the pressure swing is small, the positive and neg-
ative swings will be of the same size, and the amplitude
of these swings will be linearly related to the magnitude
|ζ| of the displacement at the transducer surface by [17]

∆P = |ζ|ρω2rtran, (4)

where ρ is the liquid density and rtran is the radius of the
hemispherical transducer. In liquid helium at low temper-
ature and in the absence of an applied static pressure,
ρ = 0.145 g cm−3, and equation (4) with rtran = 0.8 cm
then predicts that to have a pressure oscillation at the fo-
cus with an amplitude of 1 bar it is necessary to have a
displacement at the transducer surface of 22 Å. Thus to
produce a pressure swing of 9 bars, i.e. a swing sufficient
to reach to near to the spinodal, it should be necessary
to apply 23 Volts to the transducer. This result is in ex-
cellent agreement with the results of the experiments that
we present in Section 3, but this agreement is certainly
fortuitous because of the effect of non-linearity.

2.2 Light scattering

To detect the light scattered by cavitation bubbles we used
a photomultiplier tube (PMT) model R928 manufactured
by Hamamatsu. Through the use of a small load resistor of
1000 Ω and a short connection to our digital oscilloscope
via 50 Ω coaxial cables, we obtained an adequate sensitiv-
ity and a response time of less than 200 ns. In the absence
of cavitation, the density oscillation at the focus scatters
light through a small angle, typically 2 × 10−3 radians.
We will refer to the signal arising from this scattered light
as the acoustic signal. To measure the acoustic signal it
was convenient to use a photomultiplier tube with a small
diaphragm (0.5 mm) located at a small angle from the di-
rection of the unscattered part of the laser beam and 50
cm away from the cell. A typical resonse is shown in the
lower trace in Figure 3. This is the recording from a sin-
gle sound pulse of duration 30 µs without any averaging.
The acoustic signal begins at 33 µs which is the time it
takes the sound to travel the 8 mm from the transducer
surface to the focus at Pstat = 0.8 bar. Because of the
short response time of the PMT it is possible to observe
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Fig. 3. This signal is the output voltage on the photomulti-
plier tube (PMT) as a function of time after the application
of a driving voltage to the transducer. The lower trace shows
the light which is scattered by the high amplitude sound wave
at the acoustic focus (no cavitation in this case). This signal
is maximized by setting the diaphragm in front of the PMT
2× 10−3 radians away from the direct beam. The occurence of
cavitation is visible on the upper trace which shows two new
features. The feature at t = 60 µs results from the nucleation
of a bubble at the end of the sound pulse. The bubble gives
rise to additional light scattering. The feature at 126 µs is an
echo of the cavitation event. It corresponds to sound which is
reflected by the bubble back to the transducer and focussed
again. The temperature in the cell was 0.5 K and the static
pressure was 0.8 bar.

the fluctuations in the intensity of the scattered light that
take place at the frequency of the sound wave.

If cavitation occurs, the output of the PMT includes
an extra sharp feature arising from light scattered by the
nucleated bubble. An example of this is seen at around
60 µs in the upper trace in Figure 3. In this trace there
is a second feature at about 126 µs. This feature arises
from sound which is reflected from the nucleated bubble,
returns to the transducer, and then is reflected back to the
acoustic focus. Thus this feature is at a time of 2rtran/c ≈
66 µs after the light scattering from the bubble itself.

The light scattered by a bubble is deflected at a larger
angle than the light scattered from the density fluctuations
produced by the sound. Consequently it is also possible to
operate with a different detection scheme which empha-
sizes the signal from the bubble relative to the acoustic
signal (Fig. 4). To use this method the diaphragm is put
in the forward direction and its size chosen so that it cap-
tures nearly all of the light that is scattered by the sound
oscillations as well as the unscattered part of the laser
beam. Scattering from a bubble then gives a reduction
in the light passing through the diaphragm. Since a bub-
ble scatters light through an angle which is considerably
larger than the angle subtended by the diaphragm, one
can consider that in this geometry the bubble acts like an
opaque disc with the same radius as the bubble rbubble.
At the optical focus which is located close to the acoustic
focus, the laser beam has a Gaussian intensity profile pro-
portional to exp(−2r2/w2) where r is the distance from
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Fig. 4. Another recording of the light scattered by the sound
wave (lower trace) and by two cavitation events (upper traces).
Contrary to the previous figure, this recording is obtained with
the PMT in the direct beam, so that the cavitation signal cor-
responds to all the light missing in the forward direction. Here,
the temperature in the cell is 100 mK and the static pressure
is 25 mbars only so that the life time of bubbles is much larger
than in the previous case. The largest bubble nucleates one
sound period earlier than the other one. In both cases, the col-
lapse of the bubble gives birth to a second bubble with smaller
size and energy.

