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Partially wetting drops sliding down an inclined plane develop a “corner singularity” at the rear,
consisting of two dynamic contact lines that intersect. We analyze the three-dimensional flow in the
vicinity of this singularity by exploring similarity solutions of the lubrication equations. These
predict a self-similar structure of the velocity field, in which the fluid velocity does not depend on
the distance to the corner tip; this is verified experimentally by particle image velocimetry. The
paper then addresses the small-scale structure of the corner, at which the singularity is regularized
by a nonzero radius of curvatureR of the contact line. Deriving the lubrication equation up to the
lowest order in 1/R, we show that contact line curvature postpones the destabilization of receding
contact lines to liquid deposition, and that 1/R increases dramatically close to the “pearling”
instability. The general scenario is thus that sliding drops avoid a forced wetting transition by
forming a corner of two inclined contact lines, which is regularized by a rounded section of rapidly
decreasing size. ©2005 American Institute of Physics. fDOI: 10.1063/1.1946607g

I. INTRODUCTION

Wetting and dewetting phenomena are encountered in
many everyday life situations, such as drops sliding down a
window or meandering rivulets. However, the description of
moving contact lines, separating wet from dry regions, re-
mains controversial; in classical hydrodynamics the viscous
stresses diverge at the contact line.1,2 This viscous flow near
the contact line is driven by capillary forces and gives rise to
extremely curved interfaces, even down to the microscopic
molecular scale. To release the hydrodynamic singularity one
has to include the microscopic physics near the contact line,
for which various approaches have been proposed.3–12 Wet-
ting dynamics thus involves length scales ranging from a
microscopic length up to the capillary length, and forms a
challenge that is not only of fundamental interest; dynamic
contact lines are crucial in many industrial applications such
as coating and painting.13

A particularly intriguing phenomenon is thatreceding
contact lines become unstable beyond a critical speed.14–22

This “forced wetting transition” can be studied by withdraw-
ing a solid plate with a velocityU0 from a bath of partially
wetting liquid; a liquid film is deposited above a critical
value of the capillary number Ca=hU0/g, whereh and g
denote the viscosity and surface tension of the liquid. This
instability exemplifies that the physics at the contact line has
macroscopic consequences, since the critical Ca strongly de-
pends on the contact angle at the microscopic scale.15,16Even
though close to the contact line the system is far from equi-
librium, one usually makes the strong assumption of impos-
ing the equilibrium contact angle. Another open question is
what happens beyond the critical velocity. In particular, the
contact line geometry often becomes truly three dimensional;
Blake and Ruschak20 observed contact lines inclined with
respect to the horizontal—this reduces the normal velocity of

the contact line such that the wetting transition is avoided. A
similar structure appears at the rear of sliding drops,23,24

which develops a sharp cornerfFig. 1sadg. In all these experi-
ments, the normal velocity of the inclined contact lines was
found to stay precisely at the threshold of instability, which
implies that the half opening angle,F, scales as sinF
~1/CafFig. 2scdg. Note that in some cases receding contact
lines can also develop a transverse instability, with a finite
wavelength along the contact line, as observed, e.g., for liq-
uid ridges on an inclined plane25,26or dewetting of polymeric
liquids.27

In this paper we unravel the singular three-dimensional
flow that occurs in “cornered” sliding drops, both theoreti-
cally and experimentally. The first part of the paper forms a
full exposition and expansion of the self-similar hydrody-
namic model of a sharp conefFig. 1scdg, which has been
proposed in previous papers.28,29 In this approach the liquid
thickness is described by a similarity function of space vari-
ables, which is a common strategy near surface singularities.
Indeed, the corner is reminiscent of other hydrodynamic sin-
gularities, such as the pinching of a jet into droplets,30 the
selective withdrawal transition,31 or the formation of a cusp
between two rotating immersed cylinders.32 For the first
time, however, we investigate the self-similar velocity fields
and provide a detailed comparison with experimental mea-
surements using particle image velocimetry. Figures 1sbd and
1sdd show the experimental and theoretical flow fields, re-
spectively, which display a very good agreement. Our mea-
surements reveal that the structure of the velocity field does
not depend on the distance to the corner tip, and confirm the
predictions of the similarity solutions also quantitatively.
Particular attention will be paid to the flow near the contact
line, which turns out to be oriented perpendicularly to the
contact line.33
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In the second part of the paper we investigate the tran-
sition from rounded drops to cornered drops in more detail.
As can be seen from the photographs in Fig. 2, the corner at
the rear of the drop is never infinitely sharp but has a nonzero
radius of curvatureR; there is a small-scale cutoff at which
the singularity is regularized. This is in conflict with the
assumption of a sharp cone29 as well as with the prediction
of another recent model based upon a gravity-capillarity
balance.34 Despite this rounded edge there is still a well-
defined corner angleF, following from the two nearly

straight inclined contact lines away from the rear. Recent
measurements show thatR rapidly decreases as a function of
drop velocity whenF becomes smaller than 90°.35

Such a finite radius of curvature, however, puts forward
an intriguing paradox; while the normal velocity of the in-
clined contact linesU0 sinF is maintained at the maximum
speed of dewetting, the velocity at the rear remainsU0 and
thus exceeds this critical speedfFig. 2sddg. In other words, a
straight contact line moving at such a high velocity would be
forced to emit little droplets or to leave a film. To resolve this
problem we develop a one-dimensional description for
curved contact lines, which takes this curvature into account
up to the lowest order. We show that this gives rise to addi-
tional capillary forces that are responsible for an increase of
the maximum speed of dewetting with 1/R. This lowest-
order model provides a satisfactory agreement with experi-
mental results.

The paper is organized as follows. In Sec. II we consider
the lubrication equations in the limit of Stokes flow, from
which we derive the general formalism leading to the simi-
larity solutions. In Sec. III we discuss the predictions of the
model concerning both the structure of the velocity field and
that of the free surface. We then compare the obtained veloc-
ity fields to particle image velocimetrysPIVd measurements
performed on silicon oil drops sliding on a glass plate coated
with fluoropolymers in Sec. IV. In Sec. V we investigate the
curved “core” of the singularity by developing a model of
dynamic curved contact lines. We derive the lubrication
equation in the limit of small contact line curvature and show
that the additional curvature postpones the forced wetting
transition. The paper closes with a discussion in Sec. VI.

II. HYDRODYNAMIC DESCRIPTION OF FLOW
IN A CORNER GEOMETRY

A. Physics of three-dimensional corner flow

We will first investigate some general aspects of the
three-dimensional flow occuring at the rear of a sliding drop
exhibiting a corner. Indicating the location of the interface by
z=hsx,yd, we consider drops of conical shape

hsx,yd ~ xHsy/xd, s1d

where the definitions of the axes are given in Fig. 1scd. We
thus assume that cross sections at a given distancex are
self-similar and depend only on the ratioy/x. Since in the
experiments of Refs. 23 and 24 the drops flow at low-
Reynolds numbers, the flow can be described by the Stokes
equations,

= ·u = 0, s2d

− = p + hDu = 0, s3d

where the three-dimensional velocity fieldu and the pressure
p are functions of the spatial coordinatesx, y, and z. The
height at the rear of the drop will be well below the capillary
length lg=Îg /rg, so we have omitted the gravitational
forces in Eq.s3d. In this regime the viscous flow is entirely
driven by the capillary pressure at the free surfacep=gk,
wherek is the mean curvature of the interface. It is clear that

FIG. 1. sad A silicon oil drop sliding down a glass plate coated with fluo-
ropolymers develops a singularity at the rear above a critical velocity.sbd
The corresponding velocity field in the laboratory frame visualized by tracer
particles using particle image velocimetry.scd and sdd Modeling the inter-
face by a sharp cone, we quantitatively reproduce the experimental velocity
field, except at the very tip of the singularity; this cusp-like structure does
not seem to affect the velocity field away from the tip.

