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Selection of velocity profile and flow depth in granular flows

B. Andreotti and S. Douady
Laboratoire de Physique Statistique de l’Ecole Normale Supe´rieure, 24 rue Lhomond, 75231 Paris Cedex 05, France

~Received 20 October 2000; published 26 February 2001!

The dynamics of a two-dimensional pile constituted by spherical grains organized in parallel layers is
investigated theoretically. Only three effects are taken into account in the model: driving by gravity, nonlocal
dissipation due to shocks, and trapping of grains by the bumps of the underneath layer. This is sufficient to
recover the basic properties of granular avalanches: the transition between static and flowing state is hysteretic;
the pile does not flow on the whole height but only in a layer at the surface; the velocity profile inside the
flowing layer is approximately linear and is followed by a creep motion in the~quasi! static part. The flow
height increases as a function of the pile angle and tends to infinity for a critical anglew` . The dependence of
this critical angle with the static anglews , the restitution coefficientr, and the moment of inertiaJ, is
investigated.

DOI: 10.1103/PhysRevE.63.031305 PACS number~s!: 83.80.Fg, 45.05.1x
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I. INTRODUCTION

Although they are difficult to analyze, most of the bas
properties of granular media are somehow easy to obse
For instance, most of us have already built a sand pile
pouring some sand on an horizontal surface. The sand a
mulates at the top of the pile, which remains static until
anglew of the free surface becomes locally larger than
static anglews . Then, an avalanche spontaneously starts
rushes down the pile. It survives as long as the free sur
angle remains larger than the dynamical anglewd . The dy-
namics of the avalanche appears to be very different fr
that of usual fluids since only a thin layer of grains is set in
motion ~Fig. 1!. This behavior rises several problems s
open up to now:

~i! What are the basic mechanisms leading to the subc
cal transition between equilibrium and motion?

~ii ! What selects the depth on which the sand flows?
~iii ! What determines the velocity profile inside this laye
Velocity profiles in avalanches were measured by R

jchenbach@1# in a rotating drum with a width of one grai
diameter. He found that the velocity profiles were appro
mately linear@]zv.G(w)# with a slight viscouslike curva-
ture (]zzv,0) in the upper part and a slight creeping t
(]zzv.0). The same kind of profiles were obtained nume
cally by Azanza, Chevoir, and Maucharont@2# and
Prochnow, Chevoir, and Albertelli@3# but with a larger cur-
vature (]zzv,0). However, the existence of a static botto
was not observed in the numerical simulations: the gra
were always rolling down to the rough bottom. For com
pleteness, let us mention that velocity profiles were a
measured in experiments on collisional flows down rou
inclined planes@4,5#, with the same conclusion.

We measured velocity profiles~Fig. 1! at the boundary of
a quite large channel~100 grain diameters! by a ~intercorre-
lation of images! method PIV. They exhibit a strong shear
the free surface followed in the lower part by a creep mot
region as that observed by Komatsuet al. @6#. Again, the
velocity profile is approximately linear but exhibits now
positive curvature (]zzv.0) so that the velocity gradient i
maximum at the free surface. It is just the opposite of us
1063-651X/2001/63~3!/031305~8!/$15.00 63 0313
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fluids in which the constraint and thus the velocity gradie
are null at the free surface and maximum at the static bou
ary. This is very important since it proves that in granu
flows the constraints are not only related to the strain ten
@1#.

In a previous article@7# we have revisited the dynamics o
a single grain rolling on a rough inclined surface. We ha
shown that this simple system already presents a subcri
bifurcation between equilibrium and motion similar to that
a whole sand pile. Three dynamical mechanisms were ta
into account. The grain is driven downward by gravity bu
part of its kinetic energy is dissipated each time it collid
beneath a bump. The balance between these two effects
termines a limit velocity. The two critical angles come fro
the trapping of the grain between the plane bumps. The s
anglews is the angle above which the trap disappears. T
dynamical anglewd is the angle below which the limit ve
locity is not sufficient to escape from trapping.

The aim of this paper is to extend the previous model@7#
to the case of several layers of grains, keeping the same t
effects, gravity driving, dissipation by shocks, and poten
trapping. We will examine the two problems previous
risen: the selection of the flowing height and the shape of
velocity profile.