the center of the beam and the beam waist is w = 156 ±
2 µm. The signal from a bubble located at the center of the
laser beam is thus S(rbubble) = S0[1− exp(−2r2

bubble/w
2)],

where S0 is the signal in the absence of bubble. Hence
from a measurement of the reduction of the PMT signal
the bubble size can be found [18], although noise prevents
us from measuring radii less than 5 µm. This was ade-
quate for the purpose of the present work, but could in
the future be improved through the addition of a lens in-
side the cell with a smaller focal length so that w would
be reduced. With the present large beam waist we have
the advantage that the entire acoustic focus is illuminated
so that all bubbles are sure to be detected.

The maximum radius rmax that is achieved by a bubble
after nucleation decreases rapidly as the static pressure in
the cell is increased. In addition, the lifetime τbubble of the
bubbles becomes very short for large static pressures. If
the time-dependence of the pressure at the location of the
bubble is known the maximum size and the lifetime can
be calculated from Rayleigh’s theory [19]. Typically, the
lifetime is 1 µs or less for Pstat greater than 1 bar.

3 Experimental results

The two traces in Figure 3 show the PMT response for two
successive bursts of sound with the same amplitude and
duration. Both measurements were made at T = 0.5 K and
with Pstat = 0.8 bars with the diaphragm positioned so as
to collect only the scattered light. As already described,
for the lower trace there is no cavitation and the light is
scattered by the acoustic wave only, whereas the upper
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Fig. 5. Cavitation probability at 170 mK and 1 bar. The two
sets of points correspond to data taken on two successive days
with the same parameters. The solid line corresponds to equa-
tion (9). It shows that the process remains stochastic at low
temperature.

trace shows the extra features that result from the nucle-
ation of a bubble. When the applied voltage is just below
the cavitation threshold, the response is the same for each
pulse and has the form of the lower trace. At the threshold,
some signals are like the lower trace, but some others have
the form of the upper trace. As we increase the voltage V
applied to the transducer, we observe a crossover from a
situation where all signals are exactly like the lower trace
to a situation where all signals are qualitatively like the
upper trace, but actually not identical to it as discussed
below.

By applying a number of sound pulses and counting
the number of times the PMT response indicates nucle-
ation, the probability Σ of nucleation can be determined.
By Σ we mean the probability that at least one bubble ap-
pears, or equivalently one minus the probability of having
no cavitation at all.

We first measured the cavitation probability Σ(V, T )
as a function of applied voltage and temperature. A typi-
cal curve is shown in Figure 5. It corresponds to a static
pressure Pstat of 0.8 bar and a temperature of 170 mK.
The two sets of points correspond to measurements taken
on consecutive days, and indicate the stability of our ex-
periment.

Figure 6 shows a set of similar curves corresponding
to successive temperatures from 65 mK to 750 mK. From
these data it is clear that the cavitation probability de-
pends on temperature only above about 400 mK.

Typically, the transition from no cavitation to cavita-
tion with a probability close to one occurs over a voltage
range of about 4%. We define the cavitation threshold as
the voltage Vc at which the cavitation probability is 0.5.
In Figure 7 we show Vc as a function of temperature in
the range 65 to 1200 mK. The measurements on this figure
correspond to the saturated vapor pressure, i.e. Pstat ≈ 0.

It can be seen that Vc shows a maximum at 750 mK.
We believe that this maximum is mainly due to the at-
tenuation of sound. An increase in sound attenuation has
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Fig. 6. Cavitation probability as a function of the voltage
applied to the transducer for a series of different temperatures.
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Fig. 7. The threshold voltage for cavitation Vc as a function of
temperature. The raw data show a maximum at 750 mK which
is due to the temperature variation of the sound attenuation.
After correction for this effect, the cavitation threshold appears
to be constant at low temperature (T < 0.6 K). Above 0.6 K,
the threshold decreases monotonically with T as expected for
a thermally activated nucleation.