FIG. 2. sad and sbd Increasing the sliding velocityU0, one encounters a
transition from rounded to cornered drops that is characterized by a rapid
decrease of the radius of curvature,R, of the rear.scd Side view of the drop
shown insbd, from which the apparent macroscopic contact angleu is ex-
tracted.sdd The corner angleF is defined from thesnearlyd straight inclined
contact lines at the side of the drop; their normal velocity,U0 sinF, is
observed to remain constant Refs. 20, 23, and 24.
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the capillary number Ca=hU0/g becomes the relevant di-
mensionless parameter describing the balance between vis-
cous and capillary forces.

One can now recover the scaling behavior of the corner
flow from a simple dimensional analysis. For the interface
height described by Eq.s1d, the only length scale is provided
by x, the distance to the corner. The curvaturek, and hence
the pressure, therefore have to scale as 1/x. Following Eq.
s3d we obtainDu=Os1/x2d, so that the velocity field itself
should only depend on the combinationsy/x andz/x; since
all lengths are now rescaled byx, this yields a Laplacian
,1/x2. One can indeed show that Eqs.s2d and s3d allow
scaling solutions of the type

usx,y,zd = ũSy

x
,
z

x
D ,

s4d

psx,y,zd =
1

x
p̃Sy

x
,
z

x
D .

The relevance of these corner solutions will be illustrated in
Sec. IV, where we present experimental measurements of the
velocity fields. Indeed, we observe a large range of distances
from the corner tip in which the velocity only depends on
y/x, supporting the hypothesis of a self-similar corner pro-
file. To make a more quantitative comparison for both the
velocity fields as well as geometrical properties of the cone,
we will explicitly resolve the flow equations within the lu-
brication limit for whichh/x!1.

B. Corner flows: Three-dimensional capillary forces

Before we continue the analysis, let us briefly discuss the
driving mechanisms of the flow in the corner. In order to
maintain a viscous flow one requires gradients ofscapillaryd
pressure; the height of the drop at the rear is too small for
gravity to play a role. Let us first consider the flow at the
central axis of the drop, which is located aty=0. Due to
symmetry, the local fluid velocity will be purely along the
downwardx direction. At this symmetry axis the interface of
the cone is flat alongx, but curved along they direction.
Since cross sections at fixed distance from the rearx do not
change shape but are simply scaled byx, this “transverse”
radius of curvature increases withx; this results in a decreas-
ing capillary pressure, and hence provides a driving force. So
at the symmetry axis of the drop, the flow is entirely driven
by gradients of thetransverse curvature.

This is very different from the flow near a one-
dimensional movingsstraightd contact line, which is the
common theoretical benchmark for contact line dynamics. In
this case the flow is perpendicular to the contact line. In the
direction perpendicular to the flow, the interface is flat, so
there is no transverse curvature; the driving force is now
provided by strong curvatures of the interfacealong the flow
direction. While globally the flow in the corner geometry is
more complicated, we will show that the physics near the
contact line at y/x=tanF reduces to that of a one-
dimensionals1Dd moving contact line.

C. Lubrication approximation

We will now briefly repeat the derivation of the equation
for Hsy/xd in the well-known lubrication approximation, as
presented by Limat and Stone.29 In the limit of small angles
it is well known that the velocity field becomes parallel to
the inclined planesuz<0d and has a simple Poiseuille-like
parabolic vertical dependence. With the no-slip boundary
condition at the bottom plate the viscous term in Eq.s3d
becomes −3hU /h2, where

Usx,yd =
1

h
E

0

h

dzusx,y,zd. s5d

Another consequence ofuz<0 is that the pressure becomes
independent ofz and simply readspsx,yd=−gDh, so that Eq.
s3d reduces to

=Dh −
3h

g

U

h2 = 0, s6d

whereU is the two-dimensionals2Dd depth-averaged veloc-
ity in the frame attached to the inclined plane. Throughout
the paper we always work in this laboratory frame. Note that
U represents a local fluid velocity, which, in general, will be
different from the global drop velocity. This equation should
be complemented with the depth-averaged mass continuity
equation

]th + = · shUd = 0. s7d

Drops sliding at constant velocityU0 with constant shape can
be described by an interfacehsx−U0t ,yd, so that upon elimi-
nation ofU, we obtain an equation forhsx,yd,

3Ca]xh = = · fh3 = Dhg, s8d

where Ca=hU0/g is the capillary number. If we now insert
the similarity ansatz

hsx,yd = Ca1/3xHszd, with z =
y

x
, s9d

one obtains an equation forHszd,

s1 + z2d2sH3Hzzzdz + 3zs1 + z2dsH3Hzzdz + 2zs1

+ z2dH3Hzzz + s1 + 3z2dH3Hzz = 3sH − zHzd. s10d

This equation no longer depends explicitly on the capillary
number Ca.

D. Boundary conditions

The corner profileHszd is governed by a fourth-order
equation, so we have to specify four boundary conditions.
Due to symmetry aroundz=0 we have to imposeH8s0d
=H-s0d=0, so one is left with two free parametersHs0d and
H9s0d. As an example, Fig. 3sad displays numerical solutions
of Eq. s10d that haveHs0d=3, but with different initial cur-
vaturesH9s0d; a similar scenario is found for otherHs0d.
One sees that for small initial curvatures the solutions do not
tend to zero, but, in fact, have a minimum height. This
clearly does not correspond to the situation of a droplet with
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a contact line; in fact, we show below that there is a nonzero
flux of liquid from the “droplet” into the “reservoir” region
to the right of the minimum.

For strongly negativeH9s0d, on the other hand, the so-
lutions do tend to zero and one encounters the usual contact
line singularity asH→0. In general, however, these solu-
tions violate global conservation of mass; in order to be a
physically reasonable solution of a drop sliding at steady
state, it is necessary that in the frame comoving with the
drop, thex flux integrated over a cross section is zero.29 This
argument is expressed mathematically by calculating thex
flux betweeny=−zx and y=zx, which will be denoted by
Fszd,

Fszd =E
0

z

dz8H3Sfz8sz82 + 1dHz8z8gz8 +
3

H2D . s11d

For a derivation of this integral we refer to Ref. 29. This flux
should vanish whenHszd tends to zero. In Fig. 3sbd we there-
fore show a parametric plot ofFszd vs Hszd; only a single
curve obeys the zero-flux condition when approaching the
contact line. Hence for eachHs0d there is a uniqueH9s0d that
corresponds to a physical solution of the problem.

