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Abstract
Many desert sand dunes emit a loud sound with a characteristic tremolo around a well-defined
frequency whenever sand is avalanching on their slip face. This phenomenon, called the ‘song
of dunes’, has been successfully reproduced in the lab, on a smaller scale. In all cases, the
spontaneous acoustic emission in air is due to a vibration of the sand, itself excited by a
granular shear flow. This review presents a complete characterization of the
phenomenon—frequency, amplitude, source shape, vibration modes, instability
threshold—based on recent studies. The most prominent characteristics of acoustic
propagation in weakly compressed granular media are then presented. Finally, this review
describes the different mechanisms proposed to explain booming avalanches. Measurements
performed to test these theories against data allow one to contrast explanations that must be
rejected—sound resonating in a surface layer of the dune, for instance—with those that still
need to be confirmed to reach a scientific consensus—amplification of guided elastic waves by
friction, in particular.

(Some figures may appear in colour only in the online journal)

This article was invited by P Chaikin.
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‘Sur la plage le sable bêle
Comme des moutons d’infini
Quand la mer bergère m’appelle’
Leo Férré, La mémoire et la mer1

1. Introduction

1.1. A history of wilderness

A land of dissonance. If there was an absolute need for finding a
mystery of the Sahara, we would propose the contrast between
the void of this zone and the multiplicity of its interpretations.
Despite the number of meticulous studies devoted to various
aspects of the great African desert (ranging from Berber
linguistics to pre-Islamic art and from tribal rites to geography),
images have remained blurred as if academic knowledge was
tricked by imagination. While rational analysis has failed to
fill up the virgin space of the desert, literature has transformed
it into an organic and mythical universe, populated by fantasy
and irrationality. Analysing the historical accounts of booming
sand dunes, the reader actually discovers that this apparent
dissonance between erudite and literary imaginaries hides
connections—and even probably a connivance—between the
knowledge of scientists, the programs of politicians and the
visions of writers [106].

A colonial perspective on booming sand dunes. Most
reports of singing sands date back to the colonial period
(figure 1) and were written by travellers (e.g. Burton [25],
Doughty [40], Harding King [53] and Thomas [101]), military
explorers (e.g. Goldsmid [48], Shaw [97] and Bagnold [8]) and
scholars (e.g. Darwin [36], Bollaert [15] and Lenz [69]), with
a special mention of the review written by Curzon, Viceroy of
India [32]. The texts share a similar structure. The geography
of the site is usually detailed and the acoustic emission is
described using a musical analogy—for instance, ‘It is simply
a bed of loose sand on the slope of the hill, which, if set in
motion by any cause, as by the wind or a man rolling down
from the top, produces lengthened sonorous vibrations not
unlike those of the string of a bass viol’ [32]. The most
frequently invoked instruments are trumpets, which have a
rich timbre like bass viols, and, more surprisingly, percussion
instruments like drums (naqaras in particular). With striking
systematism, the rationalism of the traveller is contrasted with
the fears and the superstitions of the ‘ignorant’ natives who, ‘of
course, ascribe miraculous properties to the (sand) hill’ [32].
In Afghanistan, ‘he would be a bold man who tried to explain
the (phenomena) by natural causes within a hundred miles of
its influence’ [32]. In Peru, the natives ‘started to explain in
chorus that the sandhill (...) was haunted, and that the dead
Indians of the gentilar danced every night to the beating of
drums’ [105]. In Hawaii, ‘the small fishing boats, when the
wind allows them, prefer to pass off this coast: it comes from
the white extent a strange moaning, a complaint, like the howl
of a dog, that the natives attribute to restless spirits’ [68]. This
construction of colonial exoticism finds its quintessence in

1 ‘On the beach sand bleats
Like sheep of infinity
When the sea shepherdess calls me’.

fiction: ‘Somewhere, near us, in an undefined direction, a drum
was beating, the mysterious drum of the dunes; it was beating
distinctly, at first vibrating loudly, then more feebly, stopping,
then taking up its fantastic bearing again. The Arabs, terrified,
looked at one another; and one said in his own language: “Death
is upon us”. Just then, suddenly, my companion, my friend,
almost my brother, fell on his head from his horse, struck down
ahead by a sunstroke’ [74].

A sterile area, mother of the truth. Meetings with people
living in the neighbourhood of booming dunes in the Atlantic
Sahara have led us to hypothesize that the relation of a desert
to transcendence is mostly a Christian construction. It is
particularly striking that the word ‘desert’, ubiquitous in the
Bible, does not appear in the Qur’an. In the Bible, wilderness
is the virgin playground where Good (‘I’m a voice crying out
in the desert: Make the way for the Lord straight’ John 1 : 23)
and Evil (‘So if they say to you, “Behold, the Messiah is in
the desert,” do not go out’ Matthew 24 : 26; ‘When an evil
spirit comes out of a man, it goes into the desert seeking rest
and does not find it’ Matthew 12 : 43, Luke 8 : 29, Luke 11 : 24)
clash. For the Puritans that settled in New England, this double
symbolic system became a dialectic between wandering in the
wilderness [75] and city foundation. Pétillon even suggests
that this theme underlies all of American literature, which
seems obsessed by the question: ‘What went ye out into the
desert to see? A reed shaken with the wind?’ (Matthew
11 : 7) [88].

Cross, subdue, occupy and exploit. Historical texts
on singing sands therefore suggest an interaction between
exotic imaginary and learned studies at all stages of the
desert colonization process, from the first explorers to the
exploitation of natural resources [106]. The conquest by
Science escorts that by weapons, and rounds it off. The exotic
fantasy redoubles itself through the scientistic myth of a desert
under the control of technology. Analysing news with this
interpretive lens shows that it may still be relevant today.

1.2. Booming dunes as scientific objects

Methodology. In the last few decades, singing sands
have become a highly controversial scientific topic, with
a remarkably low rate of convergence towards scientific
consensus [10]. Not only the sound emission mechanism
but also the most elementary observations are still debated.
Although positivism is not exempt from problems, it seems
likely that the controversies about singing sands can only be
resolved within the scientific discipline, by considering only
self-consistent, refutable hypotheses and theories. Therefore,
this review will first examine problems and statements that
seem unfalsifiable—i.e. for which one cannot conceive any
physical experiment that could show that they are false—
and thus, according to K Poppers, non-scientific. This of
course does not preclude relevance or interest. Along the
same line, it seems necessary to hold-off statements with exotic
connotations concerning the supposed ‘mysteries’ of booming
dunes. The rest of the review will focus on consensual facts,
arguments, models and possible tests to corroborate or refute
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Figure 1. Top: (left) The Tun Huang Lu manuscript (9th century), brought back by Sir Aurel Stein from Tunyang, describes the
Ming-sha-shan site (China). Copyright, the British Library Board 20112. (Right) Marco Polo [89]. Middle: (left) the Mughal emperor
Babur (from the National Museum, New Delhi) and (middle) Odoric of Pordenone [111] evoke Reg-i-Ruwan (Afghanistan). (Right) Map of
the North Western part of the Rub’ Al Khali established by Charles Montagu Doughty [40]. Bottom: photographs of four of the most
famous travellers who referred to singing sands. From left to right: Bertram Thomas became the first European to cross the Rub’ Al
Khali [101]; (middle left) Harry St John Philby, whose mission during WWI was to organize the Arab Revolt against the Ottoman
Empire [92]; Ralph Bagnold, who first crossed the Lybian desert during his active duty in the Royal Engineers [8, 9]; George Nathaniel
Curzon, First Marquess Curzon of Kedleston, Viceroy of India [32].

hypotheses. Whenever consensus is not reached, the level of
agreement on test results will be given, based on the literature.

A first description of singing sands. Many desert sand
dunes emit a loud and harmonious sound as they avalanche,
with large amounts of sand sliding down their slip faces.
The acoustic emission is really a sound whose energy
is concentrated around a well-defined frequency and its
harmonics, and not a broadband noise [31, 32, 82]. If, instead
of using gravity, a sand shear flow is driven by the motion of
a solid body (pushing sand with a blade, with hands or with
the bottocks), an acoustic emission occurs as well, but at a
different frequency [50]. The sound is emitted in air by the

2 The International Dunhuang Project (IDP) is a ground-breaking
international collaboration to make information and images of all manuscripts,
paintings, textiles and artefacts from Dunhuang and archaeological sites of the
Eastern Silk Road freely available on the Internet and to encourage their use
through educational and research programmes. All the images reproduced
here can be freely accessed on the IDP website: http://idp.bl.uk/.

vibration of the sand free surface, which plays the role of a
loud-speaker membrane [4].

Triggering of avalanches. The booming results from the
granular motion and is thus not directly due to the wind. The
effect of the air flow is only to transport sand on the stoss slope
of the dune and to accumulate it at the top of the slip face.
When the slope becomes locally larger than the static friction
coefficientµs = tan(θs), an avalanche spontaneously nucleates
and propagates down the dune. The flow stops when the slope
has relaxed everywhere below the dynamic friction coefficient
µd = tan(θd). θs and θd are, respectively, around 35◦ and
31◦ for natural aeolian sand. Frequently, the propagation of a
booming avalanche triggers dynamically another avalanche at
a different place of the dune slip face, which can emit sound as
well. Finally, an avalanche can be triggered and fed by a man-
made slide. When the human slider does not beat his legs or
his buttocks, the avalanche remains homogeneous and steady,
and shares the same characteristics as spontaneous ones.

