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Abstract – We report on systematic measurements of both adsorption and anisotropic mechani-
cal deformations of mesoporous silicon, using heptane at room temperature. Porous Si obtained
from highly doped (100) Si can be thought of as a nanoscale random honeycomb with pores par-
allel to the [001] axis. We show that strains ε‖ and ε⊥ measured along and transversely to the
pore axis exhibit a hysteretic behavior as a function of the fluid pressure, which is due to the
hysteresis in fluid adsorption. The pressure dependence of the strains together with the indepen-
dent measurement of the transverse stress, allows us to determine the biaxial transverse modulus
and to estimate the longitudinal Young’s modulus of porous Si. We argue that the value of these
constants implies that Young’s modulus of the 6 nm thick walls of the honeycomb is about 5 times
smaller than that of bulk silicon, striking evidence of finite-size effects.

Copyright c© EPLA, 2015

Introduction. – Porous silicon (PoSi) has been ex-
tensively studied, originally for its optical and electrical
properties and more recently for its mechanical proper-
ties. A large variety of pore morphologies and a large
range of porosities can be obtained depending on the dop-
ing and etching conditions [1]. In this paper, we focus
on PoSi obtained from highly p-doped (100) Si wafers.
In this case, etching leads to straight pores aligned with
the [001] axis [2]. For about 10 years, this system has
received renewed attention as a model system for adsorp-
tion studies [3]. One of the intriguing features of this sys-
tem is that the emptying of liquid-filled pores occurs in
a collective-like process. This is usually attributed to the
connectivity of the pore network [4] but pores in PoSi are
non-connected [3]. Thus, the apparent collective behav-
ior has been attributed to disorder inside each pore [5] or
to the adsorption-induced mechanical deformation of the
pore walls [6].

In order to test this idea, the first step is to check
whether such a material as stiff as porous single crys-
tal Si can be deformed by capillary forces. A first at-
tempt by Dolino et al. [7] has shown the existence of such
a deformation, but no systematic and precise compari-
son between the strain and the amount of adsorbed fluid
was performed. More recently, other porous systems have

been studied [8–10] and theoretical models and simula-
tions developed [11–13].

The second goal of the present work is to get a better
understanding of the elastic properties of PoSi. Recently,
several groups measured the elastic modulus through
nano-indentation experiments [14,15]. However, such a
technique can yield the value of Young’s modulus only if
the material is isotropic and if Poisson’s ratio is hypoth-
esized. Though nano-indentation results are roughly con-
sistent with PoSi being described as a 3D isotropic foam,
they do not provide strong evidence for it. While the struc-
ture of some PoSi samples is indeed close to an isotropic
foam, this is not the case for the system we are investi-
gating. Acoustic wave propagation [16] and Brillouin [17]
scattering have also been used for the determination of
elastic constants of PoSi. Most of these experiments have
been analyzed taking into account the underlying cubic
symmetry of the Si lattice but neglecting the important
anisotropy of the aligned straight pores.

In this paper, we report on systematic measurements
of adsorption-induced strain in mesoporous Si which is
a realization of a disordered honeycomb at the unusual
nanometer scale (fig. 1). In the next section, we de-
scribe the experimental techniques, mainly the novel opti-
cal apparatus used to measure the strains ε‖ and ε⊥ along
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Fig. 1: Schematic view of the sample geometry and transmis-
sion electron microscopy plane view of a 70% porosity sample.

and transversely to the pore axis, during an adsorption-
desorption cycle as a function of the gas pressure P . In the
third section, we discuss qualitatively the shape of the hys-
teresis cycles of the strains and amount adsorbed. The
fourth section is devoted to a numerical study of the elastic
deformation induced by a confined fluid at the nanoscale.
We validate the sharp interface approximation used to
analyze quantitatively the experimental data. The fifth
section is devoted to a quantitative discussion of the re-
versible branch of the cycle when pores are full of liquid.
In this situation, the liquid in the core of pores is at nega-
tive pressure, PL. We have measured the effective moduli
M‖,⊥ ≡ dPL/dε‖,⊥ which can be related to elastic moduli
of the porous material. Finally, we show that the values
of these moduli and their dependence on the porosity are
consistent with a honeycomb structure whose silicon walls
have a Young’s modulus several times smaller than that
of bulk silicon.