II. MODELING

Many effects can influence the dynamics of granu
flows: the roughness, the elasticity, and the geometry
grains but also electrostatic interaction or humidity. Ho
ever, three mechanisms are always present in any gran
material: gravity, dissipation by the shocks between gra
and trapping of the grains between their neighbors. Our
is to build a simple model in whichonly these three effect
play a roleand can be tuned independently.

We consider a two-dimensional pile constituted by sphe
cal grains organized in parallel layers. All the quantities us
in this paper are rescaled using the grains diameterd, their
massm, and the gravity fieldg ~d1/2g21/2 is the typical ti-
mescale!. The lower layern50 is fixed and constitutes th
rough plane on which the grains flow. The plane can
©2001 The American Physical Society05-1
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B. ANDREOTTI AND S. DOUADY PHYSICAL REVIEW E63 031305
inclined at an anglew, which is the control parameter. Insid
each layern, the grains are separated by a fixed distan
2d sinws ~Fig. 2!.

A. Equations of motion

By assumption, the grainsn21 andn of successive layers
are in permanent contact at pointI n . The position of the
grain n relatively to the grainn21 is specified by the angle
un ~Fig. 2! between the perpendicular to the inclined pla
and the vector joining the centers of mass (Gn21Gn
52InGn5uun

). The velocity of the grainn is thus

vn5(
i 51

n

u̇ iuu i 1p/2
. ~1!

We assume that the grainn rolls without sliding around the
beneath onen21 so that its angular velocity is

Vn52(
i 51

n

~21! i 1nu̇ ik. ~2!

The motion is conservative except during the shocks.
troducing the moment of inertiaJ of a grain about its diam-
eter, the kinetic energyT of the whole chain of grains reads

T5
1

2 (
i , j 51

N

a i , j@cos~u i2u j !1~21! i 1 j J#u̇ i u̇ j ~3!

with a i , j5@N112max(i,j)#. Its potential energy is

FIG. 1. During an avalanche, only a thin layer of grains flow
The velocity profile exhibits a large gradient in the bulk of t
layer. At the interface between the static pile and the flowing lay
a region of creep motion can be observed. This instantaneous
locity profile was obtained by means of PIV in a channel of 1
grain diameters width.
03130
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U52(
i 51

N

~N112 i !cos~u i2w!. ~4!

Finally, the equations of motion directly follows as a set
coupled equations labeled byn:

(
i 51

N

a i ,n@cos~u i2un!1~21! i 1nJ#ü i

5(
i 51

N

a i ,nsin~u i2un!u̇ i u̇n1~N112n!sin~un2w!.

~5!

It is worth noting that the right-hand side is composed
two terms: an inertial term quadratic inu̇ i and the gravity
term proportional to the number of beads aboven.

When the grainl collides with the grainl 21, part of the
kinetic energy is dissipated. We assume that the shoc
instantaneous and that the forces are transmitted through
contact pointsI n . To find theN independent quantities con
served during the shock, let us consider the subsystem$n,n
11,...,N%. Except gravity, which can be neglected, the on
external force on this subsystem is that exerted at the con
point I n by the grainn21. As a consequence, the angul
momentum of the subsystem$n,n11,...,N% about the point
I n is conserved. Denoting, respectively, by the subscripts2
and1 the quantities before and after the shocks, we obt

(
i 51

N

a i ,n@cos~u i
22un

1!1~21! i 1nJ#u̇ i
2

5(
i 51

N

a i ,n@cos~u i
12un

1!1~21! i 1nJ#u̇ i
1 .

The relative positionu l of the grain l changes during the
shocks from2ws to ws , if u̇ l is negative, and fromws to

.

r,
e-

FIG. 2. The grainn is assumed to roll without sliding on th
grain n21 beneath it at the contact pointI n . The positions are
specified by the anglesun , which vary fromws just after one shock
down to2ws just before the next one. The system is periodic alo
the direction of the layers so that only the dynamics of one chain
grains has to be computed.
5-2
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SELECTION OF VELOCITY PROFILE AND FLOW . . . PHYSICAL REVIEW E63 031305
2ws , if u̇ l is positive. The positionun of all the other grains
remain the same before and after the shock. The prev
expression can thus be simplified into

(
i 51

N

a i ,n@cos~u i
12un

1!1~21! i 1nJ#~ u̇ i
12 u̇ i

2!