3
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1.3. Scientific issues

As mentioned earlier, we wish in this review to focus on
problems and hypotheses that can be tested experimentally.
However, a significant part of the literature has focused on
three problems that we consider to be ill-posed. By that
we mean their formulation is responsible for the controversy
that they generate. They therefore cannot be closed. Even
though these questions may be interesting, they tend to pollute
the scientific debate and to delay the drawing up of common
ground concerning the acoustic emission mechanism.

Are booming and squeaking the very same phenomenon?
Humphries [55] has made the distinction between ‘booming’,
used for the acoustic emission produced by an avalanche on
a dune and ‘squeaking’, used for the sound emitted when
one walks on certain beaches. By extension, Sholtz et al
proposed the name ‘squeaking’ for the sound emitted from all
types of granular shear flows except gravity-driven avalanches
[98]. Although experiments [39, 50] have suggested a close
connection between the two, Vriend, Hunt and co-workers
at Caltech [56, 107, 108] claim that these two phenomena
are fundamentally different in nature. Booming would need
the resonance of a dune, which would be the equivalent of
the sound box of an instrument, to get sustained emission.
Squeaking, however, would consist of short bursts of sound
when the sand is disturbed locally. Analysing in detail
this utterance, one can identify the reason for which it can
generate an endless controversy: it cannot be tested. Let
us see how the machinery works on an example. Singing
avalanches have now been reproduced in the lab, without any
dune [34]. Whenever a given sand emits sound on a dune, it
does the same in the lab and reciprocally. If one considers
that booming is, by definition, a ‘sustained’ emission while
squeaking consists of ‘short’ acoustic bursts, then laboratory
shear flows are clearly booming as they can last for hours.
Conclusion: laboratory scale and natural avalanches that emit
sound share the same dynamical mechanisms and a resonance
of the dune can be excluded. Counterargument: laboratory
shear flows are not produced on the layered structure of a dune
that could ‘resonate’; they are thus not ‘booming’ [56]. Our
own conclusion is that this question must be left aside, in order
to progress in the understanding of the phenomenon. In this
review, we will use the expressions ‘booming’, ‘squeaking’,
‘whistling’, ‘song of dunes’, ‘acoustic emissions’ and ‘sonic’
without making any prior difference of nature between the
phenomena. At most, ‘booming’ will be more frequently used
for low frequencies (on the order of 100 Hz) and ‘squeaking’
for high frequencies (on the order of 1 kHz).

What is so special about booming sand dunes? Previous
reviews have listed the location of 40 booming sand dunes
[56, 71]. Some dunes are known to sing when the sand is
sufficiently dry; conversely, nobody has ever reported any
acoustic emission coming from other dunes, whatever the
atmospheric conditions. This gives rise to a second ill-posed
problem: what is the specific property of singing sands? Why
do some sands sing and others not? Most authors agree that
singing sands are clean, rounded and polished [28, 29, 30, 71]
and have a very narrow size distribution (figure 2). However,

10-3

10-2

10-1

100

102101 103

Figure 2. Grain size distribution of a singing sand sampled in the
middle of the slip face of a mega-barchan (Sidi-Aghfinir, Atlantic
Sahara) in 2001 (◦) and 2009 (•). Technically, the graph shows the
probability density function, weighted in mass, of the logarithm of
the sand grain size d. The dotted line parabola is the best fit by a
log-normal distribution, which allows one to define a mean grain
size, d = 167 µm within 1 µm of uncertainty, and the width of the
distribution (�0.1). Inlet: microscope image of the grains.

all aeolian dunes are sieved by the wind and present such a
distribution in the middle of their slip face.

It has been proposed that singing sands would present a
silica gel layer at their surface [47]. However, this was inferred
very indirectly from the presence of a broadband at 3400 cm−1

in the infrared molecular vibration spectrum, a frequency
which corresponds to the vibration of –OH bonds (but not
exclusively). From this observation, Goldsack et al concluded
that water is trapped at the surface of the grains, and from that,
the presence of a silica gel coating [47]. They probably came
to this questionable conclusion after they observed that silica
gel itself emits sound when sheared in a jar [65].

Other studies suggest that singing sands would be covered
by desert varnish, composed of glued silts and oxides,
which would increase the microscopic friction between grains
[33, 34, 93]. Applying this idea, different groups have

successfully produced artificial singing sands from spherical
glass beads [33, 77, 78, 80].

In this review, we will deny the relevance of the singing
versus non-singing sand issue. First, the number of booming
dunes does not have any profound meaning. In their pioneering
work, Bolton and Julien have for instance identified more
than 200 spots in the US [16–19]. The Atlantic Sahara
region contains more than 10 000 booming dunes [42]. Three
of them—large mega-barchans that behave like giant solar
ovens—can emit sound 350 days per year as they are almost
always dry on the surface; most of the smaller dunes can emit
only a few tens of minutes per year, when the weather is sunny,
very hot and not windy, so that the dry surface sand layer is
sufficiently thick. Second, one of the most important results
obtained in the last few years is the existence of a threshold
avalanche thickness above which booming occurs (see below).
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Figure 3. Emission frequency f of various booming dunes across the world as a function of the grain diameter d. Data from [33, 34, 56].
The very same data set is represented with two graphical conventions. (a) Fair choice of axes but emphasis on a fraction of the data set
through the choice of symbols (after [6, 34]). (b) Stretched horizontal axis, compressed vertical axis and vertical error bars showing the
width of the grain size distribution, rather than the error made on the measurement of the mean grain diameter (see figure 2) and of the mean
emission frequency (after [56, 108, 107]). The lines correspond to the putative scaling law: f ∝ √

g/d.

Then, who could say if a sand dune reputed non-booming
would emit sound if a 1 m thick avalanche could be generated.
The correct formulation of the question could well be: what are
the characteristics of grains that lower the booming instability
threshold? The ‘special’ property would then be an intensity,
and not a ‘yes’ or ‘no’ property.

Is the booming frequency set by the grain size? The third
controversial question that cannot be scientifically settled is the
dependence of the avalanche booming frequency f on the grain
size d. From dimensional analysis based on gravity g, one can
hypothesize that the frequency f scales as

√
g/d, which has the

correct order of magnitude. As detailed in section 5.3, different
emission mechanisms predict a frequency obeying this scaling
law. Figure 3 shows two graphs obtained from the same
booming dunes data set [34, 56] using two representations,
one suggesting the validity of the scaling law [6, 34] and the
other against it [56, 107, 108]. Figure 3(a) has a fair choice of
axes but underlines the data points that fit the scaling relation
by the choice of symbols; figure 3(b) squashes the data to
visually suggest a lack of correlation. Our own conclusion is
again that this question must be left aside as one can neither
prove that it is correct nor prove that it is wrong. Let us detail
the trap machinery. First, the definition of the grain size is
problematic. Some use a grain size distribution weighted in
mass and others weighted in grain number. Some use the fit
of the grain size probability density function by a log-normal
distribution (figure 2) or by a Gaussian while others measure
the diameter d50 that separates the distribution into two parts
of equal probability. Some carefully sample the sand at mid-
height of the active slip face and others sample the dune and the
surrounding zone. Therefore, the error bars for a given method
can be relatively small but systematic effects can be huge.
Second, one can talk about ‘the’ booming frequency only when
avalanches are steady and homogeneous, and not pulsed by
the slider. Otherwise, one gets a ‘squeaking’ emission due
to the sand displaced with the body, superimposed on the
‘booming’ emission. Third, other properties of the grains

(surface roughness, friction, cohesion, capillary bridges) may
quantitatively affect the frequency. We are not aware of a
single controlled granular experiment where a scaling law with
respect to the grain diameter has been verified with a precision
better than 25%. Fourth, aeolian dunes are always composed
of grains that can be entrained by the wind. The grain diameter
d is thus never smaller than 150 µm, as the sand would be too
cohesive, and never larger than 300 µm as the grains would be
too heavy. Therefore, there is at best one octave of variation
of the grain diameter. The emission frequency has itself a
dynamics lower than one octave, as it ranges from 70 to 110 Hz
depending on the location. On the one hand, no scaling law
can seriously be inferred when the control parameter varies
by less than an octave. On the other hand, the scaling law
f ∝ √

g/d is verified by all data points within error bars and
cannot therefore be refuted. An objective look at the data only
allows one to say that both the grain size and the emission
frequency are fairly constant.

The present review will bypass these traps and focus on
the following issues.

What are the objective characteristics of homogeneous
steady booming avalanches? The main objective characteris-
tics of booming sand avalanches will be reviewed: nature and
localization of the source, frequency spectrum, frequency se-
lection, coherence, amplitude, vibration modes and emission
threshold.

What are the objective characteristics of shear induced
emission? We will review the same properties for the various
singing sand experiments performed in the laboratory, using
controlled set-ups.