the consequence that a larger voltage is needed to give
the same pressure swing at the acoustic focus. It is well
known [3] that the sound attenuation has a strong peak
at the temperature where the roton-phonon scattering
time equals the sound period. The attenuation has been
measured by Waters et al. [20] at a series of frequencies
down to 1.69 MHz. We have extrapolated their results to
estimate the attenuation at 1 MHz. To perform the extrap-
olation plots of log(α) versus log(ω), where α is the atten-
uation and ω is the frequency, were made at each temper-
ature. These plots were extrapolated linearly to find the
attenuation at 1 MHz. In order to check this extrapolation,
we made an independent measurement of the attenuation
through a study of the magnitude of the acoustic signal.
The acoustic signal can be divided into two contributions,
one part which fluctuates at the frequency of the sound
wave and a second part Sdc, the “dc component”, which
varies slowly with time. We first investigated how the
dc part Sdc varied with the amplitude of the transducer
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Fig. 8. The relative change in voltage which is necessary for
a constant sound amplitude at the focus. A comparison with
the known attenuation of sound shows that, up to 900 mK,
the observed temperature variation of the sound amplitude is
mainly due to this attenuation. Above 900 mK, other effects
can play a role, since the sound velocity itself starts varying
with T . We used our experimental measurement to correct the
data in Figure 7.

driving voltage V . We found that Sdc was proportional to
V 2. This is expected if the light scattering is proportional
to the square of the local density oscillations which are
themselves approximately linear in V . We then measured
Sdc as a function of T for constant drive voltage applied
to the transducer. The variation in Sdc with temperature
arises from the attenuation of the sound that travels from
the transducer to the focus, and hence the measurement
of Sdc(T ) can be used to find the ultrasonic attenuation.

The results for the attenuation are shown in Figure 8,
and up to 0.9 K are in very good agreement with the ex-
trapolation of the results of Waters et al. [20]. Above this
temperature, the two methods do not agree. We do not
know the definite explanation for this. It is possible that
the method we used to extrapolate the Waters data is in-
adequate. It is also likely that above 0.9 K the temperature
variation of the density is such that it affects the pressure
amplitude at the focus. Indeed, equation (4) shows that
it is directly proportional to the density; furthermore, we
believe that diffraction from the ceramic edges produce
an interference pattern which also depends on the sound
velocity, consequently on temperature. We decided to use
our own measurement of the sound amplitude at the focus
(more precisely the amplitude of the dc part of the acous-
tic signal) to correct the cavitation data. The result of
applying this correction to the cavitation data is included
in Figure 7. We do not think that the slight wiggles on
the corrected data near 0.8 K are significant. Near this
temperature where dissipation is important it should be
necessary to include some heating of the focal region in
the correction.

4 Comparison with quantum tunneling theory

After correction, the cavitation voltage is found to be in-
dependent of temperature up to 0.6 K (Fig. 7). Above this
temperature the voltage decreases as T increases, as ex-
pected for thermally activated nucleation. It is natural to
interpret this result as a crossover from quantum cavita-
tion proceeding via tunneling below 0.6 K to thermally-
activated classical cavitation. Here we discuss in some de-
tail the extent to which different aspects of the data are
consistent with this interpretation.

4.1 Stochastic nature of the nucleation

The measurements clearly indicate that over the entire
temperature range the nucleation process is stochastic
when the voltage lies in a range around the cavitation
threshold. This result, combined with the observation that
the threshold voltage is independent of temperature, is a
strong evidence for quantum nucleation. If at 100 mK,
for example, the nucleation was occuring as a result of the
pressure swing reaching the spinodal rather than by quan-
tum tunneling through a barrier at a pressure close to the
spinodal, then the nucleation would not be stochastic. A
plot of Σ as a function of V should then show a jump from
0 to 1 at some voltage.

One can ask how the nucleation could be stochastic
at the lowest temperatures without quantum tunneling
being the mechanism. We have considered the possibility
that noise or drift in the electric signal used to drive the
transducer could give stochastic behavior. If there is noise
on the voltage applied to the transducer, then for some
pulses the pressure will reach the spinodal while for oth-
ers the pressure swing will not be as large. This would
then replace the step in Σ with a smooth increase over a
voltage range determined by the magnitude of the noise.
However, we can rule out this possibility. The voltage ap-
plied to the transducer fluctuates by only ∼ 0.1% even
over a few hours, and this is much less than the width
of the transition region in Σ(V ). We also measured the
fluctuations in the frequency of the applied pulse, these
fluctuations were found to have a magnitude of around
± 0.01%.