522a l ,n sin~un
1!sin~ws!uu̇ l

2u. ~6!

The most important thing to note about these shocks is t
nonlocality. The collisions are not binary but the whole cha
of grains is involved: the flowing layer is not isolated a
consequently its momentum is not conserved.

B. Simplified model

Investigating the effects of the dynamical mechanisms
rectly from Eqs.~5! and ~6! governing the motion and th
collisions is not an easy task. We will thus first simplify th
model term by term.

The expression of the kinetic energy involves a project
factor cos(ui2un), which remains almost constant during th
motion. The first simplification is to approximate this fact
by 1 so that the kinetic energy becomes:T5 1

2 S i , j 51
N a i , j@1

1(21)i 1 j J#u̇ i u̇ j . As a consequence, the inertial term in t
right-hand side of the equation of motion~5! disappears.
This is justified by the fact that sin(ui2un) is null on the
average and leads to a simpler equation of motion:

(
i 51

N

a i ,n@11~21! i 1nJ#ü i5~N112n!sin~un2w!.

Similarly, the restitution factor sin(un
1) in the right-hand

side of the collision equation~6! could be thought of as bein
null on the average. This is true, except for the grainl, which
collides with the one beneath. Indeed, the angleu l

1 is known
to be equal to2ws ~or ws for a backward collision!. After
averaging over microscopic configurations, the second eq
tion becomes

(
i 51

N

a i ,n@11~21! i 1nJ#~ u̇ i
12 u̇ i

2!

522~N112 l !sin2~ws!d l ,nu̇ l
2 .

On the average, the grainl makes approximatelyuu̇ l u/2ws
shocks per unit time. The discrete shocks can thus be
placed by a continuous friction force:

(
i 51

N

a i ,n@11~21! i 1nJ#@ ü i #shocks

.2~N112n!
sin2~ws!

ws
uu̇nuu̇n .

We finally obtain an equation set governing the motio

Mn,i ü i5sin~un2w!2ruu̇nuu̇n , ~7!
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where the restitution coefficientr is approximately equal to
sin2(ws)/ws and where the matrixM is given by Mn,i5@1
1(21)i 1nJ#@N112max(i,n)#/(N112n).

C. Discussion

The model fully generalizes the case of one grain on
rough bottom investigated in a previous article@7#. For N

51 the equation of motion reduces to (11J) ü5sin(u2w)

2ruu̇uu̇, which already leads to a subcritical transition b
tween equilibrium and motion. This characteristic is due
the fact that the grain can remain static in the dip betwe
underlying grains and, when flowing, that it has to ke
enough kinetic energy after each collision to pass ab
these grains@7#. In Eq. ~7!, this trapping effect is related to
the fact that the gravity term sin(u2w) has a drawback effec
in a part of the trajectory~for ws.u.w!.

The case of several stacked layers is more complica
because the shock of one grain has an effect on all the o
layers~nonlocal shocks!. This can be seen in Eq.~7! where
the left-hand side involves the angular acceleration of all
chain of grains. This introduces an essential difference w
Bagnold’s model@8# in which the shocks are assumed to
binary and have an effect only for the two layers collidin
This nonlocality makes the resolution hardly possible th
retically.

Keeping the dissipation localized at the shocks, we wo
have to perform a molecular dynamics type of simulation.
avoid this, the dissipation has been replaced by a frict
quadratic inu̇ acting continuously along the grain trajector
This simplification allows a fixed time step simulation.
was checked in the case of a single grain that the ove
dynamics does not change. On the other hand, to keep
trapping effect, the force term was of course not simila
averaged.

The second interest of the simplification@Eq. ~7!# is to
allow the tuning of each effect separately. The dissipation
controlled by the coefficientr. The trapping of the grains is
related to the oscillation of the gravity term sin(un2w). It is
thus controlled byws , i.e., by the compacity of the pile. Th
accumulation restitution of rotation energy is controlled
the moment of inertiaJ. Finally, the effect of the rough fixed
bottom depends on the total number of layersN.