How does sound propagate in a sand dune? We will
present the main properties of acoustics in granular media and
detail the case of sand dunes.

What are the different emission mechanisms that have been
proposed and how can/have they been tested? We will present
and discuss the four main hypotheses: a passive resonance,

5
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a stick-slip instability, a synchronization instability and an
amplification of elastic waves by a sliding frictional interface.

2. Characteristics of booming sand avalanches

2.1. Sand vibration and emission in the air

Does the sound continue for several minutes, even after the
avalanching of sand has ceased? The emission of sound in
the air during a booming sand avalanche is associated with a
vibration of the sand surface in the avalanche zone, but also
in the surrounding region where there is no granular surface
flow. The nature of the relation between the avalanche and
the sound emission is the fourth controversy of the problem.
Vriend, Hunt and co-workers at Caltech claim that booming
lasts for minutes after the sand motion ceases [56, 107, 108].
If this were true, it would constitute a central piece of evidence
that the phenomenon results from the passive resonance of
the dune and not directly from the avalanche. However, no
data have ever been published to support these statements [6].
Nothing is actually visible in the video presented in [107]; a
possible explanation is that the sliders had this feeling, due to
dynamically triggered avalanches flowing behind them.

Tests. It can be inferred from the orders of magnitude
reported in [56, 107, 108] that this statement is implausible.
One can estimate the Q factor of the dune resonator that would
be needed to obtain a resonant emission during several minutes.
The Q factor is the product of the angular frequency (typically
2π × 100 Hz) and the sound decay time (100 s according
to [56, 107, 108]). This gives a Q factor slightly lower than 105,
which is the Q factor of a quartz oscillator, not that of a sand
pile. If this were true, then any noise, even an insect walking
on the sand, would lead to a very loud resonant emission of
the dune. This is not the case.

If sound emission after grains completely stop were real,
it would be easy to prove it: one would just need to present
objective movies of the whole slip face, with a synchronized
sound record. Then, the time lag between the end of the
avalanche and the end of the sound could be measured. We
have ourselves performed such measurements over several
hundred avalanches in the Atlantic Sahara. The sound
systematically ceases before the sand stops moving, when
the flow thickness has decreased below a threshold value.
Unless a proof is produced, one can thus consider that the
sound does not continue after the avalanching of sand has
ceased.

The loud-speaker model. The surface of the sand bed
acts as the membrane of a loud speaker and its vibration
is directly responsible for the acoustic emission in the air
[4]. As shown in figure 4, the surface normal acceleration
is approximately in phase with the pressure time derivative.
Laboratory experiments have confirmed that it is the same
for a loud speaker whose membrane is covered by sand [4].
Furthermore, the power I emitted per unit surface in the air,
measured with the microphone, is related to the mean square
acceleration of the free surface 〈a2〉 by

I = ρaircair〈a2〉
(2πf )2

(1)
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Figure 4. Simultaneous measurements of the acoustic pressure p in
the air (dotted line) and of the normal acceleration az (solid line) at
the free surface of a booming avalanche (Sidi-Aghfinir).The scales
are chosen such that the signals have equal amplitudes, if the sand
surface behaves like the membrane of a loud speaker. (a) Signal
sample. Note the quadrature between pressure and acceleration, as
predicted by the loud-speaker model. (b) Amplitude of the signals
as functions of time t . The grey line is the best fit by equation (2),
assuming that the avalanche propagates without changing shape. It
underlines the exponential growth of the signal and its saturation.
Measurements performed by Andreotti [4].

where ρair is the density of air and cair the sound velocity in air.
The sound is incredibly loud as the amplitude usually reaches
100 to 105 dB in the core of the avalanche.

2.2. Frequency

As revealed by the frequency spectrum (figure 5(b)), the song
of dunes is not a noise but is a low-pitch sound with a well-
defined central frequency f . When a good linear transducer,
like a centimetre-scale accelerometer at the surface of the
avalanche, is used to measure the signal, no strong harmonic
content is observed. The amplitude of harmonics decays
faster than algebraically with the order n—it usually decays
exponentially with n for acceleration signals measured at the
surface of booming avalanches (figure 5(b)). The sound
emitted in the air is less noisy and presents harmonics of
larger amplitudes than the acceleration signal, in particular
above 100 dB [50, 71]. Harmonics are then associated with
an asymmetry between downward and upward acceleration
components. The possible effects leading to these harmonics
include non-linearities of the emission mechanism, of acoustic
propagation along the dune surface [35, 61, 62, 64, 102–104]
and of intrusive transducers. Harmonics of higher amplitudes

6
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Figure 5. Spectral content of the song of dunes. (a) Signal of the
displacement component Ux parallel to the surface. Note the
amplitude modulation which points to the existence of very close
frequencies in the signal (a doublet in the present case). (b) Power
spectral density of the acceleration signal ax . The normalization is
chosen to give the acoustic power, according to the loud-speaker
model. Note the exponential decay of the amplitude of harmonics
with the order n. (c) Auto-correlation C[ax] of the acceleration
signal ax . The fit of the envelope by an exponential (dotted line)
gives the coherence time (which ranges from five to ten periods).
The solid line in the three panels corresponds to a record in
Sidi-Aghfinir (Atlantic Sahara). The grey line in panel (b)
corresponds to a record in Al Ashkharah (J’alan) where the different
modes composing the peak can be observed. Measurements
performed by Andreotti and Bonneau [4, 7].

can be obtained by beating the legs to pulse the avalanche
[56, 107]. Using the body fully to induce and modulate sand
motion, the dune can even be played like a musical instrument.
In the following, unless otherwise mentioned, the frequency f

denotes the fundamental frequency measured when avalanches
are induced in a steady homogeneous way.

The musical quality of the sound mostly results from
a large tremolo (amplitude modulation) and a small vibrato
(frequency modulation), which are effects known to induce
emotions and a feeling of harmony (figure 5(a)). This
modulation shows that the frequency peak observed in the
spectrum is actually composed of a series of peaks (at least
two) of neighbouring frequencies (grey line in figure 5(b)).
While almost all spontaneous acoustic phenomena present
harmonics, such a regular amplitude modulation is quite
uncommon in nature.

2.3. Coherence

The existence of a well-defined frequency f immediately
raises the question of frequency selection. It can be observed
in figure 5(b) that the width of the frequency peak is typically
20 Hz. This can be seen even more clearly in the auto-
correlation signal of figure 5(c), whose envelope decays
exponentially over five periods. One can deduce the Q factor,
which quantifies the frequency selection or equivalently the
phase coherence and which ranges from 30 to 60.

We have already underlined the fact that the frequency
f does not vary much from place to place and ranges from
70 to 110 Hz. At a given place, the range of variation of the
frequency is even smaller. We have ourselves accumulated
the largest data set (a few thousand minute-long records over
eight years) of spontaneous (wind induced) and triggered (man
induced) booming avalanches at the same place (Sidi-Aghfinir
mega-barchan, Atlantic Sahara). Whatever the position of
the avalanche on the dune slip face and whatever the weather
conditions, the frequency determined by auto-correlation over
the whole run was systematically between 92 and 107 Hz.
Similar results were obtained on the large Dumont dune
where the frequency of sustained booming was systematically
between 77 and 92 Hz (seven records over four years [107]).
As discussed in section 1.3, there is no point discussing such
a narrow range of variation (15 Hz).

These observations allow us to formulate the physical
problem posed by booming dunes through three questions.
What are the dynamical mechanisms responsible for the
spontaneous acoustic emission? What picks up the rather
well-selected emission frequency f ? Why is the frequency
peak composed of several neighbouring frequencies?

2.4. Acoustic source localization

The acoustic emission in the air is directly due to the vibration
of the sand free surface, which behaves like the membrane of a
loud speaker and which is thus the source of the sound emitted
in the air. The nature of the source of sand vibration has led to
the fifth controversy of the subject. Is the seismic source the
avalanche or the dune? In order to answer this question, we
need to clarify the notion of source. From the energetic point
of view, the source of acoustic energy is, without any doubt,
the avalanche, since the rest of the dune is dissipative. From
the signal point of view, we can define the acoustic source as
the locus of the frequency selection.

Tests. With this definition, the dune would be the source if
it were acting as a selective filter of a broadband noise emitted
by the avalanche. This suggests two simple tests. Is there
a coherent vibration at frequency f inside the avalanche?
Is the vibration amplitude at the frequency f larger outside
the avalanche than inside?

2.5. Amplitude

A vibration amplitude A can indifferently be measured from
an acceleration, a pressure, a velocity or a displacement
signal. Assuming that the avalanche is a travelling wave that
propagates without changing shape [38], the measurement of
the amplitude at a fixed point, as a function of time, allows one
to determine the spatial profile A(x) in the moving frame of
reference. On the booming dunes where such measurements
have been performed, it has been systematically observed that
the sand vibration amplitude is maximal inside the avalanche
(figure 6(a)). Outside the avalanche, the vibration amplitude
decays roughly as the inverse of the square root of the distance
to the centre of the source. The dune thus behaves passively, as
expected. This means, in particular, that the avalanche is not
a source of noise but vibrates coherently at the frequency f .
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Figure 6. Spatial profiles of the vibration peak-to-peak amplitude.
x is the axis along the steepest slope, parallel to the surface, and z
the axis normal to the free surface. (a) Longitudinal profile of the
displacement component Ux . The origin x = 0 corresponds to the
avalanche front. The avalanche is located in the zone x < 0. The
dotted line corresponds to the best fit by equation (2). It shows the
exponential amplification of elastic waves and their saturation after
a few metres. (b) Profile of the displacement component Ux along
the normal axis z, normalized by the avalanche thickness H .
z/H = 1 corresponds to the free surface and z/H = 0 to the
interface between static and moving grains. (c) The same, but for
the displacement component Uz. The vibration amplitude drops by a
factor of ten across the interface separating the avalanche from the
dune. Measurements performed by Andreotti and Bonneau [7].