Let us now argue that this physical solution is precisely
theseparatrixbetween the solutions that tend to zero and the
solutions that display a minimum in Fig. 3. We already men-
tioned above that wheneverH has a minimum, the fluid ve-
locity is directed from the drop region into the reservoir re-
gion. This can be understood directly from Fig. 3sad; the
increase ofH9 when approaching the minimum yields a de-

crease of capillary pressure alongz. This results in a nonzero
“outward” flux hU'. When approaching the separatrix, how-
ever, the height of the minimum will ultimately tend to zero
and hence yield a vanishing fluxhU'→0.

In the regime to the left of the separatrix, on the other
hand, one truly encounters the singularity. Close to the con-
tact line at zc=tanF, Eq. s10d will be dominated by the
highest derivatives and reduces tos1+zc

2d2sH3Hzzzdz

=−3zcHz. This equation can be integrated once,

s1 + tan2 Fd2H- = −
3 tanF

H2 +
c

H3 , s12d

wherec is the integration constant. First, note that this equa-
tion has the same structure as the lubrication equation for a
one-dimensional contact line, which readsh-=−3Ca/h2.
Second, we show in Sec. III that the fluid velocity close to
the contact line is proportional toH2H-, so that only the
solution with c=0 corresponds to a finite velocity. Forc
,0, the singularity gives rise to an unphysical source term at
the contact line, which yields a nonzero global flux. Forc
.0, on the other hand, the sign of the derivatives will
change atH=c/ s3 tanFd, which will later on give rise to a
minimum. There is thus a single value ofH9s0d that corre-
sponds to the physical solution, which verifiesc=0.

To summarize, we have identified a one-parameter fam-
ily of self-similar corner profiles. In order to make a com-
parison with experiments, it is convenient to simply param-
etrize the solutions by the corner angleF=arctanzc, where
zc indicates the location whereH→0. This illustrates the
strength of our analysis; for each value of the corner angle
the model provides a prediction without any adjustable
parameters.29

III. RESULTS FOR THE SELF-SIMILAR CORNER
MODEL

A. Velocity profiles

Perhaps the most interesting feature of the corner model
is that it predicts the nontrivial two-dimensional velocity
field that occurs within the corner singularity. Using Eq.s6d,
this velocity field follows from the height profile asU
=sg /3hdh2=Dh. Numerical evaluations of this equation lead
to the vector representation of flow fields displayed in Figs.
4sad and 4sbd, for two typical values of the opening angleF.

Upon a close inspection of these velocity fields one finds
that, close to the contact line, the direction of fluid flow
always becomes perpendicular to the contact line. To eluci-
date this intringuingly robust observation it is convenient to
introduce cylindrical coordinates,x=r cosw, y=r sinw, and
to consider the radial and azimuthal velocity components,Ur

and Uw, respectively. We use the symbolw to indicate the
angle within the corner, so that −FøwøF. The velocity
componentsUr andUw are plotted next to the vector fields in
Figs. 4scd and 4sdd. At the symmetry axisw=0, the flow is
always purely radial as expected, sinceUw=0. Note that at
w=0 the velocityUr is always larger thanU0.

37 At the con-
tact line sw=Fd, on the other hand, the radial component
vanishes and the flow becomes purely perpendicular to the
contact line. This property of perpendicular flow near a mov-

FIG. 3. sad Solutions of Eq.s10d with Hs0d=3 for different initial curvatures
H9s0d. The solid line represents the separatrix between solutions that have a
minimum and solutions that tend to zero.sbd Only this separatrix obeys
global mass conservation; the total integrated fluxFszd should vanish as
Hszd becomes zerosRef. 36d.

072101-4 Snoeijer et al. Phys. Fluids 17, 072101 ~2005!

Downloaded 28 Jun 2005 to 193.54.81.84. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



ing contact line is not special for the corner model, but, in
fact, it constitutes a fundamental property of moving contact
lines;33 a tangential velocity component would require di-
verging sor at least extremely larged gradients of the curva-
tures of the contact line itself. Hence, for macroscopically
straight contact lines, i.e., contact lines with radius of curva-
ture much larger than the molecular scale, the tangential ve-
locity component has to vanish. We have been able to ex-
perimentally confirm this property of perpendicular flow near
the contact line, both in the corner regimesSec. IVd and for
rounded drops.33

In order to discuss the physics near the contact line in
more detail, let us consider the explicit expressions ofUr and
Uw in terms ofH,

Ur

U0
= −

1

3
H2H9 cosws1 + tan2 wd,

s13d
Uw

U0
=

1

3
H2 cosws1 + tan2 wd

3f3H9 tanw + H-s1 + tan2 wdg.

These velocity components are independent of the radial dis-
tancer. As we saw in Fig. 4, the radial velocityUr vanishes
at the contact line. According to Eq.s13d this implies that
H2H9→0 asH→0. At the same timeUw, and henceH2H-,
remains finite. This is consistent with Eq.s12d; the physical
solution for whichc=0 hasH2H-=−3 tanF / s1+tan2 Fd2.
Inserting this into the expression forUw, one finds thatUw

=−U0 sinF. Hence, we find that at the contact line, the local
fluid velocity coincides with the normal velocity of the mov-
ing contact line. In this respect, the hydrodynamics close to
the contact line in the corner regime is really the same as that
of a 1D contact line with a reduced velocityU0 sinF.

B. Geometrical properties

The corner model also provides a prediction for the geo-
metrical properties of the interface. From Fig. 1scd it can be
seen that the cone has two characteristic angles that are eas-
ily measured experimentally; the angle in thesx,yd plane at

z=0, which is twice the corner angleF, and the angle in the
sx,zd plane aty=0. The second angle can be measured from
a side view of the drop as the apparent contact angleu fFig.
2scdg.

The value of tanu can be obtained directly from Eq.s9d
as tanu=Hs0dCa1/3. The model thus provides a relation be-
tweenu andF, sinceHs0d is uniquely related toF. This is
illustrated by the solid line in Fig. 5, showingF as a function
of Hs0d. The symbols appearing in the same figure have been
deduced from experimental measurents ofu, via Hs0d
=tanu /Ca1/3, for a range of values ofF. We thus find a good
agreement between the prediction of the corner model, with-
out any adjustable parameters, and experiments. Note that
strictly speaking the lubrication approximation is only valid
in the limit of small slopes, while in the experiments one
encounters angles up to 25°. One could thus expect minor
quantitative differences.

The solid line in Fig. 5 has been obtained numerically,
but it is possible to obtain an approximate description for the
relation betweenu and F, in the limit F!1. Since atz
=tanF one always encounters the boundary conditionH
=0, one can attempt a scaling solution of the formHszd
=cĤsz / tanFd; the argument ofĤ can take values between
−1 and 1. Since the radial fluid velocity, and henceH2H9,
should remain finite, we find thatc3=tan2 F. Inserting this
scaling form in Eq.s10d, one derives that at the symmetry

axis Ĥ-8s0d~ tan2 F. The deviations from a simple parabola
thus become increasingly small asF→0.38 Combining a
parabolic form ofHszd with the zero-flux conditionFszcd
=0, fEq. s11dg, one obtains

tan3 u =
35

16
Ca tan2 F, whenF ! 1, s14d

which has been plotted as a dashed line in Fig. 5. Note that
the prefactor of the parabolic approximation in Ref. 29 is
slightly different, due to a planar approximation of the flow.