III. RESULTS

A. Velocity profiles

We integrate the model numerically using a fourth-ord
Runge Kutta method. As a reference case, we choser51,
ws540°, J50.5, andN550. A visualization of the pile is
shown on Fig. 3 forw524° together with the mean velocit
profile. The first thing to note is that the grains only flow
the upper part of the pile: as in a actual sand pile~Fig. 1!,
there exists a quasistatic part. The second is the simila
between the actual velocity profile and that given by t
model. It is characterized by a strongly sheared layer near
free surface together with a slight creep motion in the bott
5-3
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B. ANDREOTTI AND S. DOUADY PHYSICAL REVIEW E63 031305
part. The curvature is the same as in the experiment (]zzv
.0) corresponding to the fact that the velocity gradient
maximum at the free surface.

Looking at Fig. 3, one can observe that the first sev
layers ~n5N26 to n5N! are moving. This region corre
sponds on the mean velocity profile to the large shear reg
at the free surface. Below, only two layers are moving~n
5N29 andn5N215! all the others being trapped. At th
same depth, the mean profile does not exhibit any disco
nuity. The creep motion in this region is thus very interm
tent. One layer starts jumping above the one beneath but
remains trapped for some time. A different layer make
relative motion of one grain and so on. Due to this irregu
motion, we will focus on quantities averaged over 1000 u
times.

The evolution of the mean velocity profile with the plan
anglew is shown in Fig. 4. It turns out that the flowing heig
increases with the angle, betweenw518° andw525°. In
this angle range, the velocity profile remains approximat
linear in the bulk but the creep motion region is more a
more extended. Aroundw525°, the flow reaches the bottom
~Fig. 4, inset!. Above, the velocity profile changes drastica
and becomes again linear at much larger angles (w.32°),
with just the velocity gradient increasing with the pla
anglew.

B. Flow height

It is interesting to characterize the flow by a few para
eters such as the flow heightH and the mean velocity gradi
ent G inside the flowing layer. However, without a preci
model of the creeping tail, this is difficult to do. A firs
possibility is to use simply the velocity gradient at the fr
surfaceGs5vN2vN21 ~Fig. 5!. The typical flow heightHs
can then be defined using the velocity at the free surf
vN5GsHs . This corresponds to approximate the veloc
profile by its tangent at the free surface~dashed line on
Fig. 5!.

FIG. 3. Left: a visualization of the flowing layer (w524°).
Right: the corresponding mean velocity profile.
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Another way of defining the flow depth is to use integr
quantities like the flow rateQ5(n51

N vn and the translation
kinetic energy E5(n51

N vn
2. Dimensionally, we obtain a

lengthH}Q2/E and a frequencyG}E2/Q3. The prefactors
can be adjusted to recover the right flowing depth and ve
ity gradient when the velocity profile is linear~solid line in
Fig. 5!:

FIG. 4. Evolution of the mean velocity profile with the anglew
by steps of 0.5°. The flowing height increases with the anglew. The
creep motion reaches the bottom plane aroundw525°. Above this
value~inset!, the velocity profile changes and becomes again ne
linear abovew533°. The velocities are rescaled byg1/2d1/2.

FIG. 5. Velocity gradientG as a function of the anglew. Gs is
the velocity gradient at the free surface~dashed line on the inset!.
Gb is the bulk mean gradient defined using the momentumQ and
the kinetic energyE ~dotted line on the inset!. The black points are
obtained by increasing slowly the anglew8(t)511025, the white
ones by decreasing the anglew8(t)521025. The solid line corre-
sponds to the velocity gradient of a single grain on a rough bot
(N51). The velocity gradients are rescaled byg1/2d21/2.
5-4



e
r-
-

th
s
xe
ti

he
he
ai

l
. 6
e

s
fo

s
r
.
as
e
er

s

ap-
he

is

elp
not
the

del
un-

as-

-
e-
. To
we
he

ve

i-
y at
s.

on

er-
ual

n

-

SELECTION OF VELOCITY PROFILE AND FLOW . . . PHYSICAL REVIEW E63 031305
Hb5
4Q2

3E
, Gb5

9E2

8Q3 . ~8!