Samples and setups. – Samples : Details about sam-
ple preparation and full characterization have been pub-
lished elsewhere [2]. The samples have nominal porosity
p of 50% and 70%, obtained by etching (100) Si wafers.
The pores are straight, non-connected and perpendicular
to the wafer surface. The pore cross-section is roughly
polygonal in shape and the pore radius distribution is
large, 6.5 ± 3 nm and 13 ± 7 nm for 50% and 70% poros-
ity. Thus, the porous layer can be thought of as a random
nanoscale honeycomb. The thickness of the wall between
pores is 5–6 nm, independently of the porosity. The thick-
ness of the porous layers used in the present work is 55 μm.
These porous layers were studied both attached to the un-
derlying Si wafer (supported layers) or detached from the
wafer (membranes).

Adsorption isotherms : The adsorbed amount of
n-heptane is measured at T = 18 ◦C as a function of the
increasing and decreasing gas pressure P with a commer-
cial apparatus (Micromeritics ASAP2010).

Transverse strain of membranes: Two sample pieces (of
cm size) are mounted opposite to each other, with a small
gap left between their free ends. The gap decreases upon
porous samples expansion. The gap is measured with a
CCD camera equipped with a high-magnification objec-
tive. The advantage of this symmetric geometry is to
cancel the effect of a possible drift of the camera with
respect to the cell: a drift changes the gap position on

the CCD but not its width. The final uncertainty on ε⊥
is 10−7. The samples were cut randomly with respect to
the crystal axis without measurable effect on ε⊥. Thus,
we will neglect any anisotropy transverse to the pore
direction.

Longitudinal strain of membranes : The order of magni-
tude of ε‖ is the same as that of ε⊥ but the deformation
along the pore axis is much smaller since the membranes
are only a few tens of micrometers thick. Thus, a differ-
ent setup was used: a small piece of membrane is sand-
wiched between a mirror and a semi-reflecting plate. The
sample is free to expand in transverse direction. In both
setups, the samples are held in place with soft springs so
that the external stress is negligible compared to the sorp-
tion stress. The two optical components form a wedge
whose small angle depends on the membrane thickness.
When illuminated with a He-Ne laser, one obtains equal
thickness fringes which shift when the sample thickness
changes. The amplitude of the deformation being of the
order of 10 nm, the fringe shift is small, of the order of a
tenth of a fringe. This means that phase change induced
by the change in gas pressure has to be corrected. To this
end, we measured the optical index of n-heptane prior to
the adsorption experiment. In the end, the accuracy is
limited by thermal drift of the whole setup, including the
CCD camera. The final uncertainty on ε‖ is about 10−6,
an order of magnitude larger than for ε⊥.

In contrast to adsorption isotherms which are measured
for discrete values of the gas pressure P , strains ε‖(P ) and
ε⊥(P ) are scanned by changing continuously the pressure
at a constant rate. The usual duration of a whole cycle is 6
hours. Whatever the duration between 4 to 12 hours, the
cycle remains unchanged, except for the emptying which
appears smoother at high sweeping rate.

Qualitative behavior. – Both the adsorption
isotherm and strains are shown in fig. 2 for a 50% poros-
ity membrane. The shape of the isotherm is similar to
that obtained with a simple fluid such as nitrogen or ar-
gon. Condensation in pores happens progressively up to
25 mbar while evaporation occurs rather abruptly around
15 mbar. For a 70% porosity membrane, the isotherm is
similar, the pressures being shifted to higher values.