FIG. 4. On the left we show the velocity fields as predicted by the corner
model for two opening angles,F=60° andF=35°. The plots on the right
represent the corresponding radial velocityUr sdotted lined and the azi-
muthal velocityUw ssolid lined. SinceUr =0 atw=F, the velocity is locally
perpendicular to the contact line. FIG. 5. Relationship between the corner angleF andH0=tanu /Ca1/3. The

solid line is obtained by numerical solution of Eq.s10d, which for small
angles takes the asymptotic form of Eq.s14d sdashed lined. The symbols are
experimental data on drops of silicon oil for various viscosities, from Ref.
35.
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IV. PARTICLE IMAGE VELOCIMETRY
MEASUREMENTS

In order to test the self-similar corner model in more
detail we now present experimental measurements of the ve-
locity profile at the rear of sliding drops, obtained by PIV. In
Fig. 1 we have already seen that the experimental and theo-
retical flow fields are qualitatively very similar. In this sec-
tion we provide a more quantitative comparison and indeed
confirm the self-similarity of the velocity field in the experi-
mentally accessible range.

A. Experimental setup

To visualize the velocity field at the rear of sliding drops,
we performed experiments on partially wetting drops con-
taining tracer particles. The experimental setup is sketched in
Fig. 6. We consider millimeter-sized drops of silicon oilsh
=50 cP;g=20 mN m−1d, sliding down an inclined glass plate
coated with fluoropolymerssFC725, sold by 3Md. These con-
ditions are the same as in Refs. 23 and 24, and provide a
situation of partial wetting with a relatively small hysteresis
of static contact anglessueq between 45° and 52°d. When
sliding at a velocityU0=3 mm/s sCa=0.0075d, the drops
exhibit a corner at the rear. Particles with diameters ranging
from 1 to 10mm are homogeneously dispersed on the plate,
so that a passing drop drags the particles downwards. This
way, the majority of the tracers remain either at the free
surface of the drop or at the solid-liquid interface.

The trajectories of the tracers in the frame attached to the
inclined plane can now be visualized by superimposing im-
ages obtained at different times. We can already note from
Fig. 6scd that these trajectories leave the contact line perpen-
dicularly, as was anticipated in Sec. III. A quantative mea-
surement of the local fluid velocity can now be obtained by
particle image velocimetry, using the correlations between
two successive pictures; the results presented in this paper

were obtained by averaging over 20 pictures. Such measure-
ments on drops exhibiting a corner are rather difficult since
the presence of the tracers perturbs the shape of the drop near
the corner tip and induces pearling, i.e., emission of little
droplets. We have therefore been limited to a measurement
on a drop that exhibits a cusp-like structure at the rearsFig.
6d. As will be shown below, this does not seem to perturb the
velocity field in the region away from the cusp.

The fact that not all tracers are localized at the free sur-
face makes it difficult to access the absolute values of the
velocities. The velocity field in the verticalz direction is
Poiseuille-like, which has a maximum at the free surface and
is zero at the plate. One effectively averages over tracers at
different heights, but the precise distribution of particles can-
not be controlled. Although this leads to an uncertainty for
the absolute values, the direction of the velocity at a given
horizontal positionsx,yd will be independent of the height.
Therefore, the angleC defining the orientation ofU can be
measured with a much greater precision and will be the cen-
tral quantity of our study—the definition ofC is provided in
Fig. 7scd. We furthermore obtain interesting results for the
velocity components as well, albeit with more experimental
noise.

B. Experimental results

The main prediction of the corner model is that the ve-
locity field should be independent of the distance to the cor-
ner tip. To verify this self-similarity, we have plotted the
experimental results with different symbols according to the
distance to the tip; the slices drawn in Fig. 7sad each have a
width of 52 mm. Note that we have defined the origin
sx,yd=s0,0d by extrapolating the straight contact lines away
from the cusp. We first consider the orientation of the veloc-
ity field, C, as a function of the positionw. The data shown
in Fig. 7scd indeed collapse onto a master curve that is inde-
pendent of the distance from the corner tip. The velocity field
in the corner regime is indeed self-similar, at least within the
experimentally accessible range, which comprises at least
half a decadesfrom 52 to 312mmd. As a further test of the
corner model, we imposed the curveC as a function ofw
obtained from the model forF=35° ssolid lined. Given the
fact that there are no adjustable parameters, this curve is in
very good agreement with the experimental data; small dif-
ferences could be due to the assumption of small slopes un-
derlying the lubrication approximation.

In Fig. 8 we have plotted the velocity componentsUr

andUw as a function of the positionw. These measurements
are obtained from an average over particles at different
heights, and therefore are much more scattered than the
data forC. To account for this averaging we have further-
more rescaled the data by an empirical factor of 1.15U0; if
all particles would be localized at the free surface, one
would require a factor of 3U0/2. Although the data are rather
noisy, the results are consistent with the velocity fields ob-
tained from the corner modelssolid and dashed linesd. In
particular, it is clear that the radial velocity at the contact line
vanishes, so that at the contact line the fluid velocity is truly
perpendicular.

FIG. 6. sad Schematic picture of the experiment; drops of silicon oil are
deposited on an inclined plate covered with tracer particles.sbd The drops
are filmed from above using a charge-coupled devicesCCDd camera.scd The
trajectories of the tracers in the frame attached to the inclined plane obtained
from superposition of successive images. Note that the trajectories start
perpendicular to the contact line.
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V. REAR OF THE DROP: A MODEL FOR CURVED
CONTACT LINES

In Sec. IV B we have seen that the self-similar conical
model provides a very good description of the flow within
the corner. To be precise, it agrees with the experimental data
in the regime where the contact lines on both sides of the
symmetry axis are nearly straight. However, the contact line
at the rear of the drop never forms an infinitely sharp corner,
but was found to have a well-defined radius of curvatureR
ssee Fig. 2d. The experimental data of Ref. 35 have been

reproduced in Fig. 9; while the contact line curvature re-
mains almost constant at low Ca, one observes a dramatic
increase of 1/R when the singularity is formed at the rear. A
similar curve is obtained for the contact angleu, which has
been measured at a macroscopic scale. It is well known that
this macroscopic angle decreases for increasing Ca, and the
experimental results in Fig. 10 clearly show that the transi-
tion to the corner occurs at a nonzero angle.

These observations provoke two fundamental questions.
First, it is found experimentally that the corner angle adjusts
itself such that the normal velocity, Ca sinF, remains at the
maximum speed of dewetting Cac sRefs. 20 and 24d ssee Fig.
2d. The contact lines away from the rear are thus inclined
with respect to the horizontal in order to avoid entrainment.
At the rear, however, the local velocity of the contact line
doesexceed this maximum speed Cac, but still the drop does
not leave a film or little drops. A first problem is thus to
understand why curved contact lines can avoid entrainment,
even above Cac. A second intriguing observation is that the
length scaleR at which the corner singularity is regularized
s<100 mmd is neither the capillary length nor the micro-
scopic molecular length; what determines the length scale of
R?

To address these questions we will develop a description
of curved moving contact lines, in which the transverse cur-
vature effects are taken into account up to the lowest order.
We indeed find that the transition to entrainment is post-
poned by curving the contact line, and our results are con-
sistent with experiments.