The evolution of the velocity gradientG and of the flow-
ing depthH with the anglew are plotted in Figs. 5 and 6. Th
flow height defined from the velocity profile at the free su
face (Hs) and in the bulk (Hb) have globally the same evo
lution. They increase gradually with the anglew from H
53 at w516° to the total number of layersH5N550 at
large angle. The mean velocity gradient in the bulk (Gb) and
at the free surface (Gs) evolve very differently. Atw516°,
the velocity profile is strictly linear:Gb and Gs are thus
equal. Above,Gb decreases due to the development of
creep motion tail. A sudden change of behavior appear
w525°, angle at which the creep motion reaches the fi
bottom. Above,Gb increases rapidly and becomes asympto
cally equal toGs at very large angles, corresponding to t
fact that the velocity profile tends towards linearity. On t
other hand, the velocity gradient at the free surface rem
almost equal to the velocity of one grain (N51) on a fixed
bottom ~solid line on Fig. 5! meaning that it does not fee
much from the motion in the bulk. It can be seen in Fig
that the crisis aroundw525° results in a fast increase of th
flow heightH with the angle.

As a first approximation, the total number of layersN
modifies only the height at whichH saturates at large angle
~Fig. 7!. It can also be noted that the saturation is sharper
thin layers ~N510 and N520!. It is remarkable that the
sudden increase of the flow height approximately occur
the same anglewc . This suggests the existence of a dive
gence ofH(w), in the limit of a very large number of layers

It is clear that the selection of the flow depth can be
cribed to trapping i.e., to the fact that grains should hav
sufficient kinetic energy to climb the bumps of the und
neath layer. More precisely, a grain of the layerN112H
has to lift up the (H21) grains located above it. It has thu

FIG. 6. Flow depthH as a function of the anglew. Hb andHs

are, respectively, estimated from the velocity profile in the bulk a
at the free surface~see Fig. 5!. As in Fig. 5, the black points are
obtained by increasing slowly the anglew8(t)511025, the white
ones by decreasing the anglew8(t)521025. The heights are res
caled by the grains diameterd.
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to escape from a potential trap whose depthE5gH@1
2cos(ws2w)# increases linearly withH. If we assume that
the other layers do not help the grain to escape from tr
ping, i.e., that they do not transmit kinetic energy to it, t
last grain to flow has just enough kinetic energy (.G2) to
escape from the potential trapping. The flowing height
then given byH.G2/@12cos(ws2w)#, which predicts an in-
crease ofH with w and a divergence atw5ws . The diver-
gence ofH is indeed observed, but for a smaller anglewc . In
fact, all the layers are coupled so that the upper layers h
the lower layers to escape from trapping. But this help is
enough to balance the increase of the potential trap;
depth obtained from the numerical integration of the mo
is larger than that estimated under the hypothesis of
coupled layers.

C. Reversibility, Hysteresis

The white points in Figs. 5 and 6 are obtained by decre
ing the anglew continuously at the slow rate ofw8(t)5
21025 rad g1/2d21/2. The initial condition was prepared ran
domly at w535° and the equations of motion were int
grated over 1000 unit times before decreasing the angle
check that the pile was always at statistical equilibrium,
investigated the reversibility of the curve by preparing t
initial condition randomly atw516° and by increasing the
anglew at the ratew8(t)51025 rad g1/2d21/2. The result, in
black points in Figs. 5 and 6, shows very clearly that abo
w516° the system is reversible.

This is evidently not the case if we start from a pile in
tially at rest. In that case, the motion starts spontaneousl
the static anglews , above which the trapping disappear
Betweenw516° andw5ws540°, the equilibrium is meta-
stable and one rolling grain is sufficient to initiate the moti
of the whole layer. Finally, beloww5wd.16°, the flow
stops@9#. We thus recover, in the present model, the hyst
esis between equilibrium and flowing observed in act
sand piles.

d FIG. 7. Flow depthH as a function of the anglew for different
total heightN ~10, 20, 30, 40, and 50!. As previously, the heights
are given in number of grains.
5-5
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D. Parametric study of the flowing height

We investigate in this section the effect of the static an
ws , of the restitution coefficientr and of the moment of
inertia J on the dynamics of the pile. For all the sets
parameters investigated, we recovered qualitatively the
havior previously described. We will thus limit ourselves
study, parametrically, the flowing heightHb(w).