The avalanche is thus the seismic source, i.e. the place where
the frequency is selected.

Inside the avalanche, the vibration amplitude A increases
exponentially from the front to the centre and saturates at a
value A∞ in the core of the avalanche. This growth has been
interpreted in [7] as a signature of a dynamic amplification
of elastic waves propagating up the slope. Assuming that
booming results from a convective instability and using
a symmetry argument, one can write a Ginzburg–Landau
equation of the form

∂xA = −q A
(

1 − A2

A2∞

)
(2)

where x is the downslope space coordinate, in the frame of
reference of the avalanche, and q is the space amplification.
The A3 term encodes the effect of the first non-linearities. The
solution of this equation takes the form

A = A∞√
1 + η exp(2qx)

(3)

where η is determined by the signal level at the front.
Figures 4(b) and 6(a) show that it provides a reasonable fit
to the data.

The longitudinal component of displacement Ux typically
saturates to a peak-to-peak amplitude of �80 µm (figure 6(b))
and the vertical component Uz to �40 µm (figure 6(c)). The
typical strain is thus around 10−3, a value large enough to
suggest the presence of non-linear effects in the acoustic
propagation (see section 4). Using the loud-speaker model, the
above values correspond to a sound amplitude around 105 dB,
as measured using pressure transducers in the air. They also
correspond to a peak normal acceleration (az) of �8 m s−2.
This value is usually found within a factor of two of the gravity
acceleration g. It has thus been hypothesized that the vibration
amplitude is limited by gravity [4]. Indeed, when az reaches
g cos θ , where θ is the free surface angle, the grains on the
surface must take off and form a gaseous granular layer.

These values correspond to the ideal situation where
the sand is perfectly dry and the avalanche well developed.
However, the vibration amplitude in the core of the avalanche
depends on the experimental conditions. For instance, small
amounts of atmospheric humidity, which creates capillary
bridges between the grains, effectively preclude booming
emissions in these desert sands [70]. The sound amplitude also
depends on the length L of the avalanche: when the avalanche
gets smaller and smaller, the vibration is less amplified so that
the sound gets weaker and weaker. As argued in [39], there are
even conditions under which booming is completely inhibited,
which suggests the existence of a true instability threshold.
As a matter of fact, the amplitude can nonetheless depend
on humidity and on the avalanche length L but also on other
parameters such as the flowing height H and the avalanche
velocity V . As H , L and V are coupled, and related to the free
surface slope, it is difficult to conclude on the nature of the
relevant non-dimensional parameter controlling the emission
threshold. A discussion of this parameter based on field
measurements remains unsubstantiated. In the following, we
will see that laboratory experiments allow us to investigate this
issue in a deeper way.

2.6. Vibration modes

We have seen that, on the surface, the vibration is larger outside
the core of the avalanche than inside. The hypothesis of a
resonant mode of the dune raises the sixth controversy on
booming dunes. Does the dune vibrate in depth? A series
of acoustic measurements have been performed by Vriend
et al [56, 107] using an array of geophones positioned at the
surface. Once analysed in terms of bulk elastic waves (see
section 4), they suggest that the dune, far from the avalanche,
vibrates at several metres below the surface. On the other hand,
dynamical mechanisms for which the avalanche is the source
should lead to a vibration localized at the surface.

Tests. In order to test whether or not dune resonant modes
are excited by the avalanche, it is necessary to measure the
vibration below the sand surface, in depth, to locate a putative
vibration antinode. The profiles of vibration amplitude
measured normal to the free surface show that the vibration
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mostly takes place inside the avalanche (figures 6(b) and (c)).
Across the interface separating the avalanche from the static
dune, the vibration amplitude drops by more than one order
of magnitude. At 20 cm below the surface, the amplitude is
two orders of magnitude lower than on the surface. Although
these measurements need to be reproduced by other groups,
one may already conclude that the vibration profile does not
resemble the profile of a mode ‘λ/4’ resonating over a metre
scale surface layer.

2.7. Shear localization

It has been hypothesized by Patitsas [85, 86] that the formation
of shear bands is necessary to get an acoustic emission.
Indeed, booming avalanches typically have a centimetre-scale
thickness. Looking at the surface of such an avalanche
from above, one observes a coherent solid-like motion over
blocks as large as a few tens of centimetres. This would
be consistent with shear band localization. It is possible to
obtain semi-quantitative information about the velocity profile
by plunging metallic blades covered with black soot inside the
avalanche [6]. Having in mind that the blade probably induces
disturbances, analysis of the erosion of the soot reinforces the
hypothesis of shear localization. We will see that laboratory
experiments tend to confirm this idea.

3. Laboratory booming shear flows

Sonic sands emit sound when sheared at a sufficiently high
rate in many different experimental situations. Whatever the
geometry, booming granular flows form shear bands localized
either in the bulk or along a boundary. These laboratory
booming shear flows allow us to discuss more deeply four
questions: the instability threshold, the velocity profile, the
coupling between mean flow and vibration, and the relation
between geometry of the pile and emission frequency.

3.1. Plow experiment

Instability threshold. Figure 7 shows the principle of the plow
experiment, also called the bulldozer experiment. A plow
(a solid plate for instance) is moved at a constant speed V

inside a sand bed. It entrains a volume of sand into motion,
characterized by its height H , its width W and its length L.
These characteristics depend on the depth at which the plow
is pushed in and on the geometry of the initial sand layer (flat,
forming a crest or a trough). The plow can be rotated at a
constant angular speed or moved in translation.

The structure of the flow is shown in figure 7(a). The
free surface presents a slope slightly higher than the dynamic
friction coefficient. The entrained mass has a velocity almost
equal to that of the plow; looking at the granular flow in
the frame of reference of the plow, one observes a residual
vortical motion consistent with the slope. The moving grains
are separated from the static sand bed by a shear band whose
thickness scales on the grain diameter d . The shear rate γ̇

thus scales as V/d. Figure 7(a) shows that γ̇ is strongly
heterogeneous and is maximal near the two ‘contact lines’, at

both ends of the shear band. For a sufficiently large entrained
volume, the characteristics of the flow depend on a single
parameter, the Froude number, which compares the dynamic
pressure ∝ρsV

2 to the gravity induced pressure ∝ρsgH :

F = V√
gH

. (4)

The controlled experiment performed by Douady et al
[34, 39] was the first to highlight the existence of a threshold
above which booming occurs. Typical results are shown
in figure 7(b). They suggest that there are actually two
thresholds: one controlled by the pile geometry and the other
by a dynamical characteristic of the flow. First, booming
can only occur when the height H is sufficiently large, for
H > Hth. For a given H above this threshold value, a minimal
Froude number Fth is needed (dotted line in figure 7(b)).

On this basis, we can reformulate the question of the
‘specific’ properties of singing sands. What are the material
parameters and the operating conditions that have an influence
on the booming threshold? As observed for booming
avalanches in the field, it has been shown by Dagois-Bohy
et al [34] that the ambient humidity increases the threshold in
H and V (arrows in figure 7(b)). To give a quantitative idea,
when going from 25% to 50% humidity, the threshold Froude
number Fth rises from 0.5 to 0.8 and the threshold height Hth

from 3 to 5 cm.
The second key parameter controlling the acoustic

properties of singing sand is the microscopic friction between
grains, µµ = tan(θµ) [28–30]. Indeed, according to Dagois-
Bohy et al, most singing sand grains are coated with a desert
varnish composed of silicate-iron and manganese oxides along
with silts [33]. This varnish leads to a microscopic friction
angle θµ � 20◦ twice larger than that of glass beads (θµ � 10◦).
When the glass beads are artificially coated with silt and clay
extracted from natural singing sand, they become able to emit
sound when sheared [34, 77, 78, 80]. Note that the microscopic
friction must not be confused with the dynamic friction angle
θd. The difference between the two θd −θµ � 13◦ results from
a geometrical effect [3].