The variations of the strains during a cycle also display
an hysteresis (fig. 2). At low pressure, on the reversible
part A of the isotherm, the film adsorption is accompanied
by an extension along the pore axis and a clear contrac-
tion along the transverse direction up to a few mbars. This
transverse contraction is remarkable: in isotropic materi-
als such as porous glass [10,18] or carbon [9] a marked
expansion is always observed. In the case of porous silica
SBA-15 [8] and MCM-41 [11] expansion transverse to the
pore axis is also observed (ε‖ has not been measured in
these systems). On branch B, the pores fill progressively
from the smallest to the largest, creating concave menisci
at the pore ends. The liquid is then at negative pressure so
that both ε‖ and ε⊥ start decreasing. When all the pores
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Fig. 2: Upper graph: adsorption of n-heptane at 18 ◦C in a 50%
porosity membrane (saturated vapor pressure P0 = 42.5 mbar).
Lower graph: parallel and transverse strains ε‖ and ε⊥.

are full of liquid, on the saturation plateau (branch C),
the liquid pressure increases with the gas pressure: the
material expands.

Decreasing P from the saturated vapor pressure P0, the
material contracts reversibly on the saturation plateau un-
til evaporation starts (D). When all the pores are empty,
one recovers the reversible film branch A. As noted earlier,
the emptying branch D is difficult to measure. Since evap-
oration occurs in a narrow pressure range, the position and
shape of the D branch is dependent on the pressure rate
dP/dt, even at the lowest rate when evaporation takes
place in about one hour. This is especially true for ε‖:
in the interferometric setup, the membrane is sandwiched
between two optical surfaces and the “open ends” of the
pores are partially obstructed. The ε⊥ measurement is not
very accurate in the D branch for another reason: the emp-
tying of the pores triggers a slight curvature of the sample,
which, in turn, causes a slight defocusing of the free edge
of the sample and a small change in the reflected intensity.
This is the reason why a small overshoot can be seen at the
end of the branch D. This overshoot is due to an optical
artifact sensitive to the optical alignment. However, the
branch D is the only one which is difficult to determine. In
particular, the two reversible branches are straightforward
to measure with a good accuracy, as shown by the overlap
of the adsorption and desorption curves.

Similar strain cycles are observed for 70% porosity sam-
ples, but shifted to higher pressure by the same amount
as the adsorption cycle.

In conclusion, the shape of ε‖(P ) is roughly similar to
the strain in other mesoporous materials. The main quali-
tative difference of PoSi is the contraction of ε⊥(P ) at low
pressure. A phenomenological model recently developed

by Neimark and co-workers has been able to explain the
observed behavior in porous silica [12,19], which consists
in a regular array of parallel cylindrical pores. Though this
model provides a useful theoretical framework, its present
implementation is not relevant for our system. First, the
model does not consider any strain along the pore axis
while we find that both strains are of the same order. Sec-
ond, the model cannot explain the transverse contraction
at low pressure. The origin for this contraction is a com-
pletely open question.

Molecular simulations. – As shown by Günther
et al. [11], a simple molecular model including dispersion
forces is able to catch the main physics of sorption-induced
deformations. We use the standard grand canonical
Monte Carlo algorithm to mimic the experimental situ-
ation where the chemical potential of the adsorbed fluid is
imposed through the pressure P of the surrounding gas.
The details of the cross-sectional geometry of PoSi are dis-
carded, the important point being the strong anisotropy.
The pore model is thus chosen to be an infinite cylin-
der (periodic boundary conditions are applied along the
pore axis). n-heptane being a non-polar fluid, the fluid-
fluid and fluid-pore interactions are van der Waals and
can be described by the Lennard-Jones (LJ) potential
4ε[(σ/r)12 − (σ/r)6]. For this preliminary study, we make
the assumption that the molecules are spherical. Follow-
ing Watanabe et al. [20], the potential is truncated at
3σ and a quadratic term is added so that both the po-
tential and force are continuous. The fluid-fluid param-
eters σff = 0.6 nm and εff/k = 505 K, where k is Boltz-
mann’s constant, allow us to reproduce the experimental
n-heptane phase diagram, except for its freezing point,
probably because n-heptane is actually made of linear
chains. In order to remain in the liquid phase, calcu-
lations are thus performed at 353 K, just above the LJ
freezing point.