The relation between the flowing height and the angle
shown in Fig. 8 for two different restitution coefficientsr.
The global evolution is the same but the divergence and
saturation are much sharper forr52 than forr51. For a
larger dissipation rate, both the anglewd above which the
motion is possible and thatwc at which H diverges, are
larger. On the other hand, the range of angles for which
pile flows on a finite depth is smaller~9° for r51 against
5.5° for r52!. The increase of the critical angles with th
dissipation rater is indirectly related to the trapping. Whenr
is increased, the kinetic energy globally decreases. As a
sequence, a larger angle is necessary to recover a ki
energy sufficient to escape from the trapping.

Similarly, we observe in Fig. 9 that the two critical angl
increase with the static anglews . This time, the range o
angles for which a static part exists also increases withws .
Changing the static anglews allows to change the depth o
the traps without changing the kinetic energy. Again, fo
larger static anglews , a larger kinetic energy is necessary
escape from the trapping and thus a larger angle.

The moment of inertiaJ of the grains about their diamete
controls the accumulation and the restitution of rotation
netic energy. WhenJ is increased, the anglewc at whichH
seams to diverge decreases~Fig. 10!. As for the dependence
of r and ws , this is due to the trapping. An increase ofJ
induces a regulation of the kinetic energy by the rotation:
grains become less sensitive to the oscillation of the gra
force. Thus, for a large moment of inertiaJ, a lower angle is
necessary to escape from the traps.

This parametric study shows that the selection of the fl
depth is governed by the trapping effect: if trapping is

FIG. 8. Flow depthH as a function of the anglew for two
different restitution coefficients~r51 and r52!. As previously,
the heights are rescaled by the grains diameterd.
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creased~by ws! or kinetic energy reduced~by r or J!, both
the anglewd above which the motion is possible and th
anglewc for which the flow height diverges, increase.

IV. CONCLUSION

We have proposed in this paper a crude model of s
piles constituted by parallel layers of grains. Only thr
mechanisms are taken into account: gravity, dissipation
nonlocal shocks, and trapping of the grains. The models
lows nonetheless to recover the subcritical transition betw
static equilibrium and motion observed in actual sand p

FIG. 9. Flow depthH as a function of the anglew for different
static anglews ~35°, 40°, 45°, and 50°! and thus different compaci
ties. As a guideline, a fit by the functiona sin(w)/sin(w2wc) is
superimposed to the numerical points. The divergence anglewc

increases withws but a remains constant (a.2.5). As previously,
the heights are rescaled by the grains diameterd.

FIG. 10. Flow depthH as a function of the anglew for different
moments of inertiaJ ~0.25, 0.5, 0.75, and 1!. As in Fig. 9, a fit by
the functiona sin(w)/sin(w2wc) is superimposed to the numerica
points. The divergence anglewc increases whenJ is decreased bu
a is constant as previously (a.2.5). As previously, the heights ar
rescaled by the grain diameterd.
5-6
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SELECTION OF VELOCITY PROFILE AND FLOW . . . PHYSICAL REVIEW E63 031305
but also the selection of a finite flow depth and the shape
the velocity profile.

The velocity profile inside a dense granular flow is diffe
ent from that of a viscous fluid@v}12(z/H)2# by two prop-
erties: there exists a quasistatic part and the velocity grad
is maximum at the free surface. A viscous fluid flows dow
to the fixed bottom and the velocity gradient is null at t
surface ~Fig. 11!. In the later case the velocity profile i
derived from the viscous interaction between the fluid laye
This viscous coupling can be described as the exchang
momentum due to binary shocks of molecules induced
thermal agitation. Bagnold@8# proposed an adapted descri
tion, the collisional granular flow model, in which the shoc
are not induced by thermal agitation but by the velocity d
ference of the grains themselves. This gives a viscosity~the
momentum diffusion coefficient! no longer constant but pro
portional to the velocity gradient. The resulting velocity pr
file @v}12(z/H)3/2# is still very different from that mea-
sured in dense flowing layers~Figs. 1 and 11!. Other
adaptations could be thought as to change the relation
tween the stress and the strain to obtain the good pro
However, in any continuous model with a local stress str
relation, the shear stress~the constraints! should be null at
the free surface and the shear strain should thus vanish a
free surface. Following the conclusions of Rajchenba
Clement, and Duran@1#, any model based on a local stre
strain relation is inconsistent with experimental observati
~Figs. 1 and 11!.

