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ABSTRACT: From simple models of thermally activated contact line
dynamics far below the depinning transition, one expects the velocity to
depend exponentially on the applied force and the activation area to be the size
of the defects on the surface. We study contact line motion on evaporated gold
films and find that the dynamics are activated, but the activation area is not
straightforwardly linked to the surface roughness. Surprisingly, the activation
area can be significantly smaller than any features on the surface. Furthermore,
it depends strongly on the liquid. We show that this indicates that the line is
close to the depinning threshold at experimentally accessible velocities. A
model based on independent defects is developed and used to show deviations
from the purely exponential law. The dynamics are written entirely in terms of
properties of the surface and partially wetting liquid. In addition, we are able to
show that the region of validity of models of thermal activation on
mesoscopically rough surfaces typically corresponds to velocities of less than 1 mm/s.

■ INTRODUCTION

How a liquid spreads on a solid is strongly influenced by the
disorder on the surface. This is at once a practical issue − as
many ordinary surfaces are either chemically or topographically
heterogeneous, if not on the optical scale then at the
nanometric scale − and a general one1 since it is an example
of an elastic interface in a disordered medium, much like
magnetic domain walls2 or crack front propagation.3

In accordance with Young’s law, γ cos θeq = γSV − γSL, the
equilibrium contact angle θeq for a liquid on a solid surface is
determined by the set of interfacial tensions between the liquid,
vapor, and solid (γ = γLV, γSV, γSL). However, one finds that θeq
is not experimentally accessible, but that the measured angle
depends on the history of the contact line. Consider a drop
placed on a solid surface: the contact angle slowly decreases as
it relaxes toward equilibrium, and the velocity of the contact
line gets progressively slower. In practice, equilibrium is never
strictly achieved and the velocity never reaches zero, even if it is
well below experimental resolution. Instead, it has become
standard to report angles for very slowly advancing (θA) or
receding (θR) contact lines, which allows us to define a
hysteresis H = γ(cos θR − cos θA) > 0. It has been understood
for some time that this hysteresis is attributed to pinning of the
contact line on disorder present on the solid surface.4,5 On the
other hand, the dynamics of this pinning and depinning
process, or how the velocity of the contact line depends on the
unbalanced Young force at low velocity, is still very often
neglected.
There are a number of well-developed models of wetting

dynamics, including the molecular kinetic theory (MKT),

which considers dissipation at the contact line due to
molecular-scale activated processes,6 and hydrodynamic mod-
els, which account for bulk viscous dissipation5 that becomes
important for larger capillary numbers, Ca = ηυ/γ, where η is
the liquid viscosity and υ the velocity. It is important to note
that much like the Young equation, these models were
developed with the assumption of perfect surfaces and one
can ask under what conditions they can be used in the presence
of disorder. In this article, we study contact line motion at very
low capillary numbers, Ca = 10−5 to 5 × 10−11, on surfaces with
mesoscale roughness (10−100 nm) and therefore expect a
priori to find that activated processes dominate.
The relationship between nanoroughness and hysteresis7,8

has been studied experimentally, and the hysteresis has been
found to depend on the size and density of defects. Also,
measurements of the dynamics on molecular layers9,10 have
been made; however, to our knowledge no systematic study of
activated dynamics has been done on surfaces of controlled
topographical disorder in order to directly link measurable
surface and liquid properties to the dynamics. In a previous
study of liquid hydrogen on evaporated cesium surfaces,11 it
was found that the activation area was on the order of the size
of the grains of cesium, but it is difficult to modify and measure
the disorder in cryogenic systems and a limited range of
velocities was explored. Here, we have developed a room-
temperature analog to this system where (i) the surface
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roughness can easily be altered and imaged, (ii) the contact
angle and γ can be modified independently in order to examine
their individual effect, and (iii) steady-state motion of the
contact line down to velocities of 1 nm/s can be achieved.
First, we recall the oft-used MKT-form of the contact line

dynamics. At zero temperature, there is a well-defined pinning
force that must be overcome in order to move the contact line.
At a temperature T, thermal activation rounds this transition
and for a given energy barrier, Eb, one expects the contact line
to move at very low velocity described by an Arrhenius-type
escape rate:

τ ν=
−−
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The energy barrier can be explicitly written in terms of the
activation free energy of wetting, Ea, and the applied force
which acts to reduce the barrier, whereupon the velocity of the
contact line can be written
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This is formally equivalent to the original MKT,12 in which case
υ0 is usually written as the thermal attempt frequency ν = kBT/
h multiplied by a molecular-scale jump size, where h is Planck’s
constant, and σ−1 is the number of adsorption sites per unit
area. The force per unit length on the contact line is the
unbalanced Young force, f = ± γ(cos θeq − cos θ), where the ±
refers to advancing/receding and θ is the dynamic contact
angle.
This picture assumes that the energy barrier is linearly

reduced by the applied force, which is reasonable for very small
forces where Eb ≈ Ea. In the case of activated contact line
dynamics on a rough surface, how to write υ0 and Ea and how
to identify σ are open questions. One may even question the
validity of the form of eq 2 because it is possible to attain a
regime where Eb ≪ Ea. These questions will be addressed in
this paper, but we note that in practice, even in the case of large
forces, the functional form of eq 2 can be used as a linearization
over some small range of velocity. We first turn our attention to
σ and note that it can be determined from experimentally
measured dynamics and eq 2 without any assumptions on the
expression of υ0 or Ea. Generally, σ is thought of as the surface
that the contact line sweeps over as it jumps from one
equilibrium position to another. In this picture, it is the
disorder on the surface that creates the energy landscape over
which the contact line moves, and thus σ is related to the scale
of the disorder. If one were to naıv̈ely apply MKT to this
mesoscale problem, one would identify the activation area as
simply the lateral scale of the disorder. We will see that the
relationship is not so straightforward. One can also ask how σ is
affected, if at all, by the contact angle and the liquid−vapor
surface tension, γ. We find that there is a strong dependence of
σ on the liquid. To explain these observations, we develop an
alternative model to eq 2, valid for the dynamics at large applied
forces. For this, we consider the activated escape from a
metastable well subject to a steadily increasing bias, a problem
that has recently received attention in the field of atomic
friction.13,14 This enables us to relate the dynamics directly to
measurable properties of the disordered solid surface and the
liquid.