For the fluid-wall parameters we chose σfw = σff, and
εfw so that the adsorption-desorption hysteresis is between
P/P0 = 0.4 and 0.8 for the range of pore radii studied (see
fig. 3). The pore radii are given by the position of the
Gibbs surface defined so that the excess amount adsorbed
is zero: the saturation branches then superimpose to the
bulk data.

The relevant thermodynamic potential is the grand po-
tential Ω(μ, V, T ), where μ is the chemical potential, V
the volume and T the temperature. For fixed T and
μ, dΩ = −PthdV , where Pth is the so-called thermody-
namic pressure. For bulk fluid, Pth is identical to the
mechanical pressure. For a liquid confined in a cylindri-
cal pore, the sharp interface approximation gives: Ω =
−πr2

plPL + 2πrplγ so that Pth = PL − 2γ/rp, where rp

and l are the pore radius and length, and γ the fluid-wall
surface tension. Pth is the relevant quantity to be con-
sidered when the pore deforms along its axis. Note that
this pressure differs from the solvation pressure defined in
ref. [12], where only transverse strain is considered.
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Fig. 3: (Colour on-line) Adsorption isotherms and thermody-
namic pressure Pth for a Lennard-Jones fluid confined in cylin-
drical pores. Lines are a guide to the eye. Dashed line in the
upper panel: bulk liquid, indistinguishable from the saturation
branches. Inset: Pth − PL vs. 1/rp for various P/P0.

Pth has been calculated during the course of the sim-
ulation [21–23] (see fig. 3, lower panel). Upon adsorp-
tion (open symbols), the fluid is confined close to the pore
wall, resulting in a positive spreading pressure in the di-
rections parallel to the wall, in particular along the pore
axis. When the pore is filled with liquid, an extra nega-
tive contribution comes from the liquid under tension for
P/P0 < 1. The relation Pth = PL − 2γ/rp is well veri-
fied for the pore studied with γ = −21.5 mJ/m2 (inset in
fig. 3). The sharp interface approximation is thus valid for
rp � 3.2 nm, corresponding to the experimental samples.

We now focus on a deformable pore. To keep the model
simple, we suppose that the pore deforms along its axis
only. The elastic modulus of walls has been chosen as
low as 1 GPa in order to enhance deformations and pos-
sible effects on the adsorption isotherms. As a matter of
fact, no effect has been observed on the isotherms (less
than 5 × 10−4 relative difference). Still, a deformation
is observed along the condensation-evaporation curves.
We find that the strain ε‖ is proportional to Pth and that
the ratio Pth/ε‖ is consistent with the elastic modulus of
the pore wall. Note that this is true whatever the modulus
value (within the 5% uncertainty of the numerical data),
showing that the system is in the linear elastic regime.
These results have two important consequences: i) the
variation of Pth as a function of P/P0 should be qualita-
tively similar to the measured ε‖(P ), and this is indeed
the case; ii) the pore sizes in our samples are large enough
for the strain dependence with Pth to be equal to the de-
pendence with PL, the parameter which can be obtained
experimentally.

Fig. 4: Strains as a function of the liquid pressure PL. Only
data corresponding to a decreasing gas pressure are shown.

Table 1: Measured elastic responses to inner pressure PL.

Sample Porosity p M‖ M⊥ dσ⊥
dPL

dPL

dε′
⊥

(GPa) (GPa) (GPa)
50% 0.512 47 42.5 0.38 320
70% 0.704 18.1 10.6 0.57 270

Elastic constants of porous silicon. – In fig. 4, the
strains ε‖ and ε⊥ are plotted as a function of the equilib-
rium liquid pressure PL = RT/VL ln(P/P0), where R is
the ideal gas constant and VL, the molar volume of the
liquid. As expected, we find that the strains are perfectly
linear in PL along the saturation plateau. This allows us
to define the effective elastic moduli M‖,⊥ ≡ dPL

dε‖,⊥
which

characterize the response of the porous material when sub-
mitted to an homogeneous inner pressure. The values for
M‖ and M⊥ are summarized in table 1.