A. 1D lubrication equation for curved contact lines

Let us consider the effect of contact line curvature right
at the symmetry axis of the drop. The governing lubrication
equation becomes

]

]x
us]xxh + ]yyhduy=0 =

3h

g

Ux

h2 , s15d

which, in fact, is thex component of Eq.s6d at y=0. Thex
component of the velocity,Ux, is equal to the global speed
U0 at the rear of the drop, while in the self-similar corner
regime it is slightly larger thanU0 ssee Fig. 4d. In order to
keep the discussion transparent, however, we simply take
Ux=U0 to be constant throughout the analysis—in the Ap-
pendix we demonstrate that this hardly affects our results.

For a straight contact line one trivially has]yyh=0, so
that the problem becomes purely one dimensional, in the
sense that there is only a dependence onx. For curved con-
tact lines, however, this transverse curvature term gives a
nonzero contribution and starts to play an important role
when increasing 1/R. In the Appendix we derive that]yyh
=−h/ sxRd up to the lowest order in 1/R, so that one still has
a closed one-dimensional description of the problem. This
lowest-order contribution of the contact line curvature can be
interpreted as a parabolic approximation of the cross section
at a given distance from the rearx, but it is possible to show
more rigorously that

FIG. 7. sad To test the self-similarity of the velocity, we have divided our
data into slices of 52-mm width, at different distances from the corner tip.
The position of the tip is defined by extrapolation of the contact lines away
from the cusp.sbd Definition of C, the orientation of the local fluid velocity
U. scd The experimental data forC as a function ofw collapse on a single
curve, due to the self-similarity of the velocity field. This master curve is in
good agreement with the prediction of the corner model.

FIG. 8. Velocity componentsUr andUw obtained experimentally at different
distances from the corner tipssymbolsd, compared to the theoretical model
sdashed and solid lines, respectivelyd. The radial velocity vanishes at the
contact line, indicating a locally perpendicular fluid velocity.
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]xyyuhuy=0 =
1

xR
Sh

x
− ]xhD + OS 1

R2D . s16d

The higher-order terms originate from deviations from the
parabolic shape, and can only be computed from a complete
analysis incorporating they dependence.

After rescaling thex direction with respect to the equi-
librium contact angle,x̃=x tanueq, we thus find the following
one-dimensional equation for curved contact lines:

h- +
1

R̃x̃
Sh

x̃
− h8D =

3Ca˜

h2 , s17d

where Ca˜ =Ca/ tan3 ueq andR̃=R tanueq. Sinceh andx̃ are of
the same order, it is clear that the curvature term will start to

play a role whenR̃ and h become of the same order of

magnitude. At small heights, i.e.,h! R̃, the curvature term
will thus be small compared to the viscous term and the
physics reduces to that of a straight contact line. For experi-
mental measurements performed at a macroscopic scaleh

=L, the relevant dimensionless parameter will thus beL / R̃.
Before we continue the analysis, let us try to understand

qualitatively how the extra curvature term affects the hydro-
dynamics of curved contact lines. For receding contact lines,
the slope of the interface decreases when increasing the
height of the drop, i.e.,umacro,umicro. Therefore, the local

slopeh8 will always be smaller thanh/ x̃ so that the 1/R̃ term
in Eq. s17d gives a positive contribution to the capillary
forces. In the opposite case ofumacro.umicro this contribution
becomes negative. We thus anticipate that contact line cur-
vature provides an additional capillary driving mechanism in
the case of receding contact lines, which helps to postpone
the forced wetting transition. For advancing contact lines,
on the other hand, it behaves as an additional source of
dissipation.

B. Boundary conditions

A hydrodynamic description of moving contact lines
raises the fundamental difficulty of the singularity ash→0,
due to the divergence of the viscous forces. This singularity
should be resolved on a microscopic, molecular length scale
l, for example, by introducing slip boundary conditions.15,16

In the spirit of Voinov we assume that, apart from viscosity,
there are no additional microscopic dissipation mechanisms,
so one can impose the equilibrium contact angleueq at this
microscopic scalel.3 It was furthermore shown by Eggers
that the macroscopic physics is only weakly dependent on
the precise slip law, so we are allowed to boldly cut the
solutions ath= l.16,39In rescaled coordinates we thus encoun-
ter h8=1 ath= l at x0< l sx=0 corresponds to the position of
the contact lined. At the end of this section we come back to
the validity of these two boundary conditions. Depending on
the chemical composition of the fluid, this microscopic
length should range from nanometers to several tens of na-
nometers, and we therefore takel =10−8 m.23,24

To close the problem we should provide a third boundary
condition, which in general depends on the global properties
of the droplet. Our description up to the lowest order in the
curvature is only valid in the vicinity of the contact line, and
hence, we cannot rigorously match the solutions of Eq.s17d
to the global behavior of the drop. However, it was recently
demonstrated that the critical capillary number for the prob-
lem of a plate withdrawn from a bath only weakly depends
on the global geometry;16 the explicit dependence on the
inclination angle of the plate shows up as a logarithmic fac-
tor. This allows us to perform the following semi-
quantitative analysis. The solutions of Eq.s17d should cross-

FIG. 9. The symbols are experimental data of contact line curvature 1/R̃ vs

Ca˜ on drops of silicon oil.35 sCa˜ =Ca/ tan3 ueq; R̃=R tanueqd. The curvature

suddenly increases dramatically when approaching a critical Ca˜
c. The solid

line represents the theoretical prediction for the maximum capillary number

from Eq. s17d; Ca˜ c can only increase by dramatically increasing 1/R̃. The

numerical values of Ca˜
c are not well predicted by the solid line, but a

quantative agreement can be obtained by slightly modifying the microscopic
boundary conditionsdashed line, see textd.

FIG. 10. The symbols are experimental data of contact line curvature 1/R̃ vs
macroscopic contact angleu sRef. 36d. The solid line represents the mini-
mum contact angle from Eq.s17d; the contact angle can only continue to

decrease by dramatically increasing 1/R̃. The dashed line was obtained with
a slightly modified microscopic boundary conditionssee textd.
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over to the corner solutions, which have]xxh=0 at a
macroscopic scaleL. In order for the solutions to have suf-
ficient overlap, we therefore takeh9=0 at h=L as the third
boundary condition for Eq.s17d. Such anad hocboundary

condition indeed provides a reasonable estimate for Ca˜
c; for

straight contact lines we numerically obtain that Ca˜
c scales

roughly as 1/ lnsL / ld, and the precise values lie within 30%
sRef. 40d of the exact results of Ref. 16. Although our ap-
proach is not rigorous, we are confident that it provides a
semi-quantitative description of the dynamics of curved con-
tact lines.

Since in typical experiments the maximum height of the
drops is less than a millimeter, we takeL=10−4 m, so that
L / l =104. However, let us make the following important re-
mark.A priori, it is not clear at what scale the curved contact
line solutions should be matched to the self-similar corner
solutions. This matching should occur well below the capil-
lary length s<1 mmd, but in principle it could be much
smaller than the experimental scaleL. If this were the case,
however, one should even find smaller values ofR than those
presented in our paper. In this respect, our analysis possibly
underestimates the curvature of the contact line at the rear.
We come back to this point in the Discussion at the end of
the paper.

C. The entrainment threshold for finite R

To investigate how the extra curvature term affects the
dynamics of receding contact lines, we have numerically

evaluated Eq.s17d for different values of 1/R̃, with the pa-
rameters specified in the preceding paragraph. We found that

beyond a certain value of the capillary number Ca˜
c, there no

longer exist solutions consistent with the imposed boundary
conditions. This corresponds to the maximum speed of dew-
etting or the entrainment threshold.14–16 Interestingly, this

Ca˜ c depends on the curvature of the contact line; the solid

line in Fig. 9 shows that Ca˜
c increases with 1/R̃. This implies

that the drop can avoid entrainment by increasing the contact
line curvature at the rear.