Frequency selection. Figure 7(c) shows three sets of
frequency measurements performed with the same rotating
plow set-up, for different shapes of the sand bed. Contrary
to gravity-driven avalanches on dunes, the frequency f varies
over two octaves, when the plow velocity V and the depth
at which it is dug into the sand bed are changed. For
given operating conditions, the relation between the emission
frequency f and the ratio V/H is well approximated by an
affine function of the form

f = f0 + α
V

H
(5)

where f0 is around the emission frequency measured in the
field, for gravity controlled avalanches and α is a multiplicative
constant. The interpretation of this curve constitutes the
seventh controversy of the problem. It has been hypothesized
by Poynting [90, 91] and followers [4, 6, 33, 39] that the
frequency f corresponds to the shear rate γ̇ inside the granular
shear band. As the velocity of the grains on the surface

9



Rep. Prog. Phys. 75 (2012) 026602 B Andreotti

1.510.50

300

200

100

0

403020100

10

5

0

20 d

0.2

0.1

0

0 10-10 20-20

 

Figure 7. Plow experiment: a plate, dug into the sand, is pushed along the sand free surface at a constant speed. (a) Numerical simulation of
the experiment using a discrete element method. Greyscale shows the shear rate γ̇ . Isocontours correspond to dγ̇ /V = 0.1 (black), 0.15
(grey) and 0.2 (white). The flow presents a shear localization over a few grain diameters, with a stress amplification close to the two
geometrical singularities. Simulations from Percier et al [87]. (b) Profile of the rescaled shear rate dγ̇ /V , measured in the middle of the
flowing region (see (a)), for a series of simulations at different H , for V = 5

√
gd. (c) Parameter range for sound emission (shaded area),

depending on the plow velocity V and the height of pushed sand H . Booming occurs above a threshold height Hth (dashed line:
Hth � 3 cm) and a threshold Froude number Fth (dotted line: Fth � 0.5). At very large velocities, the grains entrained by the plow are
ejected and the acoustic emission stops. The black arrows illustrate the displacement of the threshold when humidity increases. (d)
Emission frequency f as a function of the ratio H/V for different initial shapes of the sand layer: starting from a crest for �	 (measurements
performed at the booming threshold by Douady et al [39]) and ◦ (measurements performed at a low humidity of 25% by Dagois-Bohy [34])
or from a trough for 
 (measurements performed by the author). The solid lines show the best fit by the form f = f0 + αV/H , where
f0 = 94 Hz is the booming frequency measured in the field. The slopes are, respectively, α = 1.3 (
), 3.8 (◦) and 6.4 (�	). When possible,
measurements are averaged over ten data points.

is close to the plow velocity V , the average shear rate over
the flowing region is �V/H . Douady et al have therefore
interpreted equation (5) as direct experimental evidence of the
equality f = γ̇ . However, several facts are in conflict with
this working hypothesis. First, equation (5) is not a relation of
proportionality between f and V/H : f0 is far from negligible.
Second, the slope α is not 1 and varies by a factor of five when
the experiment is started from a sand bed with a crest (�	 in
figure 7(d)) or with a trough (
 in figure 7(d)). Third, the
plow experiment presents shear localization over a band width
set by the grain diameter d , which leads to the scaling law
γ̇ ∝ V/d (figure 7b)) and not γ̇ ∝ V/H . Fourth, the field
of γ̇ is not homogeneous; across the shear band, γ̇ typically
presents a Gaussian profile.

In conclusion, we can formalize two more questions on
singing sands. If the frequency is not controlled by the flow
velocity field, why does it depend on the plow velocity V ?
What is the velocity field inside a booming sand flow? To
answer the first of these questions, let us consider the problem
of the drag force exerted by the sand grains on the plow. Just
like the emission frequency, this force depends on the plow
velocity V , which would suggest that a visco-plastic rheology
governs the flow. However, when the drag force is plotted
against the mass of grains entrained into motion, a simple
linear relationship, which corresponds to a simple Coulomb
friction, is obtained. This apparent contradiction results from
the fact that the geometry of the flow is a function of the plow
velocity V . In particular, for a given plow depth, the height H

and the length L of the moving pile increase with V . Figure 8
shows the results obtained with a plow experiment performed
in the field. It shows that the dependence of the frequency f
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Figure 8. Plow experiment performed in the field with a rectangular
plate, along the avalanche slip face (photograph in the inset).
Relation between the booming frequency f and the length L of the
avalanche, varying both V and H . The best fit by a relation of the
form f = C/L (dotted line) gives a value C � 40 m s−1 close to the
speed of sound under these conditions. Measurements performed by
Andreotti and Bonneau for this review.

on V and H can be encoded into a dependence on the length
L. Although scattered, data suggest a relation of the form
f ∝ L−1, with a multiplicative factor close to the speed of
sound in the granular medium (see section 4). As a conclusion,
the frequency dependence in this type of plow experiment can
be equally well represented by a kinematic quantity V/H or
by the pile geometry.

Tests. In order to test whether or not the booming
frequency f is related to the shear rate γ̇ , it is necessary
to measure both quantities simultaneously, in the very same
experiment. Moreover, to discriminate between the effects

10



Rep. Prog. Phys. 75 (2012) 026602 B Andreotti

1

0.8

0.6

0.4

0.2

0

-0.2 0 20 40 60

150

100

50

0

2520151050

Figure 9. Rotating pestle experiment. (a) Experimental set-up: a
solid block is rotated at the surface of a container full of sonic sand,
under a controlled normal stress P . It entrains a lens of sand (grey
zone) into rotation. (b) Relation between the emission frequency f
and the normal stress P for a cylinder of diameter 85 mm and of
mass m = 2.65 kg, using sonic sand from Sidi-Aghfinir. (c) Typical
profile of the shear rate γ̇ across the shear band. The emission
frequency f � 100 Hz, measured simultaneously, is much larger
than γ̇ .

of geometry and shear, one should design an experiment
where the shear band encloses a fixed geometry, whatever the
velocity V .

3.2. Rotating pestle experiment

The simplest method to measure a velocity profile in a granular
flow is to use a transparent glass boundary [4, 44]. However,
confinement tends to suppress sound emission; moreover, the
friction on this boundary is a dominant force which can control
the whole flow [63]. To prepare this review, we have thus
performed a plow experiment in which one can simultaneously
measure (and vary) f and γ̇ . The set-up consists of a solid
block rotating at the surface of a sonic sand and subjected to
a constant vertical force (figure 9(a)). The flow is visualized
through the lateral boundary but the cell is chosen sufficiently
large to allow for the acoustic emission. As in the plow
experiment, shear is localized in a shear band which separates
a static region from a rotating one (figure 9(c)). This set-
up presents the advantage of uncoupling the geometry, which
remains almost invariant, from the shear rate γ̇ , which is
proportional to the plow angular velocity. Our measurements
show that the emission frequency f does not depend on γ̇ . For
the example shown in figure 9(c), the frequency is ten times
larger than f . For a given geometry (size of the pestle and of
the container), f is completely controlled by the normal stress
P and increases with it (figure 9(b)). Contrary to the impacting
pestle experiment described next, the mass m of the pestle is
not changed. The effect of P is, on the one hand, to change
the stress distribution, and on the other hand to increase the
speed of sound. Experimental data suggest that the emission
frequency f corresponds to an acoustic mode (dependence on
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Figure 10. Frequency f of emission of a beach squeaking sand
placed in a container and struck with a rod of mass m.
Measurements performed by Nishiyama and Mori [80]. The solid
line is the best fit by a power law: f follows a scaling law of the
form f ∝ m−1/2 when the container is heavy enough not to vibrate.
Inset: schematic of the experiment, after x-ray radiographs
performed by [77]. Greyscale encodes volume fraction. The solid
lines correspond to shear bands.

P in figure 9) selected by the geometry (dependence on L in
figure 8).

3.3. Impacting pestle experiment

The action of the foot on a squeaking beach [96] can be
abstracted into the impact of any heavy solid object in sand
[100]. Figure 10 shows the results of the controlled experiment
performed by Nishiyama and Mori [80]: a cylindrical pestle
of mass m impacts sonic sand at a high constant velocity.
In this geometry, the formation of shear bands was directly
observed using x-ray radiographs by Miwa and collaborators
[77] (see the inset of figure 10). Figure 10 shows that the
frequency f scales as m−1/2 over one decade. This suggests
that f is in that case related to the natural frequency of the
harmonic oscillator constituted by the sand (spring) and the
pestle (mass). Nishiyama and Mori confirmed this hypothesis
by directly measuring the spring constant k of their system
and by comparing it with m (2πf )2. This spring constant
is much lower than that given by the elasticity of the solid
pestle and of the container; estimates made using the results
of section 4 show that k rather results from the elasticity
of sand grains. In conclusion, the frequency emitted in
the impacting pestle experiment—and thus on a squeaking
beach—is related, as for the two previous experiments, to the
elasticity of the granular packing. Moreover, this squeaking
emission is obtained specifically when shear banding occurs
[77]. Shear bands must thus play a role. Finally, in the
impacting pestle experiment, the frequency f is determined by
the inertia of the pestle and not that of the sand. This turns out
to be an important difference between booming avalanches and
squeaking beaches, explaining the high emission frequency in
the latter case [96].
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Figure 11. Frequency f emitted by sonic sand placed in a glass jar
and shaked as a function of the sand thickness H . The grey level of
symbols encodes the grain size, which ranges from d = 197 µm
(white) to d = 377 µm (black). Measurements performed by
Kilkenny [65, 67].