We investigated whether there was a correlation be-
tween the probability of cavitation and these small fluc-
tuations in the applied voltage and frequency. There was
no sign of any significant correlation.

4.2 Shape of the plot of Σ versus V

The plots of Σ as a function of the transducer voltage at
all temperatures have a characteristic shape (Fig. 6). The
probability curve has a rounded foot and a sharper head.
The nucleation rate for quantum tunneling per unit time
and per unit volume of liquid is

Γ = Γ0 exp(−B/~) (5)
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where Γ0 is the attempt rate and B is the action associ-
ated with the motion though the tunneling barrier. Hence,
when measurements are made for a time τexp on a volume
of liquid Vexp the probability that nucleation will occur is

Σ = 1− exp [−Γ0Vexpτexp exp(−B/~)] . (6)

Both B and Γ0 will vary with pressure but, of course, the
variation of B makes the main contribution to the varia-
tion of Σ with P . We define the critical action Bc as the
value of B which corresponds to a nucleation probability
of 0.5. Then

Bc = ln

[
Γ0Vexpτexp

ln 2

]
· (7)

We then expand B to first order in the pressure relative
to the pressure Pc that corresponds to Bc to obtain

Σ = 1− exp

{
− ln 2 exp

[
−

(
d lnB

d lnP

)
P=Pc

Bc(P − Pc)

~Pc

]}
.

(8)

If we further assume that over the range in which Σ goes
from 0 to 1 the derivative of the pressure with respect to
applied voltage is linear, we have

Σ = 1− exp

{
− ln 2 exp

[
−

(
d lnB

d lnP

)
P=Pc

×

(
d lnP

d lnV

)
P=Pc

Bc(V − Vc)

~Vc

]}
. (9)

In Figure 5 the solid curve is a fit to the experimental data
based on equation (9) with the quantity

ξ ≡ Bc(d lnB/d lnP )P=Pc(d lnP/d lnV )P=Pc

treated as an adjustable parameter. One can see that this
fit reproduces the shape of the Σ(V ) curve very well.

It is important to note that this characteristic shape
of the curve of Σ as a function of V does not by itself con-
stitute evidence that the nucleation is the result of quan-
tum tunneling. The same shape curve would result from
thermally-activated nucleation [10]. However, the fact that
the shape is correctly predicted by equation (9) does give
further support to the argument that the results are not
affected by noise or drift in the electrical signal used to
drive the transducer. If noise were important one would
not expect the Σ − V curve to have the asymmetry that
is observed.

4.3 Action, cavitation pressure and width of the
transition region

First we estimate the action Bc from equation (7).
This needs values of Γ0, Vexp and τexp. In reference
[8] an order of magnitude estimate of Γ0 has given
Γ0 = 2× 1031 cm−3 s−1.
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Fig. 9. Histogram of the birth dates of bubbles. Cavitation
occurs near the minimum in the last negative pressure swing
of the sound pulse. Here, a short pulse of 44 µs was used. The
width of this distribution is used to measure the experimental
time (83 ns).

In a previous article [10], we have estimated Vexp
and τexp on the assumption that non-linear effects do
not significantly modify the sinusoidal shape of the wave.
We made this estimate in the context of an analysis of
thermally-activated nucleation. If we applied the same ap-
proach in the present context we would obtain:

Vexp = λ3

(
3

2πD

)3/2

, τexp = τ

(
1

2πD

)1/2

(10)

per negative pressure swing, where λ and τ are the acous-
tic wavelength and period, respectively, and

D = (Bc/~)(d lnB/d lnP ).

Combining equations (7) and (10) we would obtain the
condition

Bc = ln

[
2× 1031 33/2 λ3 τ

4π2 ln 2

]
− 2 ln

[
Bc

~

∣∣∣∣d lnB

d lnP

∣∣∣∣
c

]
.

(11)

The variation of B with pressure has been calculated by
Maris [8], and some numerical values are listed in Table 1.
From these results and equation (11) we would obtain the
values Bc = 32~, d lnB/d lnP

∣∣
c

= −22.6 and Vexpτexp =

3.1 × 10−18 cm3s. This would correspond to a pressure
Pc = −9.27 bars, i.e. 0.25 bars from the spinodal which is
predicted to occur at a pressure −9.52 bars.