This entrainment threshold occurs at a nonzero macro-
scopic slope,14 i.e., h8Þ0 at h=L. In Fig. 10 we plot this

critical slope, tanuc, as a function of 1/R̃ ssolid lined; the
critical contact angle decreases as a function of the contact
line curvature. This is in good agreement with the symbols
representing experimental measurements of the macroscopic

contact angle as a function of 1/R̃. This angle is first ob-

served to decrease continuously, due to an increase of Ca˜ ,
without significant changes of the contact line curvature. Ap-
proaching the critical speed of dewetting, however, a further
decrease of the contact angle has to be accompanied by a
dramatic increase of the contact line curvatures. This in-
crease is well predicted by Eq.s17d. The experimental data
do not extend belowR<80 mm, around which a cusp is
formed at the rear of the drop and small droplets are emitted.

Analyzing the experimental data in terms of the capillary
number, however, we find a striking quantitative discrepancy
with the prediction of our model; the experimental data
shown in Fig. 9 follow a similar trend as the theoretical

curve ssolid lined but the numerical values of Ca˜
c differ by

about a factor of 2.41 Let us now make the following obser-
vation. Within the lubrication theory, the numerical value of
the critical capillary number is very sensitive to the micro-

scopic boundary condition onu]xhul, since Cac=Ca˜ csu]xhuld3.
That is, if the slope of the interface at a microscopic scale
would be about 20% smaller than the equilibrium contact
angle ueq, one would already lower the critical capillary
number by a factor of 2. This is illustrated by the dashed
curve in Fig. 9, which has been obtained from the micro-
scopic boundary conditionh8=0.8 sinstead ofh8=1d. Given
the fact that overall, the theoretical predictions of the lubri-
cation theory work very well, the experimental data suggest
that at high Ca, the microscopic contact angle starts to devi-
ate significantly fromueq.

D. Qualitative features from energy balance

As was shown by de Gennes,14 one can obtain a simpli-
fied, but very insightful description of dynamic contact lines
from a global energy balance. Formally one would obtain a
depth-averaged energy balance by multiplying both sides of
Eq. s17d by hU0, and integrating once from a microscopic to
a macroscopic positionx. By estimating the contribution of
each of the terms, one already captures qualitative features of
the physics. Note that different approaches or approxima-
tions can lead to slightly different laws for the macroscopic
contact angle as a function of Ca.3,4,6 Our aim here is not to
fine-tune any of these models, but just to illustrate how con-
tact line curvature might affect the dynamics.

One can estimate the integrated viscous dissipation by
approximating the geometry near the contact line by a wedge
with a macroscopic contact angleu; this yields

3hU0
2 lnsL / ld / tanu. Without the 1/R̃ term, this dissipation

should be compensated by the unbalanced Young force
gU0scosu−cosueqd, resulting into de Gennes’ law for the
macroscopic or dynamic contact angleu.14 Even though this
argument ignores the strong curvatures of the interface it
does capture the entrainment transition at a nonzero contact
angle, as observed for the sliding dropssFig. 10d. Note, how-
ever, that the predicted angle,uc=ueq/Î3, is somewhat larger
than those observed experimentally.

Let us now estimate the contribution of the additional
term in Eq.s17d. In Sec. V A we argued that this term pro-
vides additional capillary forces for receding contact lines
su,ueqd, while it favors dissipation for advancing contact
lines su.ueqd. At low speeds we can therefore expect the
integrated contribution to scale assueq−ud /R, so that we ob-
tain a modified energy balance,

Sueq
2 − u2 + a

L

R
fueq− ugD =

6Ca lnsL/ld
u

, s18d

where we have developed cosu for small u. The factorL
emerges from the integration froml to L, anda is expected
to be of order unity.

Although the linear correction term in Eq.s18d can only
be justified in the limit of small Ca, it is interesting to see
that Eq. s18d indeed predicts a shift of the entrainment
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threshold due to curvature of the contact line. This is illus-
trated in Fig. 11 where we plot Cac and the miminum angle
uc as a function of the curvature, computed from Eq.s18d.
This qualitatively reproduces the features of the full numeri-
cal integration in Figs. 9 and 10.

VI. DISCUSSION

In this paper we have analyzed the three-dimensional
flow and morphology of the corner singularity at the rear of
sliding drops. We have provided a detailed comparison be-
tween theoretical predictions from similarity solutions of the
lubrication equations, and direct experimental measurements.
The relevance of the similarity solutions is emphasized by
the excellent agreement for the nontrivial velocity field at the
rear of the drop. A striking feature of this flow is that the
fluid velocity at the contact line is always oriented perpen-
dicularly to the contact line, while its absolute value coin-
cides with the normal velocity of the contact line.

We furthermore analyzed the transition from rounded to
cornered drops, by developing a model for curved contact
lines. We found that the forced wetting transition can be
postponed by increasing the curvature of the contact line at
the rear of the drop. This strongly curved part serves as a
small-scale regularization of the corner singularity, and its
typical length scaleR decreases rapidly when Ca approaches
the transition. The general scenario is thus thatthe drop can
avoid the forced wetting transitionby simultaneously devel-
oping a strongly curved contact line at the rear of the drop,
and the straight inclined contact lines at the sides. This mor-
phology mobilizes additional capillary driving forces due to
interface curvatures perpendicular to the direction of the
flow.

The results presented in this paper strongly suggest that
the structure and the flow in the corner are entirely governed
by a balance between viscous and capillary forces. This con-
trasts the approach by Ben Amar, Cummings, and Pomeau,34

in which all viscous forces are assumed to be effectively
localized at the contact line so that the shape of the free
surface follows from a balance between gravity and surface
tension. While this assumption allows us to resolve the glo-

bal shape of the drop, it cannot be expected to describe struc-
tures of scales below the capillary length. For example, the
existence of a purely conical shapefFig. 2scdg crucially re-
quires viscosity; a balance between gravity and surface ten-
sion would yield a strongly convex side view.34 To further
quantify this we have estimated the distance from the contact
line at which gravity and viscous forces attain the same mag-
nitude, directly from our experimental data.42 Figure 12
clearly shows that viscosity dominates over gravity in basi-
cally the entire corner region.

Let us also mention that there exist fully two-
dimensional numerical simulations using a disjoining pres-
sure with a precursor film, in which cusping droplets have
been observed.22,43 At present, however, such simulations
can only incorporate a limited spatial resolution, i.e.,
lmicro/ lg,10−2, and appear to miss the experimentally ob-
served evolution of the corner singularity as a function of Ca.
In this paper we avoid this numerical problem by residing to
one-dimensional descriptions of the two-dimensional flow,
which allows resolving the physically relevant length scales.