3.4. Jar experiment

In a different type of experiment (figure 11), granular matter
flows along a boundary, and not perpendicularly as previously
[52]. The easiest experiment consists in filling a glass jar
with sonic sand and shaking it [50, 70]. Figure 11 shows
a reinterpretation of the results obtained by Goldsack and
collaborators [47, 67]. Although these authors concluded that
the frequency was decreasing with the inverse of the grain
diameter d, their results show otherwise: the curves obtained
for different size fractions of the same booming sand collapse
on a master curve, when plotted as a function of the sand
thickness and not as a function of the number of sand grains in
the jar. As in the previous experiments, the emission frequency
f is a decreasing function of the sample size. More precisely,
figure 11 shows that the frequency decreases rapidly with
the flow thickness H at low H and tends to a constant at
large H . The frequency is therefore selected by the granular
packing geometry. Further experiments are needed to conclude
precisely on the dependence of f with the jar radius.

It has been reported by Haff [50] that mixing five drops
of water into a 1 litre bag full of booming sand can silence the
acoustic emissions. As in the previous experiments, there is
thus an instability threshold which depends on humidity.

3.5. Sand organ experiment

Experiment. During the discharge of a smooth elongated
silo filled with granular matter (figure 12(a)), a loud sound
is generally emitted [37, 79, 110]. This situation constitutes
the archetype of flows for which a shear band forms along
a rigid boundary. Contrary to the experiments previously
described, the sand organ experiment does not require specific
grains and can work with spherical glass beads. A necessary
condition is lower friction between the grains and the boundary
than between the grains themselves. Moreover, the booming
amplitude increases with the grain roughness, just as in the
song of dunes.

The mean flow velocity u0 is controlled by the diameter
of the outlet at the bottom end of the tube [14]. Thanks

to the wall friction, the pressure and density fields are
homogeneous, except in the vicinity of the outlet and of the
free surface [13, 84]. Just above the outlet, the signals are
essentially low-amplitude noises characterized by a broadband
spectrum. At a few tube diameters above the outlet, one
observes the emergence of elastic waves at a well-defined
frequency f (figure 12(c)) which is constant over the whole
tube. f is independent of the length of the silo, so that the
hypothesis of resonant standing modes can be rejected. The
emitted frequency f does not depend strongly on the flow rate
or on the tube radius and ranges from 60 to 90 Hz (figure 12(d)).

It has been shown experimentally by Bonneau et al
[22] that spontaneous acoustic emission results from a linear
convective instability [54]:

• the vibration results from elastic waves propagating
exclusively up the tube.

• the vibration amplitude A increases exponentially from
the outlet towards the top of the tube and saturates at
a value A∞, on the order of the gravity acceleration
constant g. This amplification, shown in figure 12(b),
is well fitted by equation (3), which is the solution of the
Ginzburg–Landau equation (2).

• the dependence of the frequency f on the tube radius R

and the flow velocity u0 is very weak (figure 12(d)).
• the wavelength λ is selected by the tube radius R

(figure 12(e)).
• the spatial growth rate q(f ) of the mode of frequency f

is positive in a frequency band and presents a maximum
that corresponds to the spontaneous emission frequency
f (figure 12(c)). This means that random fluctuations
around the outlet are selectively amplified around f during
wave propagation.

A simple model. As the emitted wavelength is much
larger than the tube radius, the system can be thought of as
a 1D compressible system (the Janssen approximation [59]).
Introducing the density ρ, the velocity u and the total axial
stress P +p, averaged over the section of the tube (figure 12(a)),
the continuity and momentum equations can be written in the
form

ρ̇ + ρ∂zu = 0

and

ρa = ρu̇ = ρg − ∂z(P + p) − 2µ (P + p)/R (6)

where µ is the grain-tube friction coefficient. Due to the mean
flow u0, the local velocity is always downwards so that the wall
friction force is oriented upwards. On average, the grain weight
is balanced by this friction. At equilibrium, in a long tube, the
axial stress is thus a constant controlled by the tube radius:
P = ρgR/(2µ). We introduce the speed of compression
waves c and the bulk kinematic viscosity ν. We denote by ρ̃,
ũ and p the disturbances of density, velocity and axial stress
associated with the waves. In the reference frame of the moving
sand, the continuity equation, the dynamical equation and the
constitutive relation are linearized into

∂t ρ̃ = −ρ∂zũ (7)
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Figure 12. Sand organ experiment. (a) Experimental set-up. Gravity-driven granular flows are generated inside 2 m long tubes of radius R,
ranging from 10 mm to 100 mm. In order to control the mean flow velocity u0, the bottom end of the tube is fitted by a PVC plug in which a
cylindrical outlet is reamed. The hole diameter is varied from 20d to 1.5R. (b) Amplitude A of the acceleration signal as a function of the
vertical coordinate z. The dotted line shows the best fit by the amplitude equation (3). (c) Spatial growth rate q as a function of frequency f
(•). The square shows the value of q determined from (b). The emission frequency f � 75 Hz coincides with the maximum of the growth
rate. (d) Measured frequency f as a function of u0/d . (e) Measured wavelength λ as a function of the tube radius R, for
u0/d = 100 ± 20 s−1; black: d = 165 µm; white: d = 325 µm.

ρ∂t ũ = ρ̃g − ∂zp − 2µ

R
p (8)

p = c2ρ̃ + ν∂t ρ̃. (9)

As the steady state is homogeneous in space and time, the
solutions of the linearized equations are superpositions of
Fourier modes of the form exp(j(ωt +kz)), where both ω and k

can a priori be complex. The dispersion relation takes the form

ω2

c2 + iνω
= k2 − j

2

�
k (10)

where the length � is given by

� =
(µ

R
− g

2c2

)−1
� R

µ
.

In the limit of infinite � and vanishing ν, one recovers the
standard Helmoltz equation: acoustic waves can propagate in
both directions at the velocity c. The viscosity ν damps high-
frequency waves.

The unusual term in �−1 is due to friction; it is non-
conservative and operates in quadrature with respect to the
restoring force. Importantly, it breaks the symmetry between
upward and downward propagation, due to the polarization of
the friction force. When one emits a wave in a static silo, the
friction is everywhere opposed to the velocity of the grains at
the boundary. The wave is thus attenuated. If one adds a mean

downward velocity, friction remains orientated upwards and
becomes a source of acoustic amplification.

The frictional term in �−1 is responsible for the convective
instability: the dispersion relation (10) predicts the existence
of unstable modes that all propagate upwards in the tube.
Figure 12(c) shows that the space growth rate q = Im(k)

presents a maximum with respect to the frequency f , as
observed. The quality factor Q = c�/ν compares the
amplification of waves by friction and their damping by
viscosity. At large quality factors, the most amplified mode
does not depend on ν and scales as

q = 1

�
, Re(k) = 1√

2 �
, 2πf =

√
3

2

c

�
. (11)

This predicts that the acoustic wavelength λ is proportional to
the tube radius R, as observed experimentally (figure 12(e)).
The frequency selected f is expected to scale as the ratio of c

to R. Experimentally, it turns out that c increases roughly with
R1/2, which explains the small dependence of the frequency f

with R (figure 12(d)). As detailed in the following section,
one would rather expect a scaling of c as R1/6, following
equation (14).

The sand organ experiment shares striking similarities
with natural booming avalanches: the frequency is insensitive
to the working conditions and is between 60 and 100 Hz, the
elastic wave amplitude is amplified exponentially in space, and
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friction enhances the phenomenon. We will show in the last
section that they may share the same dynamical mechanism
responsible for spontaneous acoustic emission.

4. Sound propagation in sand dunes

In this section, we present the most prominent characteristics
of acoustic propagation in weakly compressed granular media.
The interested reader may find in [104] a more complete review
of recent results in this field.

4.1. Consequences of heterogeneity for sound propagation in
granular media

Compared with a standard elastic solid, granular media possess
several original characteristics: they are heterogeneous,
disordered and non-linear. Still, some of the vibration
modes strongly resemble those observed in a continuous
elastic medium and have a low dependence on the details
of the granular arrangement. For this reason, they are
related to the response of the effective medium constituted
by the macroscopic granular assembly. Many other vibration
modes are localized in space—for instance, a few grains
forming an oscillating vortex in the bulk of the sample
(figure 13(b)). They reflect the local disordered structure of
the packing [72, 73, 99]. A consequence of this heterogeneity
is that when a short sound pulse is emitted in a granular
medium under controlled pressure, the received signal has
two parts (figure 13(a)): a coherent part related to the
effective medium, independent of the details of the pile,
followed by a coda (speckle) due to multiple scattering of
the signal in the sample [60]. The respective amplitude of
the coherent signal and the coda strongly increases with the
static pressure P and with the typical excitation frequency
f [103]. In particular, strong scattering occurs when the
wavelength becomes comparable to the grain size d . However,
this condition is not restrictive, as a granular pile prepared
without particular caution presents in general heterogeneities
of volume fraction and of microstructure (distribution of
contacts and of interparticular forces) on scales much larger
than d.