■ MATERIALS AND METHODS

Materials. Silicon wafers were purchased from Siltronix SAS
([100], roughness <7 Å) and cleaned with a solvent rinse,
followed by a piranha etch and oxygen plasma cleaning
immediately prior to the metalizations. Gold was purchased
from Neyco S.A. (purity >99.99%) and thermally deposited
under vacuum at an average rate of 0.22 nm/s. The substrate
temperature was held constant at either 25 or 200 °C. For the
former, a 3 nm layer of chromium was evaporated prior to the
gold in order to improve adhesion, but for the latter, it was
omitted as chromium diffuses in gold at high temperature.
Alkanethiols (HS(CH2)nX) were purchased from Sigma-
Aldrich and used as-received: hexanethiol (n = 5, X = CH3,
95%), dodecanethiol (n = 11, X = CH3, ≥98%), octadecane-
thiol (n = 17, X = CH3, 98%), methyl 3-mercaptopropionate (n
= 2, X = COOCH3, 98%), and 1H,1H,2H,2H-perfluoro-1-
decanethiol (n = 2, X = (CF2)7CF3, >96%). To produce self-
assembled monolayers (SAMs), alkanethiols were diluted in
ethanol (Sigma-Aldrich, absolute) to 1 mM and used
immediately on gold films after evaporation. Wetting studies
were performed after anywhere from 12 h to 8 days of
immersion in the thiol solution without noticeable degradation,
and each sample was used only once. Wetting liquids were
deionized ultrapure water (18 MΩ cm), decane (≥99%),
tetradecane (≥99%), and dimethyl sulfoxide (DMSO anhy-
drous, ≥99.9%).

Rough Surfaces. In this study, the disorder is due to the
nanoscale topography that is naturally obtained when growing
thin metallic films by thermal evaporation. The resulting
morphology depends on the substrate, the evaporation rate, the
final film thickness, and the temperature of the substrate during
evaporation.15,16 We use silicon substrates and evaporate gold
films with thicknesses between 10 and 100 nm, with the
substrate held at either 25 or 200 °C. The gold films are imaged
under AFM (Bruker Nanoscope III, tapping mode) in order to
quantify the roughness. Bare gold films are high-energy surfaces
that are completely wetted by most liquids, therefore, we use
self-assembled monolayers of alkanethiols to render the surface
nonwetting. The contact angle can be changed by using a
different termination group. It is assumed that the SAM does
not significantly alter the disorder from the point of view of
wetting dynamics for reasons that are outlined below.

Contact Angle Measurements. Prepared substrates are
dipped vertically into a liquid bath at a velocity controlled by a
motorized stage. The hysteresis is evaluated with the contact
line advancing and receding at a reference velocity (here, taken
systematically as 10 μm/s). To measure the dynamics, the
velocity is programmed to make controlled jumps around this
reference velocity, and the resulting change in the capillary rise,
Δh, is measured under the microscope. Figure 1 shows an
example of a jump in the capillary rise due to such a jump in
velocity. The inset illustrates the principle of measurement. The
dynamic contact angle is then deduced from the capillary rise h
= Lc[2(1 − sin θ)]1/2, where Lc = [γ/(ρg)]1/2 is the capillary
length and ρ is the liquid density.
This method provides a very accurate measurement of the

variations in the contact angle and is therefore well-adapted to
studies of contact line dynamics. However, the bulk liquid level
is difficult to measure optically and therefore the advancing
(receding) angle at the reference velocity is determined in a
separate experiment where the liquid is ejected from (taken up
by) a syringe to form a moving drop on the substrate. (Insets in

Langmuir Article

dx.doi.org/10.1021/la400649h | Langmuir 2013, 29, 6884−68946885



Figure 5a show typical images.) For example, Δh is measured
with an accuracy taken as ±0.25 μm, which yields an
uncertainty on the variation in θ on the order of 0.01°. This
is in contrast to the uncertainty in the absolute value of θ of a
few degrees arising from imaging a drop.
In comparison to experiments where transient motions of the

contact line are analyzed,10 another advantage of this method is
that the range of velocities explored can be very large. We use a
motorized stage to obtain velocities from several millimeters
per second down to 100 nm/s and a piezo-driven stage to reach
1 nm/s, an unprecedentedly low velocity for studies of contact
line dynamics.
In practice, measurements are repeated by advancing and

receding over the same sample area multiple times. On a typical
substrate, the contact angle drifts by less than 1° from one
advancing cycle to the next. Occasionally, a substrate appears to
age from one cycle to the next, always becoming more wettable.
Even in this case, the absolute contact angle drifts by only a few

degrees over half a dozen cycles, and we do not observe any
drift in the variations of the angle.

■ RESULTS
Activation Area and Roughness. Typical AFM images

for 80 nm thick gold films evaporated at two different
temperatures are shown in Figure 2. The 25 °C film exhibits
grain sizes of roughly 20 nm and canyons between grains.
Owing to the radius of curvature of the AFM tip (10 nm), one
must be careful when extracting any details besides the grain
center-to-center distance. The 200 °C film exhibits grains
nearly an order of magnitude larger and canyons roughly 50 nm
wide. An oft-cited measure of the topography is the root-mean-
square roughness, Rrms; here it is 0.7 and 7.4 nm, respectively.
To a first approximation in the simple model of wetting
dynamics of eq 2, one expects to find σ to be related to the
lateral size of the grains. As a measure of this scale, we have
used the width of the autocorrelation of the height function17

performed along the scan direction of each AFM image. By
varying the film thickness and the substrate temperature, we
obtain Lcorr between 8 and 80 nm.
Figure 3 shows typical results for the dynamics measured on

these surfaces. An activated regime appears at the lowest
velocities and a fit to eq 2 yields σ. In the following, we use the
expression activation length to mean√σ. We systematically use
only data at velocities ≤20 μm/s and the advancing and
receding branches are fit independently to yield potentially
different √σA and √σR.
Figure 4 shows the results from a series of experiments where

the evaporation conditions have been varied, but the SAM and
partially wetting liquid are the same. For the 25 °C gold films,
we find both correlation lengths and activation lengths on the
order of 10−20 nm. This is the same as obtained in previous
wetting studies on cesium.11 We note that the morphology of
these films appear very similar to that of cesium,17 which is not
surprising given that the evaporations take place at similar
fractions of the respective melting temperatures.16

Figure 4 also appears to show that the activation length
depends very little on the topography. For advancing contact
lines, the dependence is measurable; increasing Lcorr by an order
of magnitude yields activation lengths of 25 nm, or roughly 2

Figure 1. Change in the capillary rise due to a change of velocity of an
advancing contact line between the reference of 10 μm/s and a
velocity of 15 μm/s. For this particular sample (liquid decane with θA
= 30°), the resulting variation in the contact angle is 0.09°. The inset
shows the sample, viewed from the side, being dipped into a liquid
bath, which creates an advancing contact line. A microscope facing the
sample surface images the contact line, from which the capillary rise is
found.