However, numerical simulations [21] have shown that
non-linear effects broaden the pressure minima and
sharpen the maxima of the wave, both in space and
in time. Thus, the product Vexpτexp should be some-
what larger than estimated above. To investigate this we
recorded the times at which nucleation took place. Typ-
ical results are shown in Figure 9. We find that for each
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negative pressure swing the nucleation occurs over a time
range of about 83 ns, significantly more than 15 ns, the
value predicted by equation (10). We have then calculated
the experimental volume by using the equation of propa-
gation of sound

∆P − (1/c2(Pmin)(∂2P/∂t2) = 0

near the minimum pressure Pmin (c is the sound velocity).
We obtained

Vexp =
(
c(Pmin)

√
3τexp

)3

. (12)

We finally used the equation of state by Maris [8] to cal-
culate the sound velocity:

c = A(P − Pspin)1/3. (13)

In this equation, Pspin is the spinodal pressure and the
constant A = 112 CGS units. We finally obtained

Vexpτexp = 1.0× 10−16 cm3s ≈

(
λ

22

)3( τ
12

)
. (14)

This means about ten microns cubed and a time of
0.1 µs, i.e. a volume and a time which are small but macro-
scopic. In such an experiment, to approach the spinodal
more closely would require work at much higher frequency.
It is also interesting to note here that the distribution in
nucleation times leads to a distribution in the final bub-
ble sizes, and consequently also in the amplitude of the
cavitation signals. Indeed, the sooner bubbles nucleate,
the more time they have to acquire kinetic energy from
the negative swing of the sound oscillation. This is why
the acoustic signal is quantitatively reproducible from one
pulse to the next, while cavitation signals are only qual-
itatively similar to one another (see Fig. 4). If we then
suppose that cavitation occurs during only one swing, we
obtain the value of the action Bc from equation (7):

Bc = 35.6 ~. (15)

We then estimate the value of the cavitation pressure and
the energy barrier from Table 1:

Pc = −9.23 bars, E = 10.5 K. (16)

At P = −9.23 bars, the sound velocity is c = 75 m/s. Our
final values differ only slightly from our first estimate.

Finally, it is possible to analyze the width of the tran-
sition region, which is related to

ξ ≡ Bc(d lnB/d lnP )P=Pc(d lnP/d lnV )P=Pc .

From table 1, we also deduce(
d lnB

d lnP

)
P=Pc

= −20.3 (17)

and we can use the experimentally determined value
ξ = 124~ to obtain(

d lnP

d lnV

)
P=Pc

= 0.17. (18)
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Fig. 10. The variation of the cavitation threshold as a function
of the static pressure in the cell.

For very small sound amplitudes the pressure swing at
the focus must be linear in the driving voltage and so
d lnP/d lnV = 1. As expected, numerical simulations in-
dicate [21,22] that d lnP/d lnV decreases as the pressure
swing increases which is consistent with the above re-
sult. Thus 0.17 is a reasonable value. However, we have
not yet succeeded in making a quantitative calculation of
d lnP/d lnV in the vicinity of the spinodal.

4.4 Variation with static pressure

We have tried to confirm the above estimate of the cavi-
tation pressure by studying the variation of the cavitation
voltage Vc with the static pressure Pstat or static den-
sity ρstat. As shown in Figure 10, our results are more
precise, also restricted to a smaller pressure domain than
those presented in our previous article [10]. Above a static
pressure of about 2.5 bars, the lifetime of bubbles is too
short and cavitation can be seen only if the voltage is
large enough to nucleate big bubbles. As a consequence,
small events are not detected and the apparent cavitation
threshold increased. This is the explanation for the slight
upward curvature which was observed by Pettersen et al.
[10] on their plot of Vc versus Pstat at small Pstat. We
believe that this upward curvature was an artefact, and
we thus restricted our present study to the small pressure
interval (0 < Pstat < 2.5 bars) where the bubble lifetime
is significantly larger than the response time of our detec-
tion system. If we neglected non linear effects, we could
extrapolate down to the pressure where Vc vanishes and
obtain the cavitation density and pressure. We tried such
a linear extrapolation, but we actually plotted the quan-
tity ρVc as a function of Pstat because the amplitude of the
pressure oscillation is proportionnal to the static density
(Eq. (4)). We obtained Pc = −11.5 bars. This is the right
order of magnitude but more negative than the spinodal
pressure. We found this result independent of tempera-
ture below 0.4 K. We also believe that non linear effects
are likely to decrease the magnitude of the negative pres-
sure swing with respect to the prediction from the linear
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Table 1. Results of the calculation by Maris [8] of the negative pressure P , the energy barrier E and the action B for
the nucleation of bubbles in helium-4, and the sound velocity c as a function of the density ρ near the spinodal density
ρsp= 0.09482 g cm−3.