The heterogeneity of the material has an important
consequence for the choice of acoustic sensors. The vibration
of a transducer—and therefore its signal—can be decomposed
as a sum over acoustic modes. A particular mode contributes
to this signal proportionally to its amplitude and to the
modal projection of the transducer shape—or more precisely,
the modal decomposition of the granular displacement field
imposed by the transducer. A transducer of size close to the
grain diameter d is mostly sensitive to acoustic modes localized
in its vicinity. Conversely, to isolate the mean field coherent
signal there must be a length-scale hierarchy between the grain
size, the transducer size and finally, the acoustic wavelength.

4.2. Speed of sound

Like an ordinary elastic solid, the speed of sound (i.e. the
propagation speed of the coherent signal) can be derived from
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Figure 13. (a) Two examples of ultrasonic signals (broadband
signal centred on 500 kHz) transmitted through a granular sample
under high pressure (P = 0.75 MPa) for two different microscopic
preparations. The coherent response of the effective medium is the
fastest (c � 1000 m s−1) and is reproducible (left of the dotted line).
This corresponds to an average wavelength of about 2 mm or
equivalently 5 grain diameters. It is followed by a coda that
corresponds to the signals propagating through all the
heterogeneous paths of the system (right of the dotted line). This
noise is the acoustic counterpart of optical speckle. Measurements
performed by Jia et al [60]. (b) Example of a non-Fourier mode
in a 2D granular system.

the elastic moduli K and G: c ∼ √
K/ρ for compression

waves and c ∼ √
G/ρ for shear waves. Consider a large

volume of grains at rest subjected to a confining pressure P .
Let us follow a mean field approach where the strain field is
assumed to be affine [20, 27, 41]. Then, by hypotheses, the
forces are equally distributed between each contact between
grains. The force on a contact then depends only on the particle
relative displacement δ, through Hertz’s contact law [3, 66].

As the pressure results from the sum of the contact forces
divided by the surface of a grain, it is proportional to the average
number of contacts per grain Z. The scaling law between
the pressure P , the relative displacement δ and the average
coordinance Z reads

P ∼ ZF

d2
∼ ZE

(
δ

d

)3/2

∼ ZE3/2, (12)

where  = −(δV/V ) represents the relative variation of the
volume occupied by the medium. The relative variation of
distances is therefore /3. Let us consider this compressed
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Figure 14. Dependence of the speed of sound c with depth z,
measured on a booming dune by Vriend et al [107] by refraction of
elastic waves. The best fit by a power law (solid line) gives an
exponent around 1/4.

state as a base state to which a small perturbation in stress
is applied. One obtains the scaling law followed by the bulk
modulus [72]

K = −V
∂P

∂V
= ∂P

∂
∼ ZE()1/2 ∼ (ZE)2/3P 1/3. (13)

The mean field calculation predicts that the scaling law
followed by the shear modulus G is the same as that followed
by K [45, 83, 109]. From these expressions, one deduces the
scaling law for the speed of sound [26]:

c � ρ−1/2(ZE)1/3P 1/6, (14)

where Z is the contact number, which also increases with
pressure. The effective exponent of the power law relating
c to P is around 1/4 (figure 14). As the speed of
sound depends strongly on pressure, which is the physical
signal that propagates, non-linear effects are exacerbated by
granular media: dependence of sound propagation speed on
the amplitude, generation of harmonics and subharmonics,
existence of solitary waves, etc [35, 61, 62, 64, 102–104].

To highlight the meaning of relationship (14), it is
sufficient to compare the speed of sound in bulk quartz
(�5000 m s−1) and in quartz grains at 10 cm below the bed
surface (�100 m s−1). c can become lower than the speed
of sound in air, which points to the fact that a sand pile is
amazingly soft. This impressive reduction of the speed of
sound results from a simple geometric effect at the contact
between grains: the area of contact depends on the normal load.
In particular, the stiffness of two spheres brought into contact
without normal force vanishes. As noted by Poynting [90],
the resonant frequency of a single grain is larger than 10 MHz,
which is much larger than booming frequencies f . By contrast,
due to the geometrical effect, the resonant frequency of a sand
layer of 5 cm is on the order of 200 Hz, which is the right order
of magnitude.

4.3. Acoustic damping

Damping of acoustic waves in granular media may proceed
from different dynamical mechanisms. Since granular media

are disordered, elastic waves are scattered by hetereogeneities
present at all spatial scales. At small frequencies (below, say,
10 kHz), the acoustic wavelength is large compared with the
grain size, so that the amplitude decays spatially as predicted
by Rayleigh scattering. The attenuation is even larger at high
frequencies, in the strong scattering regime (responsible for
the coda tail in figure 13). Dissipation—transformation of
mechanical energy into heat—is mostly localized in the region
of contact between grains. It can result from solid friction
between the surfaces in contact, which is itself ultimately
related to the plasticity of micro-contacts [11].

The formation of capillary bridges between grains
increases the dissipation of energy by linear viscous losses
inside the water. The most dissipative zone is probably inside
the grain contact area. Using common estimates for micro-
contact geometry, the relaxation time in the presence of water
should be on the order of �1 ms, which is consistent with the
measurements performed at high frequency in [24]. This is two
orders of magnitude smaller than the relaxation time measured
for a dry sand layer. A secondary effect of capillary bridges
is to increase the normal force exerted on grains: a capillary
pressure, proportional to surface tension and to the inverse of
the grain size, has to be added to the external pressure P .

Experiments performed in narrow tubes have shown that
interstitial air can be a major source of acoustic dissipation [12].
The coupling between the elastic skeleton of the granular
material and air surrounding grains can be understood using
Biot theory of poroelasticity [1]. In the absence of coupling,
three types of acoustic modes would exist: longitudinal and
transverse modes in the solid and compressional waves in air.
Due to its low acoustic impedance, compared with sand (4×102

versus 105 Pa s m−1), air does not have a strong influence on
the modes associated with the propagation in the solid: air is
entrained in phase with the grains and mostly causes viscous
dissipation. By contrast, the mode associated with air, called
a Biot wave, is strongly affected: due to the inertia of grains,
the speed of this wave is much slower than the sound speed
in air. Biot wave propagation is very dispersive and, since air
and grains move in opposite phases, highly attenuated [1].

4.4. Modes guided by gravity induced index gradient

The pressure dependence of the speed of sound has a major
consequence: in order to consider that the pressure P inside
a sample is homogeneous, it must be at least 10 to 100
times larger than the pressure variation induced by gravity
(ρgz, which is on the order of kPa). How does sound propagate
in sand under gravity? The vertical pressure gradient induces
an intense gradient in the speed of sound in the medium
(figure 14). Like how waves arrive parallel to the beach
regardless of their orientation away from the coast, acoustic
wavefronts are deflected towards the free surface by a mirage
effect: as the propagation is faster in depth than at the surface,
the wavefronts rotate (figure 15). At the surface, the acoustic
wave undergoes a total reflection, propagates back in depth,
and so on. As in a gradient-index optical fibre, the propagation
is therefore guided at the surface. For a given wavelength λ,
propagation takes place through a discrete number of guided
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Figure 15. Principles of guided acoustic waves in granular media
under gravity. (a) Representation of a guided mode in the
geometrical acoustics approximation. As the speed of sound
increases in depth, the wavefronts (thin lines) are deflected towards
the free surface. Take care that the rays represent conventionally
plane waves (thin lines): the vibration therefore takes place
everywhere, not only in the vicinity of the rays. A guided mode
corresponds to a phase matching between waves reflected several
times at the free surface and brought to the surface by the gradient in
the speed of sound. (b) Motion of grains in a guided mode of order 1.

modes that correspond, in terms of geometrical acoustics, to a
return of the acoustic ray at the surface with a coherent phase
(a phase lag multiple of 2π ). It was shown independently
by Bonneau et al [4, 20, 21] and Gusev et al [49, 58] that the
dispersion relation satisfies the scaling law

ω � n1/6 g1/6

(
E

ρ

)1/3

k5/6 (15)

where n is the order of the mode. The mode labelled n

penetrates sand over a depth of about n times the wavelength
λ. Consequently, the characteristic pressure is on the order of
ρgnλ. Using the scaling law (14) governing the wave velocity,
one obtains the above dispersion relation. The propagation is
thus slightly dispersive. Furthermore, the different branches of
this dispersion relationship are extremely close to each other
(varying as n1/6) so that a pulse emitted into a granular medium
under gravity leads to a multitude of modes propagating at
speeds that are relatively close.

The existence of these modes guided by the gravity index
gradient was proved experimentally by Bonneau et al [21]
and by Jacob et al [58]. Figure 16 shows, for instance,
the propagation of a mode n = 1 wave packet, isolated
experimentally. The ratio of the phase velocity to the group
velocity directly confirms the exponent of the dispersion
relation (15) in the limit of low pressure. The existence
of multiple elastic modes guided by the index gradient was
recovered by Andreotti [4] on a booming dune and later
by Vriend and collaborators [107]. Using multiple sensors,
Vriend et al successfully reconstructed the profile of the speed
of sound (figure 14) by analysing the propagation of the
different modes. Surprisingly, these authors claim that the
multiple modes result from dune layering (see below), although
their data clearly show the existence of multiple guided modes
in the absence of any index discontinuity [56, 108].