Figure 2. Typical tapping-mode AFM images of 80 nm gold films evaporated at 25 and 200 °C. In (a) the scan size is 1 × 1 μm, Rrms = 0.7 nm, and
Lcorr = 13.7 nm, whereas in (b) the scan size is 2 × 2 μm, Rrms = 7.4 nm, and Lcorr = 70 nm. The white square superimposed on each image indicates
the size of the activation area determined from the dynamics of tetradecane on a dodecanethiol SAM, √σA = 16 nm and√σA = 23 nm, respectively,
and the inset shows the topography of the canyons between gold grains.
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times larger. This is the first surprising result: despite very
considerable changes in the surface morphology, the activation
length changes very little. It calls into question the appealingly
simple picture of the contact line being pinned between grains
and making activated jumps where it sweeps over one grain at
at time.
Superimposed on the AFM images in Figure 2 is a white

square, indicating the activation area deduced from the
respective dynamics. From the image of the large gold grains
in particular, we find a second surprising observation: it appears
that σ can be mesoscopic but still significantly smaller than any
features on the surface.
Activation Area and Liquids. First, the dynamics of a

series of partially wetting liquids, whose properties are shown in
Table 1, were measured on surfaces of gold evaporated at 25 °C

with a dodecanethiol SAM. Figure 5a summarizes the resulting
activation lengths. This yields a third unexpected result: there is
a strong dependence on γ, with larger surface tensions yielding
systematically lower activation lengths, down to approximately
5 nm for water. Then, in order to investigate the effects of γ and
θ independently, the termination group of the SAM was
changed and measurements were made with the same liquids.
Table 2 gives the average advancing and receding contact
angles for each liquid and SAM combination used.
Statistical error bars are shown for a combination of surface

and liquid that was repeated in 12 separate experiments. In any
individual experiment, the fits are good, and the activation
length can be extracted with some precision; however,
identically prepared surfaces give some variation. For example,
Lcorr = 17 ± 5 nm for this series of nominally identical
experiments. We note that the dynamics are systematically
much cleaner when using liquid alkanes on alkane-only SAMs.

■ INTERPRETATION

In the simple transposition of MKT to mesoscale defects, the
activation area was interpreted as the size of a defect. If this is
indeed the case, then the task is to find the structure on the
surface with the correct size to explain the measured σ. Until
now, the defect size was assumed to be the lateral dimension of
a gold grain; however, there are other features on the surface
that do not scale in the same way as the grains and that may act
as pinning sites for a liquid meniscus.
In light of this, one might question whether the SAM can

contribute to the disorder, introducing a second length scale to
the problem which is relatively constant even when the gold
morphology is altered. On atomically flat areas of gold, SAMs
are known to produce crystalline domains that can be 5−10 nm
in diameter,18 but it is doubtful that domains can form on a
nanoscale roughness. We do not believe that this is an issue
here for a number of reasons. First, alkanethiol domain sizes
depend on the chain length and termination group, as well as
on the conditions of deposition. For example, annealing can
produce larger grains or even destroy crystalline order
altogether,18 and it is more difficult to form ordered domains
for shorter alkanes where the van der Waals forces between the
chains are weaker.19 We have tried a number of chain lengths
(C6, C12, and C18), as well as termination groups (X =
COOCH3 and X = (CF2)7CF3) and temperatures of the
deposition solution (50 and 100 °C), and found no significant
effect on the activation area. Furthermore, some calculations
show that the thiol grain boundary alone should not produce
hysteresis,20 and the same behavior was observed for liquid
hydrogen on cesium,11 where no intermediate layer was used.
Another possible structure are the canyons between grains.

Indeed, for the purposes of wetting, they are the most likely
defects; the local slope of the surface reflects the wettability,
and the areas where it is the greatest are where the contact line
is most likely to be pinned. Taking the canyons as defects
brings σ closer to the surface characteristics since the canyon
size varies less than the grain size in our experiments, but it is
not enough. Furthermore, it fails to explain the strong
dependence of σ on the liquid.
We propose that the canyons between grains are indeed the

pinning centers and that σ depends on the strength of the
pinning force, which differs between liquids. This can be
quantitatively understood by closer examination of the
dynamics of pinning on a single canyon.

Figure 3. Wetting dynamics of liquid decane advancing (red) and
receding (blue) on a gold surface evaporated at 25 °C and coated with
a dodecanethiol SAM. The straight line shows the fit of the low
velocity data to eq 2, from which the activation area σ is determined.
Note the cut in the horizontal scale.

Figure 4. Activation lengths (√σ) deduced from the low velocity
dynamics of advancing (red) and receding (blue) contact lines. Here,
the surfaces are evaporated gold covered with a dodecanethiol SAM,
and the liquid is tetradecane.

Table 1. Properties of Partially Wetting Liquids at 23°Ca

liquid
γ

(mN/m)
η

(mPa s)
ρ

(kg/m3)
Lc

(mm)
ln(υ0)
(μm/s)

decane 23.55 0.86 728.8 1.81 7.2
tetradecane 26.3 2.21 761.3 1.88 6.2
DMSO 43.2 2.07 1097.4 2.00 6.3
water 72.3 0.96 997.54 2.72 7

aThe spinodal velocity, υ0, is defined in eq 16c.
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Pinning on a Single Canyon. Insets in Figure 2 show the
topography of the canyons between gold grains. Here, we
examine how the contact line moves over one such defect of
width a perpendicular to the contact line and extent d parallel
to the line. Figure 6 illustrates the Joanny−de Gennes model to
graphically solve the force balance,4 which was originally
introduced to discuss hysteresis. It has been used to interpret
the force curves of single defects measured by AFM21 and has
been found to be in reasonable agreement with the measured
hysteresis on nanostructured surfaces with variable defect
density.8 We now use it to examine the jump length for

activated dynamics. This graphical method solves for xm, the
maximum deflection of the contact line due to the defect. A
topographical canyon with a height profile u(x) yields a defect
force that, in the limit of small slopes and small contact
angles,22 can be written as

γ θ= |f d
u
x

sin
d
d xd eq m (3)

where x ̂ is the direction of motion.23 This is balanced by an
elastic restoring force

= −∞f k x x( )e m (4)

where x∞ is the position of the line far from the defect, the
spring constant of the line is k = πγ sin2 θeq/ln(L/d), and L is a
largescale cutoff length often taken as the distance between
defects.4 The velocity of the contact line is υ = ∂x∞/∂t. An
equivalent picture of a double-well potential is shown in Figure
6c. At zero temperature, the contact line jumps only when the
energy barrier has disappeared; this is the spinodal, or
depinning threshold, and corresponds to the blue lines in
Figure 6 (panels b and c) and a position of the contact line far

Figure 5. (a) Activation lengths (√σ) deduced from the low velocity dynamics of advancing (red) and receding (blue) contact lines for different
liquids on nominally the same surface. Here, the surfaces are 80 nm thick, 25 °C evaporated gold films covered with a dodecanethiol SAM (circles).
Also shown (stars) are the activation lengths when changing the thiol end group (n = 2, X = COOCH3). Inset photographs illustrate the difference in
contact angle for two conditions that yield similar activation lengths. (b) Hysteresis measured in the same experiments. The inset illustrates how the
hysteresis can be determined from Figure 6b.

Table 2. Contact Angles (Advancing, Receding; In Degrees)
on 25°C Evaporated Gold Films Covered with an
Alkanethiol SAM

HS(CH2)nX liquid

n X decane tetradecane DMSO water

11 CH3 32, 20 39, 26 78, 67 116, 100
2 (CF2)7CF3 65, 46 73, 58 − −
2 COOCH3 <20 <20 27, − 62, 53

Figure 6. (a) The deformation of the contact line due to a defect of size a in the direction of motion and lateral extent d. (b) Graphical
representation of the force balance on a single topographical defect.4 Above is the profile of the defect of width a and below are the defect force, fd,
and elastic force, fe, for three different positions of the contact line; x∞ increases from green to blue. Shown are the configurations when the
advancing contact line position has two stable positions (green), when it reaches the spinodal (blue) and when the line jumps the barrier by thermal
activation (red). The hatched area corresponds to the energy barrier Eb. (c) The potential well corresponding to the same three positions of the
contact line. It is clear that the size of the activated jump λ with respect to the size of the defect a depends on the value of Ea with respect to Eb.
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from the defect noted as x∞
s . At nonzero temperature, thermal

activation causes the jump to occur when the energy barrier is
small but nonzero (red lines). The activated jump length, λ,
corresponds to the distance between the metastable well and
the barrier. The rest of the jump, from the barrier to the global
minimum, comes for free, energetically speaking. Graphically, it
is clear that the activated jump size can be roughly the defect
size or significantly smaller. In particular, it is significantly
smaller if Eb ≪ Ea, where Ea is the unbiased energy barrier
(found from the Maxwell condition4 in Figure 6b). Although
Figure 6 has been drawn with a symmetric defect force, this
need not be the case and, in general, the activation lengths for
advancing and receding can differ. It is important to note that
we now understand that the activation area is not strictly
constant, since λ depends on the magnitude of the energy
barrier at which the jump occurs. At very low velocities, there is
sufficient time for thermal activation to cause the jump to occur
at relatively large barriers and λ will be larger, whereas at higher
velocities, the barrier is reduced before the jump can take place
and λ will be smaller. At higher velocities still, the dynamics
deviate from classical thermal activation since the barriers are
small compared to kBT.
From the Single Defect Picture to the Dynamics. In

order to model the dynamics, and to relate λ to σ, a
macroscopic portion of the contact line must be considered.
We take a surface with a number density of defects n = l−2 and
assume that these defects act independently. In experiments, we
impose a constant contact line velocity and, therefore, all
positions of the contact line, x∞, are equally probable. One
must remember that experimentally measured velocities and
forces are averages over all possible positions of the contact line
at the microscopic scale. Consider an elemental length l along
the line within which there is on average a single defect. The
rate-limiting step for this element of line to move is due to the
thermal hopping of the energy barrier provided by the defect.
Once this barrier is overcome, the elemental length moves
forward by an average distance of l. The macroscopic velocity is
thus

∫υ τ τ= ⟨ ⟩ =−

−

−
∞

⎡
⎣⎢

⎤
⎦⎥l l

l
x

1
d

l

l
1

/2

/2
1

(5)

where τ−1 is an escape rate for the elemental length to make a
jump of l.
If the position of the contact line, x∞, within this elemental

length is far from the defect, then the line is in a position with a
single minimum and it will not jump (τ−1 = 0). As x∞
approaches the defect, τ−1 increases; it is largest near the
spinodal, x∞

s . For small enough velocities, the contact line will
have enough time to jump the energy barrier before the
spinodal is reached. At a given small velocity, the jump will
occur on average at a position defined as x∞* . Beyond this point,
since the line has already jumped and is in a stable position, it
will not jump again (τ−1 = 0). We can therefore reduce the
limits of integration in eq 5 to only over the defect, giving

∫υ τ=
−

*
−

∞
∞

xd
a

x
1

(6)

In writing this, we assume that there is a narrowly distributed
range of x∞ at which a jump occurs, allowing us to impose an
abrupt cutoff of the integral at x∞* . This can be shown to be the
case by explicitly calculating the full probability distribution of
x∞ at which a jump occurs, as is done in the Appendix.

We now need to evaluate τ−1 when x∞ is near the defect and
there are two energy minima. In accordance with Kramers’
reaction-rate theory,24 which has recently been used to evaluate
the jump frequency in MKT,25 the Arrhenius escape rate in the
case of strong friction (α ≫ ωb) is written

τ
ω ω

πα
=

−−
⎛
⎝⎜

⎞
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E
k T2

exp1 0 b b

B (7)

Here α is the viscous friction, and ω0 and ωb are the oscillation
frequencies at the bottom of the well and at the barrier,
respectively. From the single defect picture above, we
understand that the shape of the potential well depends
strongly on the bias (i.e., the position of the contact line, x∞).
We now search to express this dependence of the energy barrier
and of the oscillations frequencies on the bias, choosing to
parametrize the problem by the activated jump length, λ.
Specifically, we will examine an advancing contact line moving
over a single defect centered at xm = 0 and where the activated
jump length at which the contact line is most likely to jump
satisfies λ* ≪ a. This last simplifying assumption implies that
only the shape of defect force near the peak is important; we
approximate it to be parabolic and write it as

= + −⎜ ⎟
⎛
⎝

⎞
⎠f A

a
x f

2d m

2

d
max

(8)

where A = (1/2)(d2fd/dxm
2)|xs is the curvature. In the parabolic

model, the curvature is the same regardless of where it is
evaluated. Here, we use the subscript xs loosely to indicate that
A must be evaluated where the model applies (i.e., near the
spinodal). From the solutions to the force balance of eqs 4 and
8, it can be shown that the activated jump is

λ = −∞ ∞
k
A

x x2 ( )s

(9)

the shape of the potential well, E(xm), can be found, and the
energy barrier can be written as

λ=E
A
6b

3
(10)

The oscillation frequencies are defined as ω0
2 = (1/M)(d2E/

dxm
2)|well and ωb

2 = (1/M)(d2E/dxm
2)|barrier|, where M is taken

to be the mass of the fluid involved in the jump. An expansion
around the well minimum and the barrier of the potential
studied here yields

ω ω λ= = A
M0

2
b
2

(11)

Returning to eq 6, we can now make a change of the variable of
integration to λ and write

∫υ
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a

2
2

3

B
0

b

B

(12)

where υ0 = AkBT/(2παkM) and where we have used the
notation λ* and Eb* to refer to those quantities evaluated when
the contact line is at the position where it is most probable to
jump, x∞* . In the limit examined here (λ* ≪ a), the escape rate
at the bottom limit of integration is negligible and the integral is
dominated by the value at λ*.
We have arrived at eq 12 from the empirical argument used

to write eq 6. Although this argument provides some physical
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insight into the elementary motion of the contact line, one may
wish for a more complete derivation. In fact, eq 12 can be
found from the escape-field distribution (the probability
distribution of a jump to take place at a position x∞) for
escape from a metastable well subject to a steadily increasing
bias. This general problem26 has been studied in the context of
thermal phase slip in Josephson junctions27 and more recently
for the elastic contributions to atomic friction.13,14,28 In the
Appendix, we outline a solution to this problem in contact line
variables. As above, we consider the case where the defect force
is parabolic near the peak and continue to parametrize the
problem with λ. It turns out that this parametrization greatly
simplifies the calculation over the previously published26

solution.
We now search to express the energy barrier, Eb*, in terms of

measurable quantities. Conservation of energy links the
macroscopic contact angles and the energy dissipated during
a jump of the line from one energy minimum to another.4 We
denote this dissipated energy as Ws when the line jumps at the
spinodal and Wd* when it jumps at x∞* ,

γ θ θ

γ θ θ

= −

* = −

nW

nW

(cos cos )

(cos cos )d

s eq A

eq (13)

where θA is now strictly defined as the advancing contact angle
at the spinodal. Graphically, the difference in dissipated energy
between these two cases corresponds to the shaded areas in
Figure 7. In the limit of λ* ≪ a ̃ it is approximately

λ− * ≈ Δ̃ = ̃ − * = ̃ *∞ ∞W W a f ak x x
Aa

( )
4

( )ds
s 2

(14)

where we have used the previous result from eq 9. If we assume
a soft elastic force then we can further write a ̃ ≈ fs/k. For now,
we retain a ̃, but keep in mind that as long as we are far from the
onset of hysteresis, it can be expressed in terms of
experimentally measurable quantities. Using eqs 10, 13, and
14, the energy barrier can now be related to the macroscopic
contact angles as

γ θ θ* =
̃

−⎜ ⎟ ⎜ ⎟
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3/2 1/2
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This completes eq 12 to yield the thermally activated dynamics
in terms of experimentally measurable quantities. Recapitulating
and generalizing for either advancing (A) or receding (R)
contact lines, we now write the dynamics as

υ υ β θ θ= − ± ∓exp[ ( cos cos ) ]0 A/R
3/2

(16a)
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This no longer resembles a simple Arrhenius law. The
nonlinear dependence of the force in eq 16a implies that the
activation area, or jump length, depends on the velocity.
Indeed, the language of jump length no longer appears
explicitly; instead, the dynamics are entirely expressed in
terms of the surface and liquid properties. The notion of a
variation of the jump length with the velocity translates to a
curvature in the usual plot of the dynamics, as seen in Figure 3.
The velocity prefactor, υ0, is understood to be the limiting
velocity for which the contact line dynamics are thermally
activated as it corresponds to an Eb* = 0. In many experiments, a
limited range of velocities and of contact angles are attained. In
this case, eq 16a can be linearized around some working point
θm to yield

υ υ
σγ θ θ

= −
− ± ∓⎛
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exp
( cos cos )

0
b
m

m
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This has the same form as MKT. If one erroneously identifies
θm as the equilibrium contact angle θeq, then Eb

m would appear
to be the activation free energy of wetting. However, in this
linearized equation, its physical interpretation is not simple; it is
an offset that varies with the working point, Eb

m = (A/6)(λm*)
3.

On the other hand, the activation area σ can now be expressed
as

σ
λ

=
*

̃
⎜ ⎟

⎛
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⎞
⎠⎟
⎛
⎝

⎞
⎠a n

1m

(18)

For the case considered here, λm*≪ a ̃, we see that the activation
area can be considerably smaller than 1/n, the value obtained in
MKT.
We note that averaging over all positions of the contact line

blurs the distinction between a and d. Furthermore, in usual
conditions, a ̃ is of order a, so we will take a ̃ ≈ a ≈ d in what
follows.
We can also estimate υ0 in eq 16c. In the case of a moving

contact line, viscous forces can be written as

αυ=ηf M (19)

which we assume is valid down to mesoscopic scales. One can
write Mα = 3aη ln(L/a)/θeq for small angles,

29 where M ≈ ρa2

is the mass per unit length of the contact line involved in the
jump. It can then be shown that the limiting velocity is of order
υ0 ≈ [kBT/(12π

2ηa2)](du/dx)|max, which is in the range of 100
− 1000 μm/s for typical liquids (η ≈ 1 mPa s) on
mesoscopically rough surfaces. We expect this to be very
similar for all surfaces used since, for example, the high
temperature films have larger slopes, but also larger defect sizes,
which compensate in the calculation of υ0.

Different Defect Sizes. First, we examine the high-
temperature evaporated films and why the activation area

Figure 7. Graphical illustration of the difference in dissipated energy
(Ws − Wd*). In the limit we examine here, λ* ≪ a ̃, the hatched area is
neglected as it is much smaller than the shaded area.
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found when fitting to eq 17 is smaller than any features on the
surface. An example of a canyon between two large grains on
the 200 °C evaporated films is shown in the inset of Figure 2;
these larger features do not suffer tip effects to the same extent
and one can have some confidence in the slope (45°) and
defect width and density (we take a ≈ n−1/2 ≈ 70 nm). From eq
18 and the measured activation length of 23 nm on this
particular surface, we find λ* ≈ 8 nm. This clearly falls into the
case considered above of λ* ≪ a and of jumps that take place
close to the spinodal.
In order to understand this, we must compare the unbiased

energy barrier Ea and the barrier at which the jump occurs Eb*.
Since the range of velocities and the limiting velocity, υ0, are
approximately the same for all surfaces and measurements
made here, the range of Eb are the same also. As shown in
Figure 3, the slope from which σ is determined is centered
about a velocity of 1 μm/s, leading to an Eb* of roughly 5kBT,
when using the υ0 estimated above. The precise value of the
velocities are of secondary importance since they affect the
energy barrier only logarithmically. To obtain Ea, we can
approximate the defect force as symmetric and defined
piecewise by two parabolas, in which case eq 10 holds at all
times. Noting that Ea is the energy barrier when the contact line
has two stable solutions (green line in Figure 6) and λ ≈ a, one
finds Ea > 103kBT. This is consistent with our understanding
that the activated jump can be significantly smaller than the
defect size when the activation energy is significantly larger than
the energy barrier at which the jump occurs. It is important to
note that if one were able to make measurements of the
dynamics at much smaller velocities (i.e., a much larger Eb*)
then one would find much larger activation areas, eventually
reaching the size of the defect.
In this picture, it is indeed possible to find the same σ for

defects that are different in size and in the magnitude of the
pinning force, as appears to be the case between the room-
temperature and 200 °C films. Again taking the defect force as a
piecewise parabola and eqs 10 and 18, one can show that σ3 =
[12Eb*/(a

3n3)](d2fd/dx
2)−1 ≈ [12Eb*/(a

2n3γ sin θeq)][(du/
dx)|max]

−1, where the final expression uses eq 3. In practice,
the energy barrier at which the jumps take place are similar for
all substrates and therefore if the maximum slope of the larger
grains is at least 10 times larger than for the small grains and
the area and distance between defects are 2−3 times larger (not
unreasonable values for our surfaces), then the activation areas
are similar.
The above arguments only provide order of magnitude

estimates; one must be careful when attempting to do a
quantitative analysis because the defect size and density and the
curvature of the defect force near the peak must be accurately
known. Even parameters as simple as the defect size are difficult
to determine for such heterogeneous surfaces as in Figure 2.
Exacerbating the problem, AFM tip effects can be very
important with the room-temperature evaporated films in
particular. For example, the profile of a canyon measured by
AFM underestimates the real slope, and a very small slope can
yield a defect with no hysteresis, which is not the case in
experiments. In order to find a hysteresis for small grains using
the simple parabolic model, a slope of about 20° is needed,
which is larger than that shown in the profile of Figure 2. This
illustrates the need for more detailed topographic information
to model contact line pinning on such surfaces.
Different Thiols/Liquids. The dependence of the dynam-

ics on the liquid properties can also be deduced from this

model. The liquid−vapor surface tension and the contact angle
affect both the defect and elastic forces and therefore Ea and σ.
When changing the liquid, one changes γ and the contact angle
simultaneously and it is difficult to extract how each parameter
affects the dynamics. One expects that for larger γ the energy
cost in making a jump of a given size increases. Also, one might
expect a geometrical effect where for larger contact angles the
contact line is more easily pinned.
From Figure 5a, it appears that the activation length is

piloted principally by the surface tension. For example, DMSO
on a methyl-3-mercaptopropionate SAM has an advancing
angle of about 30°, very nearly the same as decane on a
dodecanethiol SAM. However, the activation length is about
half the size than for the latter and is in fact close to that of
DMSO on a dodecanethiol SAM, which has a contact angle of
78°. It is surprising that the contact angle appears to have little
effect. It may be that the effect is small here because the
maximum slope in the canyons on room-temperature films is
small.
If one neglects the effects of the contact angle, both the

disorder and elastic forces are simply proportional to γ.
Therefore, for the same jump size, the energy barrier scales with
γ. Again supposing that the barrier at the most probable jump
position, Eb*, is approximately constant for all substrates, we
expect that σ decreases with increasing γ, which is indeed what
we find experimentally. The precise form of this dependence
depends on the details of the entire shape of the defect force,
which we do not know, due to both a lack of detail in the AFM
images and a need to modify eq 3 for large contact angles and
for large slopes.
Figure 5b shows the measured hysteresis for the same set of

substrates as in 5a. In the Joanny−de Gennes model, the
hysteresis can be understood graphically from the force
balance;4 the shaded area in the inset corresponds to H
divided by the defect density. For substrates that are nominally
the same, the defect shape and density are constant and
therefore we have only the liquid dependence. We expect that
H ∝ γ and, as noted above for σ, that the dependence on θ is
more difficult to understand.

Thermal Activation and Region of Validity. Until now,
we have not used the full form of the dynamics as developed in
eq 16a but have analyzed experimental data using the linearized
form because it allows a discussion in terms of the activation
area, which is typically the parameter plotted for these types of
measurements. We now return to the full form and recall the
conditions under which this model is valid: (1) the defects have
been assumed to be independent, (2) we have assumed the case
of strong friction in order to evaluate the Kramers prefactor,
(3) λ* ≪ a in order to satisfy the parabolic approximation of
the defect force, and (4) more generally, we require that Eb* ≫
kBT, in order for Kramers’ rate to be valid.
The first assumption amounts to neglecting collective effects.

This is a severe approximation given the defect density on gold
films; however, we note that the experimental jump sizes are at
most the size of a single gold grain, so this may not be as
unreasonable as it first appears. The second can be checked for
our surfaces from arguments following eq 19. We take the
logarithmic factor to be on the order of unity and find α ≈ 109

Hz for the liquids and surfaces used here. The frequency at the
well minimum scales as ω0 ≈ [fd

max/(Ma2)]1/2 ≈ 108 Hz and
strong friction applies. The Kramers prefactor is therefore
approximately 106 Hz, in reasonable agreement with estimates
obtained from scaling arguments.30 Since we are no longer

Langmuir Article

dx.doi.org/10.1021/la400649h | Langmuir 2013, 29, 6884−68946891



talking about molecular displacements, it is expected that this is
smaller than the thermal frequency of nearly 1013 Hz often used
in MKT.
From Figure 6c, one can see that the third condition implies

that Ea ≫ Eb*. The unbiased energy barrier is not easily
calculated, since the full form of the defect force must be
known; however, some dependencies can be deduced from the
graphical picture in Figure 6b. For example, Ea ∝ γ since both
the defect and the elastic forces are proportional to the surface
tension. Also, Ea increases with increasing du/dx since the
defect force is proportional to the local slope. Thus, eq 16a best
represents the dynamics on highly sloped surfaces partially
wetted by high surface tension liquids.
The last condition can be understood as limiting the velocity

for which thermally activated motion is obtained. Since Eb*/
(kBT) = ln(υ0/υ) ≫ 1, experimental velocities must be
significantly smaller than υ0, which we can now estimate from
measurable surface and liquid properties using eq 16c. This
limit scales with viscosity; an indicative value for each liquid
used here is given in Table 1. This velocity is within the range
of experimental conditions and is indeed very close to where
the dynamics clearly change character in Figure 3. The
condition υ = υ0 corresponds to the spinodal and beyond
this notions of thermal activation break down. Strictly speaking,
since ln(υ0/υ) ≈ 1 in experiments, eq 16a cannot be used to
model experimental data this close to the spinodal. Although
not rigorously within the region of validity, we have performed
an experiment for which the condition on ln(υ0/υ) is the most
reasonable (e.g., decane, the liquid with the smallest viscosity),
and we have used a piezo-driven stage to obtain extremely low
velocities, down to 1 nm/s. Figure 8 shows the advancing
dynamics fit to eq 16a, where only velocities ≤20 μm/s are
used. We have fixed the spinodal velocity υ0 according to Table
1 and left only 2 adjustable parameters: θA and β. The resulting
fit is good and accounts for the curvature of the model up to
the spinodal. It can be shown that β scales as [γa2 sin θeq/
(kBT)][(du/dx)|max]

−2 ≈ 103, in agreement with the magnitude

of the fit in Figure 8. Owing to the use of the model outside of
its strict range of validity, one must be careful not to over
interpret the fit parameters. It is possible to extend Kramers
such that it holds near to the spinodal,31,32 but knowledge of
the shape of the potential well is required.
From the model of eq 16, we have been able to show that (1)

the curvature in the thermally activated dynamics is a natural
consequence of a constantly increasing bias and (2) the region
of validity of thermal activation is limited to very low velocities,
typically less than 1 mm/s for usual liquids on mesoscopically
rough surfaces. The latter is an important observation because
over a restricted range of velocities, mathematically one can
usually fit experimental dynamics to a thermally activated law.
For example, the inset in Figure 8 shows two fits to the
exponential law of eq 2, one at the usual low velocities
considered here (≤20 μm/s) and the other at higher velocities.
The latter misleadingly yields a considerably smaller σ. This
may explain why in some experiments using alkanethiol on
gold33 or evaporated titania surfaces,10 activation lengths of the
order of 1 nm or less have been obtained.
Models of thermal activation implicitly assume that the time

spent by the contact line to relax is negligible compared to the
waiting time in the potential well. However, under certain
conditions, viscous effects can pilot the time for the contact line
to relax and reach the stable position when it jumps from the
spinodal. This so-called disanchoring dynamics of a single
defect under fixed velocity has been studied,34 and the contact
line was found to maintain its shape near the spinodal for a time
tα before relaxing exponentially.

35 The corresponding velocity is
of the order of a/tα = [υk2/(α2M2)]1/3 ≈ 10 cm/s for υ = 20
μm/s. Since this is much faster than the contact line velocities
used here, the neglect of viscous dissipation in the activated
dynamics is justified.
One can also ask what controls the dynamics beyond υ0.

Hydrodynamic models such as Cox−Voın̈ov5 are often used to
describe the contact line dynamics at higher velocity. However,
for reasonable choices of the micro- and macroscopic cutoff
scales that appear in this model, one finds a weaker dependence
of the contact angle on the velocity than is shown at the highest
velocities in Figure 8. This suggests that at the highest velocities
tested here, the contact line remains close to the depinning
threshold and a truly viscous regime has not yet been attained.
In addition, collective effects may play a role in this
intermediate region. In this case, one expects to find a
signature of the critical dynamics generic to disordered elastic
systems1 and which is characterized by a depinning exponent5

that is subject to theoretical debate. How the low-velocity
dynamics are connected to the viscous regime is an interesting
outstanding question, one which we now understand requires
velocities spanning from the very low values obtained here to
considerably higher velocities, all in the same experimental
setup.

■ CONCLUSION
We have studied thermally activated dynamics of a contact line
over a range of controlled nanotopographies and a range of
partially wetting liquids. The activation area is found to change
very little despite apparently large changes in the topography
and can be significantly smaller than the lateral scale of the
disorder. The liquid surface tension has a strong effect on the
activation area. These observations can be understood with the
simple model of contact line pinning where the defects
correspond to topographical canyons and the contact line is

Figure 8. Wetting dynamics of liquid decane advancing on a gold
surface evaporated at 25 °C and coated with a SAM of dodecanethiol.
In the main figure, low velocity data has been fit to eq 16a (solid blue
line), as described in the text. The dashed portion of the blue line
shows the fit extrapolated up to the spinodal (S). The inset shows two
fits to eq 2: over the same low velocity range and at high velocity. The
latter illustrates how the use of thermal activation in an erroneous
domain can lead to an underestimation of the activation area σ.
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very near the depinning threshold. These more complicated
dynamics can be explicitly written entirely in terms of the
surface and liquid properties, which has been done here for the
simple limit of independent defects. In this model, the
activation area is seen to depend on the pinning strength of
the defect, the velocity of the contact line, and the density of
defects. The influence of the first two are illustrated in
experiments presented here. In order to investigate the
dependence on the shape and density of defects, more
controlled surfaces are required: a problem that we are
currently pursuing.

■ APPENDIX
Here, we examine the escape-field distribution for escape from
a metastable well subject to a steadily increasing bias. The
probability that a jump has not yet taken place by a time t is
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from which we can find the distribution of jump positions
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A simple change of variables of integration (t′ → λ′) using eq 9
and introducing the (constant) velocity of the contact line as
x∞ = υt yields
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For convenience, we have introduced the notation (λ/λ0)
3 =

Eb/(kBT). One must be careful with the notation used here: x∞
is uniformly distributed in the case of constant contact line
velocity, and P[x∞] represents the distribution of x∞ at which a
jump occurs. From the full probability distribution, the position
of the contact line at which a jump is most probable (x∞*) can
be found:
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For Kramers’ rate and the usual notions of thermal activation to
hold, (λ/λ0)

3 = Eb/(kBT) ≫ 1, so the first term in eq 25 can be
neglected to obtain the right-most expression. The maximum
probability occurs for g(λ*) = 0, yielding exactly eq 12.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: kristina.davitt@lps.ens.fr.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
We thank C. Herreros and A. Collombat for their participation
in experimental work and B. Andreotti for helpful discussions.
Funding in the form of a BQR from the Universite ́ de Paris
Diderot and NSF Grant DMR-0959373 is acknowledged.

■ REFERENCES
(1) Agoritsas, E.; Lecomte, V.; Giamarchi, T. Disordered elastic
systems and one-dimensional interfaces. Phys. B 2012, 407, 1725−
1733.
(2) Metaxas, P.; Jamet, J.; Mougin, A.; Cormier, M.; Ferre,́ J.; Baltz,
V.; Rodmacq, B.; Dieny, B.; Stamps, R. Creep and flow regimes of
magnetic domain-wall motion in ultrathin Pt/Co/Pt films with
perpendicular anisotropy. Phys. Rev. Lett. 2007, 99, 217208.
(3) Laurson, L.; Santucci, S.; Zapperi, S. Avalanches and clusters in
planar crack front propagation. Phys. Rev. E: Stat., Nonlinear, Soft
Matter Phys. 2010, 81, 046116.
(4) Joanny, J. F.; de Gennes, P. G. A model for contact angle
hysteresis. J. Chem. Phys. 1984, 81, 552−562.
(5) Bonn, D.; Eggers, J.; Indekeu, J.; Meunier, J.; Rolley, E. Wetting
and spreading. Rev. Mod. Phys. 2009, 81, 739−805 and references
therein.
(6) Blake, T.; Haynes, J. Kinetics of liquid/liquid displacement. J.
Colloid Interface Sci. 1969, 30, 421−423.
(7) Abe, K.; Takiguchi, H.; Tamada, K. Dynamic contact angle
measurement of Au(111)−Thiol self-assembled monolayers by the
Wilhelmy plate method. Langmuir 2000, 16, 2394−2397.
(8) Ramos, S. M. M.; Charlaix, E.; Benyagoub, A.; Toulemonde, M.
Wetting on nanorough surfaces. Phys. Rev. E: Stat., Nonlinear, Soft
Matter Phys. 2003, 67, 031604.
(9) Semal, S.; Blake, T. D.; Geskin, V.; de Ruijter, M. J.; Castelein, G.;
De Coninck, J. Influence of surface roughness on wetting dynamics.
Langmuir 1999, 15, 8765−8770.
(10) Fetzer, R.; Ralston, J. Dynamic dewetting regimes explored. J.
Phys. Chem. C 2009, 113, 8888−8894.
(11) Rolley, E.; Guthmann, C. Dynamics and hysteresis of the
contact line between liquid hydrogen and cesium substrates. Phys. Rev.
Lett. 2007, 98, 166105.
(12) We note that for a contact line close to θeq, thermal activation
can occur in both the advancing and receding directions and that MKT
is sometimes written as a sum of eq 2 for both directions in order to
reflect this,6 leading to a hyperbolic sine function. Although θeq is not
experimentally measurable (because of hysteresis), from the fact that
the hysteresis is large, we can infer that we are far from equilibrium in
all experimental conditions examined here. In this case, the energy
barrier to motion in the direction of the macroscopic line velocity (say,
advancing) is very small, whereas in the other (receding) it is very
large, which is why a single exponential suffices here.
(13) Sang, Y.; Dube,́ M.; Grant, M. Thermal effects on atomic. Phys.
Rev. Lett. 2001, 87, 174301.
(14) Caroli, C.; Nozier̀es, P. In Physics of Sliding Friction; Persson, B.;
Tosatti, E., Eds.; Kluwer Academic Publishers: Norwell, MA, 1996; pp
27−49.
(15) Semaltianos, N.; Wilson, E. Investigation of the surface
morphology of thermally evaporated thin gold films on mica, glass,
silicon and calcium fluoride substrates by scanning tunneling
microscopy. Thin Solid Films 2000, 366, 111−116.
(16) Higo, M.; Fujita, K.; Tanaka, Y.; Mitsushio, M.; Yoshidome, T.
Surface morphology of metal films deposited on mica at various
temperatures observed by atomic force microscopy. Appl. Surf. Sci.
2006, 252, 5083−5099.

Langmuir Article

dx.doi.org/10.1021/la400649h | Langmuir 2013, 29, 6884−68946893

mailto:kristina.davitt@lps.ens.fr


(17) Fubel, A.; Zech, M.; Leiderer, P.; Klier, J.; Shikin, V. Analysis of
roughness of Cs surfaces via evaluation of the autocorrelation function.
Surf. Sci. 2007, 601, 1684−1692.
(18) Delamarche, E.; Michel, B.; Kang, H.; Gerber, C. Thermal
stability of self-assembled monolayers. Langmuir 1994, 10, 4103−
4108.
(19) Laibinis, P.; Whitesides, G.; Allara, D.; Tao, Y.-T.; Parikh, A.;
Nuzzo, R. Comparison of the structures and wetting properties of self-
assembled monolayers of n-alkanethiols on the coinage metal surfaces,
Cu, Ag, Au. J. Am. Chem. Soc. 1991, 113, 7152−7167.
(20) Sams, A. N.; Merten, V. E.; Pettersen, M. S. APS physics.
Experimental and numerical study of the role of disorder on contact
angle hysteresis. http://meetings.aps.org/Meeting/MAR12/Event/
162271; accessed May 13, 2013.
(21) Delmas, M.; Monthioux, M.; Ondarcu̧hu, T. Contact Angle
Hysteresis at the Nanometer Scale. Phys. Rev. Lett. 2011, 106, 136102.
(22) de Gennes, P. G. Wetting: statics and dynamics. Rev. Mod. Phys.
1985, 57, 827−863.
(23) We have introduced the extent d. In its original form,4 the defect
force is written as fd ≃ ∫ −∞

+∞h(xm,y)dy where for topographical
defects22 h(x,y) = γ sin θeq[∂u(x,y)/∂x].
(24) Han̈ggi, P.; Talkner, P.; Borkovec, M. Reaction-rate theory: Fifty
years after Kramers. Rev. Mod. Phys. 1990, 62, 251−341.
(25) Blake, T.; Coninck, J. D. Dynamics of wetting and Kramers’
theory. Eur. Phys. J.: Spec. Top. 2011, 197, 249−264.
(26) Garg, A. Escape-field distribution for escape from a metastable
potential well subject to a steadily increasing bias field. Phys. Rev. B:
Condens. Matter Mater. Phys. 1995, 51, 15592−15595.
(27) Kurkijar̈vi, J. Intrinsic fluctuations in a superconducting ring
closed with a Josephson junction. Phys. Rev. B: Condens. Matter Mater.
Phys. 1972, 6, 832−835.
(28) Sang, Y.; Dube,́ M.; Grant, M. Dependence of friction on
roughness, velocity, and temperature. Phys. Rev. E: Stat., Nonlinear, Soft
Matter Phys. 2008, 77, 036123.
(29) de Gennes, P. G. Surface and interphase physics: Dynamics of a
triple line. C. R. Acad. Sci. Paris 1986, 302, 731−733.
(30) Snoeijer, J. H.; Andreotti, B. Moving contact lines: Scales,
regimes and dynamical transitions. Annu. Rev. Fluid Mech. 2013, 45,
269−292.
(31) Cristiano, R.; Silvestrini, P. Aspects of thermal activation theory
and applications to the Josephson effect. J. Appl. Phys. 1986, 60, 3243−
3246.
(32) Ambegaokar, V.; Halperin, B. Voltage due to thermal noise in
DC Josephson effect. Phys. Rev. Lett. 1969, 22, 1364−1366.
(33) Voue,́ M.; Rioboo, R.; Adao, M. H.; Conti, J.; Bondar, A. I.;
Ivanov, D. A.; Blake, T. D.; De Coninck, J. Contact-line friction of
liquid drops on self-assembled monolayers: Chainlength effects.
Langmuir 2007, 23, 4695−4699.
(34) Raphael̈, E.; DeGennes, P. G. Dynamics of wetting with
nonideal surfaces. The single defect problem. J. Chem. Phys. 1989, 90,
7577−7584.
(35) Our notation tα corresponds to α in the original work,34 and we
have used μm = 1/(aαM), consistent with the definition in eq 19.

Langmuir Article

dx.doi.org/10.1021/la400649h | Langmuir 2013, 29, 6884−68946894

http://meetings.aps.org/Meeting/MAR12/Event/162271
http://meetings.aps.org/Meeting/MAR12/Event/162271