The present work provokes a number of questions. The
critical values of Ca predicted by the curved contact line
model differ by about a factor of 2 from the experimental
values. A similar disagreement was encountered by Hocking
for the problem of a plate withdrawn from a bath.15 We sug-
gest that this may provide fundamental information on the
microscopic boundary conditions; one recovers the experi-
mental results when taking a microscopic contact angle
slightly below the equilibrium angleueq. It would be inter-
esting to see whether this could be captured by including a
microscopic disjoining potential.7,8,21,22,44Such an approach
allows us to explicitly incorporate microscopic physics, from
which effective microscopic boundary conditions emerge
without additional assumptions. Results by Thiele, Velarde,
Neuffer, Bestehorn, and Pomeau21 and Thiele, Neuffer, Be-
stehorn, Pomeau, and Velarde22 in which contact angles are
observed to decrease with velocity even at very small scales,
appear to be consistent with our findings. Another reason for
the discrepancy may be that surface roughness, which has
not been taken into account here, can lower the critical

FIG. 11. The critical capillary number, Ca˜
c, and critical slope, tanuc/ tanueq, as a function of the dimensionless contact line curvatureaL / R̃ obtained from Eq.

s18d. These features are in qualitative agreement with full simulations of Eq.s17d.
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speed.19 However, the values of the critical contact angle
predicted by this theory are much larger than those observed
experimentally.

Finally, we have not addressed the selection of the cor-
ner angleF as a function of the capillary number, which
requires a proper matching of the singular behavior near the
contact line to the global corner geometry. The difficulty is
that a truly self-similar interface has no intrinsic length scale,
and is incompatible with the usual wetting boundary condi-
tions imposed at a microscopic scale. We speculate that the
finite curvature at the rear effectively provides a length scale;
only whenR becomes orders of magnitudes smaller than the
capillary lengthlg, which forms the macroscopic cutoff, the
corner can no longer obey physical wetting boundary condi-
tions. This would explain why the formation of a cusp emit-
ting little drops coincides withR/ lg→0.35
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APPENDIX: CURVED CONTACT LINES

In this appendix we derive the lowest-order term of the
transverse capillary pressure]yyh for a moving contact line
that has a finite radius of curvatureR. We then show that
gradients of the velocityUxsxd complicates the analysis pre-
sented in Sec. V, but that it has little impact on the results.

Since locally, the contact line can be described by a pa-
rabolax=y2/ s2Rd, the relevant dimensionless variable in this
problem will bej=y/Î2Rx, which can range from −1 to 1.
Without loss of generality, we parametrize the interface as

hsx,yd = fsxdf1 − j2gF1 + o
n=1

`

a2nsxdj2nG . sA1d

The functionfsxd is simply the height profile at the symme-
try axis of the drop, i.e.,hsx,y=0d, while we write the cross
section of the interface in a polynomial expansion. We have
conveniently factored out the term that vanishes at the con-
tact line. Note that the functionsfsxd and asxd implicitly
depend onR; eventually, the goal is to determine how the
center profilefsxd is affected by a finiteR.

In Eq. s15d we have to evaluate]xyyh at the symmetry
axis y=0. Using the parametrization introduced above this
becomes

]xyyuhuy=0 = −
1

R
Fs1 − a2d]xS f

x
D − a28

f

x
G , sA2d

and thus requires explicit knowledge ofa2sxd. Let us now
make the following crucial observation. In order to avoid a
singularity of the slope of the interface when going around
the drop, it turns out that allasxd should vanish asx→0. For
example, the contact angleu at the rear of the drop simply
follows from tanu= f8, while elsewhere on the contact line

tanu = u ¹ huj=±1 =
fsxd
x F1 + o

n=1

`

a2nsxdGÎ1 +
2x

R
. sA3d

In order thatu varies continuously along the contact line, we
thus require thatoa2nsxd vanishes in the limitx→0. Repeat-
ing the same argument for contours at arbitrary fixed values
uju,1, one finds that, in fact, alla2nsxd vanish individually at
x=0.

We can thus writea2sxd.a28x, which should be of order
Osx/Rd sinceR provides the only length scale foran8. This
results in the expression of Eq.s16d,

]x]yyuhuy=0 =
1

xR
S f

x
− f8D + OS 1

R2D . sA4d

Let us now address the approximation thatUxsxd=U0

that was made in Sec. V. From the continuity equation it is
clear that this approximation disregards the velocity compo-
nent Uy: although Uy vanishes at the symmetry axis, the
gradient]yUy can be nonzero. To properly take these gradi-
ents into account one should thus incorporate continuity and
start from Eq.s8d. Using the parametrization of Eq.sA1d and
keeping only the lowest order in 1/R, we then obtain a
fourth-order equation,

]xff3f-g = 3Caf8 +
1

R
]xH f3]xF f

x
GJ +

1

R
f3]xxF f

x
G . sA5d

Without the last term on the right-hand side, one could im-
mediately integrate this equation to Eq.s17d. To investigate
the effect of the extra term, we have numerically integrated
this fourth-order equation; this yields results that are very
similar to those presented in Sec. V. We have therefore pre-
ferred to discuss the physics of rounded drops using the sim-
plified third-order equation instead of Eq.sA5d.

FIG. 12. One can separate the viscosity-dominated regime from the gravity-
dominated regime by equating the corresponding terms in the full lubrica-
tion equationsRef. 42d. It is clear that viscous effects are dominant in the
entire corner regime, and not only close to the contact line. The remarkable
asymmetry between the front and the back of the drop has two origins:sid
]h/]x.0 at the rear and therefore reduces the effect of gravity, while at the
front ]h/]x,0, so that gravity is enhancedsRef. 42d. sii d the macroscopic
contact angles at the rear are much smaller than those at the front, resulting
into larger distances to attain the cross-over height.

072101-11 Self-similar flow and contact line geometry Phys. Fluids 17, 072101 ~2005!

Downloaded 28 Jun 2005 to 193.54.81.84. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



1C. Huh and L. E. Shriven, “Hydrodynamic model of steady movement of
a solid/liquid/fluid contact line,” J. Colloid Interface Sci.35, 85 s1971d.

2E. B. Dussan, V. Davis, and S. H. Davis, “On the motion of a fluid-fluid
interface along a solid surface,” J. Fluid Mech.65, 71 s1974d.

3O. V. Voinov, “Hydrodynamics of wetting,” Fluid Dyn.11, 714 s1976d.
4R. G. Cox, “The dynamics of the spreading of liquids on a solid surface,”
J. Fluid Mech. 168, 169 s1986d.

5L. M. Hocking, “The spreading of a thin drop by gravity and capillarity,”
Q. J. Mech. Appl. Math.36, 55 s1983d.

6T. D. Blake, J. De Coninck, and U. D’Ortuna, “Models of wetting: Immis-
cible lattice Boltzmann automata versus molecular kinetic theory,”
Langmuir 11, 4588s1995d.

7L. M. Pismen and Y. Pomeau, “Disjoining potential and spreading of thin
liquid layers in the diffuse-interface model coupled to hydrodynamics,”
Phys. Rev. E62, 2480s2000d.

8L. W. Schwartz, R. V. Roy, R. R. Eley, and S. Petrash, “Dewetting patterns
in a drying liquid film,” J. Colloid Interface Sci.234, 363 s2001d.

9U. Thiele, K. John, and M. Bär, “Dynamical model for chemically driven
running droplets,” Phys. Rev. Lett.93, 027802s2004d.

10P. Seppecher, “A numerical study of a moving contact line in Cahn–
Hilliard theory,” Int. J. Eng. Sci.34, 977 s1996d.