Another independent elastic modulus can be obtained
using supported layers, as suggested by Barla et al. [24].
If the porous material is still attached to the wafer, ad-
sorption process induces a stress in the porous layer which
results in a bending of the structure. The radius of curva-
ture R is easily measured with standard optical interfer-
ometry. The variation of 1/R with P is shown in fig. 5 for
a supported layer of 50% porosity.

For our samples, the thickness (dP = 55 μm) and modu-
lus (as shown below) of the porous layer are much smaller
than those of underlying bulk Si (dS = 220 μm). In this
case, the neutral surface is very close to the middle of
the bulk layer and the average strain ε′

⊥ of the porous
layer varies with the curvature 1/R as: dε′

⊥/d(1/R) =
(dS + dP )/2. Following Reinhart and Logan [25], the
transverse stress σ⊥ exerted on the porous layer by the
underlying bulk layer reads

σ⊥ = − 1
R

1
6dP (dS + dP )

(
d3

S

SS
+

d3
P

SP

)
. (1)

SS and SP are the compliances of the bulk and PoSi: SS =
(1 − ν)/E = 1/180 GPa−1 (E = 130 GPa and ν = 0.28 for
(100) wafers [26]). In the worst case, the correction due
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Fig. 5: Inverse radius of curvature as a function of the gas pres-
sure P for a 50% porosity supported layer. Note the similarity
with ε⊥(P ) in fig. 2.

to the second term in σ⊥ is 3% and will be neglected. We
find that σ⊥ varies linearly with PL. Values for dσ⊥

dPL
and

dPL

dε′
⊥

are given in table 1.
The next step is to relate the 3 response coefficients M‖,

M⊥ and dσ⊥
dPL

to the “fundamental” elasticity quantities of
Young’s modulus (E) and Poisson’s ratio (ν). Choosing
[100], [010] and [001] as the axes ([001] is the pore axis),
the compliance matrix can be written as

⎛
⎜⎝

ε1

ε2

ε3

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1
E1

−ν12

E1
−ν31

E3

−ν12

E1

1
E1

−ν31

E3

−ν13

E1
−ν13

E1

1
E3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎝

σ1

σ2

σ3

⎞
⎟⎠ (2)

with ν13
E1

= ν31
E3

. We have used the fact that axes (1) and
(2) ([100] and [010], respectively) are equivalent and we
have not written the shear components since there is no
shear stress in our experiments. We are left with 4 un-
known elastic coefficients while i) we have measured only
3 independent quantities, ii) we still have to relate the liq-
uid pressure PL in the pore to the average stresses σi

1,2,3
(superscript i stands for stresses originating from inner
pore pressure). For the pore direction (3), the balance
of forces gives σi

3 = pPL, where p is the porosity. How-
ever, there is no simple way to obtain the two in-plane
components σi

1,2(PL) which are equal in our experiments:
σi

1,2(PL) ≡ σi
⊥(PL). For free membranes, we thus have

ε⊥ =
1 − ν12

E1
σi

⊥(PL) − ν13

E1
pPL, (3)

ε‖ = −2ν31

E3
σi

⊥(PL) +
1

E3
pPL. (4)

And for supported layers:

ε′
⊥ =

1 − ν12

E1
[σ⊥(PL) + σi

⊥(PL)] − ν13

E1
pPL. (5)

The numerical values in table 1 allow to calculate the
biaxial modulus E′

1 ≡ E1
1−ν12

. One finds 18.6 and 6.2 GPa
for the 50% and 70% porosity samples. One can also com-
pute E3 as a function of ν31. For ν31 in the range 0.1–0.3,

Table 2: Comparison of the elastic moduli for PoSi pre-
dicted for a honeycomb structure and obtained from experi-
mental data (the “experimental” value for E3 is obtained for
ν31 = 0.28).

Sample E3 (GPa) E′
1 (GPa)

pred. exp. pred. exp.
50% 63 12 ∼ 54 18.6
70% 38 6.5 27 6.2

one finds E3 to be in the range 20–11 GPa and 11–6 GPa
for the 50% and 70% samples.