In the present model, the shape of the velocity profile
recovered. To discriminate between the effect of the nonlo
shocks and that of the trapping, we can look at the re
obtained when we average the equation of motion~7! to
suppress the trapping. During motion, the gravity te
sin(un2w) oscillates andchanges sign; it is the existence of
this drawback force at some places that allows static p
tions. The average of this term over microscopic configu
tions is proportional to2sin(w). If we replace it in the equa
tions of motion~7!, steady flows are immediately obtaine

FIG. 11. In an actual sand pile, the flow is limited to a strong
sheared layer at the free surface~top!. Depending on the nature o
the dissipation, the velocity profile is different; for a viscous diff
sion ~thermal binary shocks, left!, for binary collisions as in Bag-
nold’s model~center left!, and for nonlocal shocks~center right!.
These three models do not predict any internal limit to the fl
depth. To recover this behavior, both nonlocal shocks and trap
of grains between its underneath neighbors have to be taken
account~present model, right!.
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the velocity profile is linear with a velocity gradientG
proportional to u̇n}@sin(w)/r#1/2 and without a static par
~Fig. 11!.

From this simple comparison, we can conclude that
~i! the existence of a strong gradient at the free surfac

not due to trapping but to the nonlocality of the shocks: wh
one grain collides a second grain, it looses a part of its m
mentum but this momentum is not transmitted to the sec
grain. It is transmitted through the whole chain of forces
the rigid bottom. The importance of the dissipation no
locality is confirmed by the observation that the velocity g
dient at the free surface is almost insensitive to the dynam
of the grains beneath it. Indeed, it is approximately equa
the velocity of one grain on a rough plane, as if each laye
grains was rolling on a fixed one@1#.

~ii ! in the absence of a drawback force at some places,
grains cannot remain at rest. The selection of a flowing de
is thus directly related to the trapping of the grains in t
holes of the underneath layer. More precisely, it is due to
fact that the trapping potential increases linearly with t
depth while the kinetic energy relatively to the underne
layer is almost that of one grain.

~iii ! the velocity profile is strictly linear in the absence
trapping while it exhibits a creeping tail in the full mode
~Fig. 11!. The creeping tail is thus also a signature of tra
ping.

As a conclusion, this model reproduces the velocity p
file observed experimentally~including the maximum shea
at the surface and the creeping tail!, and the selection of a
finite flow depth. Its simplicity allows to show that the stron
shear can be ascribed to the equilibrium between gra
driving and dissipation by nonlocal shocks, and that
creeping tail and the finite depth can be ascribed to the t
ping effect. It could be tempting to tune this model and
troduce further effects to reproduce more closely some
perimental results. However, it presents internal limitatio
due to its fixed geometry. Moreover, most of the veloc
profiles measured experimentally could suffer from the rig
glass boundary introduced for side visualization. The
tailed theoretical description of this velocity profile is als
difficult @10,11#.

It is more interesting to see the present model as a too
understand the origin of several particularities of granu
flows, and to use its general results to improve continu
models. For instance, the BCRE models@12,13#, which con-
sider equations governing the flow layer evolution, explici
assume that the velocity profile is constant and do not t
into account the hysteresis between static and flowing st
~the trapping!. But another type of model~known as DAD’s!
@14,15# uses the assumption of a linear velocity profi
closer to the results presented here. The predictions of th
different models should thus be closely compared with
perimental observations to investigate the influence of
different mechanisms~velocity profile, trapping...! on inho-
mogeneous flows like avalanches.
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