ρ ρ− ρsp P E B/~ d lnB/d lnP c

(g cm−3) (g cm−3) (bars) (K) (m s−1)

0.1088 0.01398 −9.32 8.2 28.8 −25.4 66

0.1092 0.01438 −9.30 8.7 30.2 −24.1 68

0.1096 0.01478 −9.28 9.2 31.7 −23.0 70

0.1100 0.01518 −9.26 9.7 33.2 −21.8 72

0.1104 0.01558 −9.24 10.2 34.9 −20.7 74

0.1108 0.01598 −9.22 10.8 36.6 −19.7 76

0.1112 0.01638 −9.19 11.4 38.5 −18.7 78

0.1116 0.01678 −9.17 12.0 40.4 −17.8 79

0.1120 0.01718 −9.14 12.6 42.4 −16.9 81

0.1124 0.01758 −9.12 13.2 44.6 −16.0 83

0.1128 0.01798 −9.09 13.9 46.9 −15.2 85

law (Eq. (4)). We hope to check this and compare with
the estimated value −9.23 bars when we succeed in in-
cluding non-linear effects in the numerical calculation of
∆P versus driving amplitude and static pressure. If this
led to an accurate enough estimate of Pc, we could also
discriminate between the homogeneous nucleation which
is assumed here and a nucleation mediated by vortex lines
which has also been suggested [22,23]. The presence of
vortex lines in large enough density could reduce the cav-
itation threshold by one or two bars. In the absence of a
theory of quantum nucleation of bubbles on vortex cores,
we cannot say if it is compatible with our results, but this
possibility is not excluded.

4.5 Crossover temperature

The measurements indicate that the voltage required to
cause nucleation becomes independent of temperature be-
low 0.6 K. At first sight this can be taken to indicate that
the crossover temperature T ∗ to quantum nucleation is
0.6 K. This is significantly higher than 0.2 K, the cur-
rently accepted theoretical prediction [8,9]. We believe
that there is a simple explanation for this apparent dis-
crepancy. In a first approximation the acoustic wave is
adiabatic, and consequently the temperature oscillates at
the focus, as well as the pressure. At temperatures below
0.7 K, phonons make the dominant contribution to the
entropy [3], and the entropy per unit mass is

S ≈ Sph =
2π2k4

BT
3

45ρ~3c3
· (19)

Hence in an isentropic process the temperature is propor-
tional to the sound velocity c. At P = −9.23 bars, we have
seen that the sound velocity is 75 m s−1, a factor 3 lower
than at zero pressure (c = 238 m s−1). As a consequence,
the local, instantaneous temperature T should be lowered
at the focus by the same factor 3 with respect to the static
temperature Tstat of the cell. Thus the measured Tstat at

which the crossover to quantum nucleation takes place is
in fact consistent with the theoretical prediction.

5 Conclusions

We have studied the nucleation of bubbles in helium
at negative pressures in the temperature range down to
65 mK. The results are consistent with the idea that be-
low 0.6 K the nucleation is the result of quantum tunneling
through the nucleation barrier. We have discussed the ev-
idence for this which is provided by the experiment and
considered a number of possible artefacts. Our interpre-
tation led us to the conclusion that, in our experiment,
the quantum nucleation of bubbles takes place at the neg-
ative pressure Pc = −9.23 bars, i.e. 0.29 bar above the
spinodal pressure. Of course a direct measurement of the
instantaneous pressure of the focussed sound wave would
bring an important check of this conclusion. Such a new
measurement would also allow us to consider the possibil-
ity that cavitation is assisted by the presence of vortices.
Our measurements are not yet accurate enough to rule out
such a possibility. Finally, measurements of cavitation at
low temperature in liquid helium 3 are in progress. We ex-
pect that they will provide an interesting comparison with
helium 4, since the spinodal pressure of liquid helium 3 is
predicted to be around − 3 bars [8,9].

This work was supported in part by the US National Sci-
ence Foundation through grant no. DMR 91-20982 and by
the CNRS-NSF collaboration program through grant INT 93-
14295.
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