These small values are compatible with the literature,
especially in view of the large dispersion of experimental
data. Let us also note that values of E3 and E′

1 are not
very different so that the usual assumption of an isotropic
material is a posteriori not so bad, at least for porosity
in the range 50–70%. The usual interpretation for these
small values of Young’s modulus (see, e.g., [14]) is that
PoSi is a 3D foam with open cells so that Young’s modulus
of bulk Si is reduced by a factor (1 − p)2. However, such
a model should not be relevant for our samples and we
propose in the following to compare our measurements
with the mechanical properties of a honeycomb.

Mechanical properties of a honeycomb are well
known [27]. For such a structure, one expects E3 =
E(1−p) and ν31 = ν, where E and ν are Young’s modulus
and Poisson’s ratio of the supposedly isotropic material
forming the wall. With E = 130 GPa and ν = 0.28,
one finds E3 equals to 63 and 38 GPa for the 50% and
70% samples. Inserting ν31 = 0.28 in the above equations
yields the experimental values 12 and 6.5 GPa (see table 2
for a summary of expected and measured values). The de-
pendence on porosity is consistent with expectation, but
the absolute value of the modulus is roughly 5 times too
small. The in-plane properties (ν12 and E1) are struc-
ture dependent. For an hexagonal honeycomb, the biaxial
modulus E′

1 = E(t/l)/
√

3, where t and l are the thickness
and length of the walls perpendicular to the pore axis,
respectively. This expression is valid only in the limit of
thin walls which is hardly met for our samples (the mean
length to thickness ratio, l/t, equals 1.4 and 2.8 for the
50% and 70% samples). Moreover, our samples are ran-
dom honeycombs so that the expression for E′

1 is only an
estimate. One finds that the biaxial modulus E′

1 is about
54 and 27 GPa for the 50% and 70% samples. Again, the
experimental values are a few times smaller than the ex-
pected ones; for the 70% sample which better satisfies the
thin wall limit, the ratio of the experimental value to the
expected one is close to 5, similar to the ratio for E3.

In sum, all our experimental data are compatible with a
honeycomb structure, provided that Young’s modulus Ẽ of
the Si walls between pores is 5 times smaller than that of
bulk silicon. This is the first time that such a huge reduc-
tion of Ẽ is observed, but it is not completely surprising for
walls 5–6 nm thick. Indeed, it is well known that finite-size
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effects lead to a decrease in the effective Young’s modu-
lus [28–30] by a factor which can be as high as 3 for a
12 nm thick cantilever [30]. The size dependence of the
effective Young’s modulus has been attributed to a num-
ber of effects, including surface oxidation, non-linear bulk-
elasticity, surface stress effects. . . (see, e.g., [31]). Surface
oxidation can be ruled out since we have analyzed our sam-
ples a few hours after preparation [32]. Non-linear elastic-
ity is not expected either in view of the low strains we have
measured. On the other hand, we must note that the Si
walls between pores are rough at an atomic scale and that
previous study showed that breaking of Si-Si bonds oc-
curs during the formation of thick PoSi layers [33]. These
two points presumably impact the value of Ẽ but they
are not likely to account for the huge reduction in Ẽ. We
think that the surface stress effect is the best candidate
to explain this reduction. Clearly, the geometry of the Si
walls is not well enough characterized to allow an accurate
comparison with the existing models, but our experiments
could help to set some limit to model parameters. Our
system is also appropriate to study the possible effect of
the nature of the liquid surrounding the nano-wall which
could impact the surface stress.

Conclusion. – We have performed measurements of
anisotropic adsorption-induced strains in porous silicon.
The overall shape of the hysteretic strains and adsorption
loops are consistent with expectation. In the saturation
regime, we measure the elastic responses of the samples
to the liquid pressure in the pores. The values of the
elastic moduli are consistent with the picture of a honey-
comb structure if one assumes that Young’s modulus of
the silicon wall between the pores is about 5 times smaller
than its bulk value. This dramatic reduction could be an
extreme case of the well-known finite-size effect observed
in nano-wires or nano-cantilevers. Furthermore, the exis-
tence of strong surface stress effects supports the idea that
thermodynamics of the solid-liquid interface could play an
important role in the adsorption phenomenon [6].
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