11Y. D. Shikhmurzaev, “Moving contact lines in liquid/liquid/solid sys-
tems,” J. Fluid Mech.334, 211 s1997d.

12Y. Pomeau, “Recent progress in the moving contact line problem: A re-
view,” C. R. Mec. 330, 207 s2002d.

13S. F. Kistler and P. Schweizer,Liquid Film Coating—Scientific Principles
and Their Technological ImplicationssKluwer, Dordrecht, 1997d.

14P. G. de Gennes, “Deposition of Langmuir–Blodget layers,” Colloid
Polym. Sci. 264, 463 s1986d.

15L. M. Hocking, “Meniscus draw-up and draining,” Eur. J. Appl. Math.12,
195 s2001d.

16J. Eggers, “Hydrodynamic theory of forced dewetting,” Phys. Rev. Lett.
93, 094502s2004d.

17D. Quéré, “On the minimal velocity of forced spreading in partial wet-
ting,” C. R. Acad. Sci., Ser. II: Mec., Phys., Chim., Sci. Terre Univers,
313, 313 s1991d.

18L. D. Landau and B. V. Levich, “Dragging of a liquid by a moving plate,”
Acta Physicochim. URSS20, 17, 42 s1942d; B. V. Derjaguin, “On the
thickness of the liquid film adhering to the walls of a vessel after empty-
ing,” ibid. 20, 349 s1943d.

19R. Golestanian and E. Raphael, “Relaxation of a moving contact line and
the Landau–Levich effect,” Europhys. Lett.55, 228 s2001d.

20T. D. Blake and K. J. Ruschak, “A maximum speed of wetting,” Nature
sLondond 282, 489 s1979d.

21U. Thiele, M. G. Velarde, K. Neuffer, M. Bestehorn, and Y. Pomeau,
“Sliding drops in the diffuse interface model coupled to hydrodynamics,”
Phys. Rev. E64, 061601s2001d.

22U. Thiele, K. Neuffer, M. Bestehorn, Y. Pomeau, and M. G. Velarde,
“Sliding drops on an inclined plane,” Colloids Surf., A206, 87 s2002d.

23T. Podgorski, J. M. Flesselles, and L. Limat, “Corners, cusps and pearls in
running drops,” Phys. Rev. Lett.87, 036102s2001d.

24A. Daerr, N. Le Grand, L. Limat, and H. A. Stone, “Drops sliding along an
inclined plane: Experiments versus 3D hydrodynamical model,” Proceed-
ings of the Fifth European Coating Symposium, 17–19 September 2003,
Polytype Converting, Friburg, 2004, edited by P. M. Schweizer.

25U. Thiele and E. Knobloch, “Front and back instability of a liquid film on
a slightly inclined plate,” Phys. Fluids15, 892 s2003d.

26A. G. Gonzales, J. Diez, J. Gomba, R. Gratton, and L. Kondic, “Spreading
of a thin two-dimensional strip of fluid on a vertical plane: Experiments
and modeling,” Phys. Rev. E70, 026309s2004d.

27G. Reiter and A. Sharma, “Auto-optimization of dewetting rates by rim

instabilities in slipping polymer films,” Phys. Rev. Lett.87, 166103
s2001d.

28H. A. Stone, L. Limat, S. K. Wilson, J.-M. Flesselles, and T. Podgorski,
“Corner singularity of a contact line moving on a solid surface,” C. R.
Phys. 3, 103 s2002d.

29L. Limat and H. A. Stone, “Three-dimensional lubrication model of a
contact line corner singularity,” Europhys. Lett.65, 365 s2004d.

30X. D. Shi, M. P. Brenner, and S. R. Nagel, “A cascade structure in a drop
falling from a faucet,” Science265, 157 s1994d; M. Brenner, J. R. Lister
and H. A. Stone, “Pinching threads, singularities and the number
0.0304…,” Phys. Fluids 8, 2827s1996d; J. Eggers, “Nonlinear dynamics
and breakup of free-surface flows,” Rev. Mod. Phys.69, 865 s1997d.

31I. Cohen and S. R. Nagel, “Scaling at a selective withdrawal transition
through a tube suspended above the fluid surface,” Phys. Rev. Lett.88,
074501s2002d; W.W. Zhang, “Viscous entrainment from a nozzle: Singu-
lar liquid spouts,”ibid. 93, 184502s2004d.

32J. Eggers, “Air entrainment through free-surface cusps,” Phys. Rev. Lett.
86, 4290s2001d; E. Lorenceau, F. Restagno, and D. Quéré, “Fracture of a
viscous liquid,” ibid. 90, 184501s2003d.

33E. Rio, A. Daerr, B. Andreotti, and L. Limat, “Boundary condition in the
vicinity of a dynamic contact line,” Phys. Rev. Lett.94, 024503s2005d.

34M. Ben Amar, L. J. Cummings, and Y. Pomeau, “Transition of a moving
contact line from smooth to angular,” Phys. Fluids15, 2949s2003d.

35Recent experiments show that as the corner develops, there is a tremen-
dous increase of contact line curvature in a very narrow range of Ca.
These results will be published in a forthcoming paper, by the same au-
thors as of Ref. 24.

36Note that the curveHszd vs Fszd is different from the one presented in Ref.
29, which had a problem with numerical precision. However, the conclu-
sions remain unaltered.

37In the frame comoving with the droplet, mass conservation requires that
the total flux accross a cross section vanishes, cf. Eq.s11d. Since at the
contact line the downward velocityUx is smaller than the global drop
speedU0, this locally corresponds to an “upstream” velocity in the comov-
ing frame. To compensate for this, the velocity atw=0 will be larger than
U0.

38The solutions never become purely parabolic; Eq.s12d shows that the
higher-order derivatives become dominant close to the contact line. How-
ever, our numerical curves indicate that deviations from a simple parabola
become increasingly localized to the contact line whenF→0.

39J. Eggers, “Toward a description of contact line motion at higher capillary
numbers,” Phys. Fluids16, 3491s2004d.

40We have compared our results for Ca˜
c to Eq. s9d of Ref. 16, by takingL

= lg /10 slg being the capillary lengthd and by varying the geometric pa-
rameterueq

2 /uplate from 0.1 to 10.
41Note that for increasing viscosity, which in this case corresponds to an

increasing microscopic lengthl of the silicon oil polymer chains, the criti-
cal capillary number is slightly increasing. This is consistent with the
typical scaling of Ca~1/ lnsL / ld.

42We have equated the absolute values of the viscous term, 3hU / sgh2d, and
the gravitational term,ssinaex−cosa=hd / lg

2, which appear in the full
lubrication equation. This provides an objective cross-over height that is
determined directly from experimental measurements; close to the contact
line we know the slope=h from measurements using a laser sheet,33 a is
the inclination angle of the plane, whileuUu is simply the normal velocity
of the contact line.

43M. Bestehorn and K. Neuffer, “Surface patterns of laterally extended thin
liquid films in three dimensions,” Phys. Rev. Lett.87, 046101s2001d.

44P. G. de Gennes, X. Hua, and P. Levinson, “Dynamics of wetting: Local
contact angles,” J. Fluid Mech.212, 55 s1990d.

072101-12 Snoeijer et al. Phys. Fluids 17, 072101 ~2005!

Downloaded 28 Jun 2005 to 193.54.81.84. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp


