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We study the dynamic response of stretched thin polymeric films following an impact by a rigid sphere.
We vary the sphere radius, the impact velocity, and the film tension, and measure the contact time and the
maximum deflection of the film during the impact. The response is sensitive to nonlinearities associated
with the additional tension provided by the deformation. A physical model at the scaling level is
presented. This allows us (i) to understand qualitatively experimental and numerical results and (ii) to
present a diagram mapping different possible impact dynamics for membrane systems, which accounts for
the interplay between membrane tension, intrinsic modulus, and geometrical factors such as the frame size
and the sphere radius.
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Understanding the impact dynamics of two colliding
solids or an object with a stationary surface is of impor-
tance for diverse phenomena such as the mechanics of
shaken granular materials [1], the energy mitigating effects
of foams on projectiles and explosions [2], sporting events
such as trampolines and various ball games [3], ordinary
model problems involving bouncing (e.g., as a qualitative
characterization of materials), and even particle collisions
involved in cosmic radiation [4]. Basic descriptions all start
with the pioneering Hertz contact problem, which is based
on linear elasticity [5]. Inelastic effects, such as viscoelas-
tic dissipation [6] and plastic deformation [7–9], have been
reported to occur during the impact. Some of the initial
kinetic energy can also be radiated into the substrate as
elastic waves [10,11] or stored in vibration modes such as
bending [12]. Possible end effects have also been reported
when the target substrate is surrounded by walls [13].

The best known example of this type of problem is the
Hertzian quasistatic collision between a rigid sphere and a
thick elastic plate [14]. At low velocity of impact, the
response is given by comparing the initial kinetic energy
of the impacting sphere with the potential energy of elastic
deformation. Such an energy balance leads to scaling
relations for both the variations of the maximum deforma-
tion and the contact time of the impact. Extensions of this
work have mainly considered impact with finite thickness
plates [7,11–13] and indentation of clamped films [15].
Moreover, one significant complication in analyzing a
problem in this class is that nonlinearities between the
states of strain and stress arise as a consequence of finite
deformation.

Here we examine the dynamics of impact of a rigid
sphere with a thin elastic sheet: finite deformation produces
significant variations of the mean stress in the sheet and
these nonlinearities affect the details of the response. We
examine this problem via extensive experiments, a set of
numerical simulations, and physical arguments that lead to
scaling relationships, which capture the most significant

aspects of our measurements, and provide a ‘‘map’’ of the
dynamical response for the various physical limits.

Experiments.—An elastic membrane is clamped be-
tween two large Plexiglas annular disks with inner and
outer diameters, respectively, 190.5 and 266.7 mm. Care is
taken to avoid any initial pretension in the membrane
before placing it on a lubricated cylindrical frame with
inner and outer diameters, respectively, 95.3 and 114.3 mm
[see the experimental setup in Fig. 1(a)]. This circular
frame, with radius RF � 52:4 mm, allows the application
of a uniform tension to the membrane, which prevents the
formation of wrinkling observed when an elastic sheet is
submitted to a uniaxial tensile strain [16]. Furthermore,
the frame thickness (9.5 mm) is large enough to ensure
the membrane supports the applied load. The mass of
the clamping system, Mclamp � 390 g, sets the value of
the initial background stress in the membrane: �b �
Mclampg=2�RFhf, where hf is the film thickness.
Further, we can tune the background stress by the addition
of annular brass disks placed on the initial annular disks so
that 2:7 MPa<�b < 7:3 MPa.

By measuring the deformation of the membrane for a
given background stress, we estimate the Young’s modulus
of the elastic membrane, while a profilometer (Tencor
Instruments, a-Step 2000) is used to determine its thick-
ness. We use two different materials, namely, Saran Wrap
(Johnson) and Mylar-A films (Polymer Plastics
Corporation). The Saran Wrap is a common stretchable
film of low Young’s modulus (Ef � 250 MPa) with thick-
ness hf � 10 �m and density �f � 1:68 g=cm3. The
Young’s modulus of the Mylar-A is higher, Ef �
2:5 GPa, with thickness hf � 25 �m and density �f �
1:19 g=cm3. The spheres used as impacting objects are
made of magnetizable stainless steel: ES � 200 GPa and
�S � 7:8 g=cm3. A custom-made electromagnet allows us
to trigger the release of the sphere from a specific height,
H0, above the membrane [see Fig. 1(a)]. By tuning H0 we
control the sphere velocity measured at the onset of the
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impact, Vi, in the range 0:1–1 m=s. The sphere radius, RS,
changes from 0.35 to 3.5 mm; thus their mass MS �

�S
4�
3 R

3
S varies in the range 1:38� 10�3–1:38 g. The po-

sition of the sphere as a function of time is recorded with a
high-speed camera (Phantom V5) working at a frame rate
1000–10 000 frames=s.

The two primary outputs of our measurements are the
maximum deflection of the elastic sheet, �, and the contact
time, �, which are obtained by analyzing the high-speed
images with a custom-made software written with MATLAB.
Figure 1(b) shows the evolution of the position of the
sphere during the impact on Saran Wrap. The reflection
of the sphere prior to impact with the membrane allows us
to precisely define the beginning and end of the contact
[see the processed images in Fig. 1(b)]. Furthermore, nu-
merical simulations of this system, using the finite-element
software ABAQUS, allow us to vary both the background
stress and the speed of impact across several orders of
magnitude and thus to obtain more insight into the varia-
tions of � and �with �b and Vi. The numerical simulations

were carried out for RF � 52:4 mm and RF � 104:8 mm
to study the effect of the frame size.

Results.—Having performed the image analysis, we
obtain for a given background stress and material the
variations of � and � with the impact speed of the sphere
(see Fig. 2). As depicted in this figure, the contact time, �,
which is of the order of a few ms, is strongly dependent on
the sphere radius but is a weak function of Vi, whereas the
maximum deflection of the membrane, �, is strongly de-
pendent on both Vi and RS [see Fig. 2(b)]. Moreover, our
experiments show that the ratio �=�Vi � � is approxi-
mately constant with � � 1

4 as expected for a parabolic
evolution of the deflection with time during the impact [17]
(see the inset of Fig. 2). As a result, the variations of the
contact time, �� �=Vi, can be obtained straightforwardly
from those of the maximum deflection, �. We obtain
similar dependencies for the two materials and background
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FIG. 2 (color online). Top panel: Variation of the contact time
� with the velocity of impact Vi. Bottom panel: Evolution of the
maximum deflection of the membrane � with Vi. Inset:
Dependence of the ratio �

�Vi
with Vi. The different symbols

correspond to experiments on Saran Wrap for different values
of the sphere radius: (�) RS � 0:35 mm, (�) RS � 0:5 mm, (�)
RS � 0:795 mm, (�) RS � 1:25 mm, (�) RS � 1:75 mm, (4)
RS � 2:38 mm, (�) RS � 2:78 mm, (�) RS � 3 mm, and (+)
RS � 3:175 mm. A set of numerical data for RS � 0:795 mm is
provided for comparison (red solid squares).

 

FIG. 1. (a) Schematic of the experimental setup. (b) Position
of the sphere bouncing off Saran Wrap. The top and the bottom
series of images are, respectively, frames from the original
movie and the processed images. The corresponding times are
as follows: (1) t � 15 ms, (2) t � 43:75 ms, (3) t � 44 ms,
(4) t � 46:5 ms, (5) t � 49 ms, (6) t � 49:25 ms, and
(7) t � 103:25 ms. The origin of time is taken once the bottom
of the sphere appears in the frame. The release height and sphere
radius are H0 � 27 mm and RS � 2 mm. The values of the
contact time and the maximum amplitude of deflection of the
sheet during the impact are, respectively, � � 5 ms and � �
1:24 mm.
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stresses (in total, more than 600 experiments were ana-
lyzed) as well as in the numerical simulations. We next
rationalize these observations in terms of the variations of
the maximum deflection.

Discussion.—We begin to understand our results by
simply comparing the initial kinetic energy of the sphere,
Ek �

1
2MSV2

i , with an estimate of the energy stored in the
membrane during the impact, Eme . Two distinct parameters
contribute to the elasticity of the membrane: the applied
background stress, �b, and the intrinsic modulus of the
membrane, Ef. As nonlinearities have to be taken into
account at the scaling level, we then expect the elastic
energy in the membrane to be Eme � �bhf‘2��‘	

2 


Efhf‘
2��‘	

4, where ‘ is the typical length over which the
membrane is deformed and the strain is O��‘	

2. Moreover,
due to the vibrations of the membrane during the impact,
there is kinetic energy, Emk , in the elastic sheet: Emk �
�fhf‘

2���	
2. The total energy for this system is Ek � Eme 


Emk . Assuming that the frame size is infinite (‘� RF)
and that elastic and kinetic energies are of the same or-
der of magnitude, we determine two possible values for

the typical length ‘: ‘ � ‘1 �
��������������
�b=�f

q
� or ‘ � ‘2 �

�
��������������
Ef=�f

q
��	1=2. When ‘1 > ‘2 (i.e., when �=� �

Vi < V�, with V� � �b��������
Ef�f
p ), the elastic response is con-

trolled by the background stress,�b, otherwise (‘2 > ‘1, or
Vi > V�) by the Young’s modulus, Ef. For Saran Wrap, the
characteristic lengths ‘1 and ‘2 vary, respectively, in the
ranges 20–500 and 5–90 mm, whereas the frame radius is
RF � 52:4 mm. Consequently, the finite nature of the
frame size has to be taken into account in our model:
when ‘1 >RF or ‘2 >RF, the typical length ‘ to be used
in estimating the energy stored in the membrane is ‘ � RF.

This physical analysis allows us to construct a map of
the possible regimes of impact dynamics for membrane
systems (see Fig. 3). This diagram is presented in terms of
two dimensionless parameters, Vi=V� and MS=M�, with
M� � R2

Fhf�f, and clearly depicts the complexity of the
response of impact in elastic membranes. Indeed, depend-
ing on the respective values of Vi=V� and MS=M

�, four
different regimes can be identified: the elastic response can
be controlled by �b (regimes I and II) or by Ef (regimes III
and IV); also, the wavelike perturbation to the membrane
does not reach the boundaries (regimes I and III) or is
limited by the frame size (regimes II and IV). Moreover,
using the relation �� �=Vi, we determine a number of
scaling laws for the evolutions of both � and � in each
regime (see Fig. 3); however, checking the validity of these
scaling laws is difficult since many data are in the vicinity
of boundaries between the different regions. For Saran
Wrap and �b � 2:7 MPa, V�, which defines the transition
between regimes I to III, is of the order of V� � 4 m=s and
is out of the range of our experimental conditions.
Moreover, a large fraction of sphere radii are above the

critical sphere radius, R�S � 1:1 mm, obtained by the esti-
mate of M�, which sets transitions I-II and III-IV.
Consequently, our experimental results mostly cover
region II, in which the elasticity is controlled by the
imposed background stress and the frame size is important
(see Fig. 3). We will explore in a future communication
regimes III and IV using numerical simulations that are not
subjected to the limitations imposed by plasticity [17].

To validate our model, we next compare the initial
kinetic energy of the sphere, Ek, with an estimation of
the energy of deformation of the membrane:

 Em�0	e � c1�bhf‘2

�
�
‘

�
2

 c2Efhf‘2

�
�
‘

�
4
; (1)

where c1 and c2 are two numerical constants and ‘ is
defined as above: ‘ � minfmaxf‘1; ‘2g; RFg. When c1 �
c2 � 1, this first estimate allows us to obtain good quali-
tative agreement with both numerical and experimental
results since the energy balance partially collapses data
onto a single curve (not shown here); however, a significant
scatter is still observed for large Vi, small �b and between
points obtained for the two values of RF. We therefore need
a more sophisticated model. The origin of the additional
variability is in part related to logarithmic corrections
characteristic of two-dimensional elasticity that slightly
modify the scaling relations defining the evolutions of �
in regimes I and II.
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FIG. 3 (color online). Diagram mapping the impact dynamics
in the membrane as a function of the dimensionless parameters
Vi=V

� and MS=M
�, where V� � �b��������

Ef�f
p and M� � R2

Fhf�f. Also,

in this figure we use �0 �
��������
MS
�bhf

q
. The colors stand for different

material and the numerical simulations: black (Saran Wrap),
blue (Mylar-A), and red numerical results. The different symbols
correspond to different values of the background tension: (�)
�b � 0:53 MPa, () �b � 2:1 MPa, (�) �b � 2:7 MPa, (4)
�b � 3:3 MPa, (�) �b � 5:2 MPa, (�) �b � 6:4 MPa, (�)
�b � 7:2 MPa, and (�) �b � 7:3 MPa.
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In order to get a better evaluation of the elastic energy of
the elastic sheet, Eme , we next calculate the familiar elastic
energy of a membrane submitted to a deformation � lo-
cated at its center, Eme �

hf�b
2

R
dS�ru	2, where the inte-

gration is over the surface of the membrane, and u� ~r	 is the
induced displacement of the interface from its equilibrium
position [18]. Details of the calculation will be presented
elsewhere [17]. This calculation allows us to correct the
first estimate of the stored energy in the membrane, Em�0	e ,
and to add a logarithmic decay for the displacement in the
new estimation of this energy, Em�1	e ; one finally finds

 Em�1	e �
�

ln� ‘�������
�RS
p 	

�bhf‘
2

�
�
‘

�
2

 c2Efhf‘

2

�
�
‘

�
4
; (2)

where ‘ is defined as above. Depending on experimental
conditions, the value of �

ln�‘=
�������
�RS
p

	
varies in the range (0.5–

1.5) and is significant since it accounts for geometrical
variables, RS and ‘. Because of a lack of a full nonlinear
elasticity computation, we take c2 � 1 to plot in Fig. 4 the
approximation of the stored energy given by Eq. (2), Em�1	e ,
as a function of the initial kinetic energy of the sphere, Ek.
As shown in this figure, a strong correlation is found for
both our experimental and numerical results (i.e., different
values of Vi, RS, �b, Ef, hf, and RF): our physical model
collapses much of the data onto a single curve.

As a final comment, let us note that our results suggest a
variation close to Em�1	e � 1

2Ek (see Fig. 4). As a conse-
quence, roughly half of the initial kinetic energy has been
stored in the membrane, the remaining part being dissi-
pated in the vibrations of the film. It is worth noticing that
this result is consistent with our physical model, which is
based on the assumption that kinetic and elastic energies
are of the same order of magnitude.

Characterizing the impact dynamics for model mem-
brane systems is challenging since (i) it is experimentally
difficult to study the response far from the boundaries of
the diagram we presented above without other mechanisms
coming into play, such as plasticity, and (ii) as we show in
this Letter, nonlinearities play an important role. However,
we believe that the general diagram presented in Fig. 3
provides a simple and robust way to understand, for a given
situation, which parameters (frame size, membrane ten-
sion, etc.) control the impact dynamics. As a result, for any
application, these are the parameters that should be tuned
to modify significantly the impact characteristics.
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FIG. 4 (color online). Evolution of the stored energy in the
membrane obtained with the calculation of elastic energy of a
membrane submitted to a deformation � located at its center,
Em�1	e , as a function of the initial kinetic energy of the impacting
sphere, Ek. Inset: Magnification at low energies. The different
symbols and colors are identical to those in Fig. 3. The dotted
line is a guide for the eyes and has a slope of 1=2.

PRL 97, 244301 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
15 DECEMBER 2006

244301-4