4.5. Modes guided by dune layering

From the previous arguments, one expects the speed of sound to
increase continuously with depth, due to gravity. It has been
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Figure 16. Bottom: experimental set-up used in the lab to show the
propagation of modes guided by the gravity-induced index gradient.
Top: space–time diagram showing the wave-packet propagation.
Starting from the raw signals received at different positions, the
wave packet is roughly localized by computing the signal envelope.
Then, a local fit by a Gaussian wave packet allows one to determine
the centre of the wave packet (•) and its phase with respect to the
source (symbols show the space–time coordinates of an iso-phase
event). The best fit (thin lines) allows one to extract the group and
phase velocities. Measurements performed by Bonneau et al [21].

hypothesized by Vriend et al [107] that the speed of sound
may present discontinuous variations across the interfaces
between sedimentary layers. Indeed, as is well known in
stratigraphy (cross-bedding), propagative dunes generically
present a layered structure parallel to the avalanche slip face.
From the acoustic point of view, one mostly expects an effect
of humidity, which strongly enhances acoustic dissipation and
also increases the speed of sound. Although this may sound
surprising initially, most desert sand dunes are filled with water
trapped by capillary forces.

Figure 17 schematically shows the influence of such an
interface at a depth D below the free surface. At this interface,
a fraction of elastic waves are reflected and the remaining
is refracted. As the free surface totally reflects waves, this
structure again constitutes a wave guide (like Love modes)
which is superimposed on that induced by gravity. Let us
first neglect the index gradient induced by the pressure field.
Modes guided by the interface correspond to a phase coherence
of acoustic rays successively reflected by the two interfaces.
In the special case where the rays are normal to the interface
(figure 17(a)), the guided mode corresponds to a standing
wave, i.e. a mode of vanishing wave number k. The frequency
fR of this particular mode corresponds to an acoustic resonance
of the system. In order to clarify the meaning and the origin of

16



Rep. Prog. Phys. 75 (2012) 026602 B Andreotti

Figure 17. Schematic showing the influence of dune layering on elastic wave propagation. The lines correspond to acoustic rays, which
represent plane waves. (a) Standing resonant mode at the frequency fR. (b) Evanescent mode below the critical frequency fC. (c) Above
fC, the internal reflection of elastic waves ensures that the energy of the elastic mode remains confined in the layer.

this resonance, consider an experiment in which seismic energy
is locally injected into the system at a frequency f . When f

is close to fR, the energy does not propagate and is stored.
Therefore, the vibration amplitude presents a maximum at
f = fR. The tendency of the system to oscillate with a
larger amplitude when f is around fR is, by definition, called
a resonance. The sharpness of the resonance is limited by
refraction and by damping.

Beyond the resonant frequency fR, guided modes are
propagative. However, the refraction into the lower half-space
leads to an energy leak. The waves are thus evanescent, i.e.
they decay exponentially in space (figure 17(b)). The rays’
incidence angle on the interface increases with f and reaches
the critical angle at f = fC. Above fC, total internal reflection
of elastic waves occurs. The layer then acts as a wave guide
which confines energy. Instead of decaying exponentially in
space, above fC the vibration amplitude decays as the inverse
of the square root of the distance to the source. Importantly, fC

is not a resonance since it does not correspond to a frequency
at which the system response presents a maximum. fC is a
cut-off frequency above which the frequency response is flat.

4.6. Non-elastic waves

A fundamentally different type of wave has been proposed
by Bagnold in the context of booming dunes [9]. From
dimensional analysis, assuming that rheology is local [3, 44],
the pressure in a granular flow must depend on the shear rate
γ̇ as

P = ρf (φ)γ̇ 2d2 (16)

where f (φ) is, at least in the dense regime, a decreasing
function of the volume fraction φ. By contrast with the elastic
waves discussed above, which result from the deformation
of the elastic skeleton, non-elastic waves would result from
the dynamic compressibility of the granular packing, i.e. the
variation of P with φ. They would still exist in the limit of hard
spheres. Following dimensional analysis, their propagation
speed would be much lower than that of elastic waves:

c ∝ γ̇ d. (17)

As the effective viscosity scales on d2γ̇ , propagation would
only be possible at frequencies much smaller than γ̇ .

The existence of these non-elastic waves inside dense
granular flows is rather speculative. In the dilute case, however,

the dispersion relation of these waves has been derived [2]
from granular kinetic theory, which takes grain inelasticity
into account [46, 51]. Experimentally, the speed of sound has
been measured in a gaseous granular flow past an obstacle,
by analysing the formation of supersonic shock waves [2].
The order of magnitude and the dependence of c with volume
fraction φ were successfully tested against kinetic theory.

Let us consider the origin of putative non-elastic waves
inside an avalanche. If the medium dilates (i.e. if φ decreases),
the pressure drops so that the grains fall down due to gravity. In
turn, this reduces φ with a delay, due to inertia. There is thus
a non-elastic wave propagation transverse to the avalanche.
Using the local rheology assumption [44], one obtains the
scaling law followed by the speed of non-elastic waves in that
case: c ∝ √

gH . This expression is similar to the velocity
of surface gravity waves in shallow water. For a typical
avalanche, c would be between 0.1 and 1 m s−1—order of
magnitude found in [2]. The resonant frequency of these
waves across the avalanche would scale as

√
g/H and can

be estimated to be 10 Hz. Using reasoning at the scale of the
grain that we were not able to follow or reproduce, Bagnold
has obtained the scaling law f ∝ √

g/d for this resonant
frequency.

5. Acoustic emission mechanism

In this section, we review the dynamical mechanisms that have
been proposed to explain sonic sands.

5.1. Passive resonance

Booming dunes. The simplest possible mechanism is a
resonance of the dune. Here, resonance is understood as
a maximum of the dune vibration amplitude at a particular
frequency fR. The idea here is that the dry surface layer
constitutes a resonant cavity. The standing mode associated
with this layer is a passive resonance because energy does not
propagate and get stored in the cavity.

Following this idea, the avalanche must be considered a
source of noise which injects energy into the static dune over
a broad frequency band. The dune would behave as a passive
filter which selectively reinforces the frequency fR. This idea
is very clear and suggests straightforward tests detailed below.
However, an important source of confusion in the literature
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Figure 18. The Makhnovist drum experiment: response of the
booming dune to a normal tap constituting a broadband excitation.
After the propagative, excited modes have left, the resonant mode,
i.e. the standing mode stays. The tail following the tap contains a
well-defined frequency that can be interpreted as the first
compression resonant mode. Inset: auto-correlation function of the
signal shown. The resonant frequency is fR � 73 Hz for these
particular conditions of field measurements, while the booming
frequency is around 100 Hz. The wet sand layer is at a depth around
D = 50 cm below the surface. Measurements performed by
Bonneau et al [20].

comes from the claim that the cut-off frequency fC, associated
with the dry sand layer at the surface of the dune, is a resonant
frequency [56, 107, 108]. As detailed above, it is not [6]. The
issue is not the incorrect use of the word ‘resonance’ but the
fact that the dune has strictly no reason to pick up the cut-off
frequency fC, as the system behaves like a high-pass filter,
not like a band-pass filter. There is no maximum vibration
amplitude at the cross-over frequency of such a filter.

Tests. If booming results from a passive resonance of the
dune, the booming dune frequency should match the resonant
frequency fR. We have systematically tested this point in
the Atlantic Sahara. Most of the time, no resonance can be
heard. Figure 18 shows a case where a resonance of the
static dune can clearly be identified. The difference between
the booming frequency and the resonant frequency was well
outside error bars. This is confirmed by the measurements
performed Vriend et al [107]. They systematically observed
the propagation of waves at the booming frequency. Therefore,
the booming frequency does not correspond to a resonant
standing mode. If booming results from a passive resonance
of the dry surface layer of the dune, the vibration mode should
match the shape of a resonant mode. Moreover the vibration
should be mostly an incoherent noise inside the avalanche.
However, the maximum of coherent vibration is located inside
the avalanche and the vibration amplitude strongly decreases
across the avalanche/dune interface.

The report of an acoustic emission continuing several
minutes after the avalanching of sand has ceased is obviously
in favour of an explanation of the phenomenon by a passive
resonance. We thus refer the reader to the previous discussion
of this point and we conclude again that this statement should
not be accepted as fact. Note finally that the reproduction of the
phenomenon in the lab, without any dune, may be considered
as proof in itself that booming avalanches do not result from

a passive resonance. On the basis of this long series of tests,
our conclusion is that this hypothesis must indeed be rejected.

Squeaking beaches. By contrast, the frequency of
emission f in the impacting pestle experiment (figure 10)
nicely corresponds to the natural vibration frequency f0 of
an harmonic oscillator: the mass is the pestle and the spring
is the sand below it. The very low elastic modulus of sand
explains the order of magnitude of the resonant frequency. In
this simple picture, shear bands would play a minor role.

Tests. In order to test this idea, the response of a static
pestle, dug into the sand, to an external vibration must be
obtained and the resonant frequency fR compared with the
spontaneous emission frequency f .

5.2. Stick-slip instability

A different mechanism previously invoked results from the
hysteresis of the friction coefficient µ, defined as the ratio of
the shear stress to the normal stress. One can hypothesize that
µ decreases from its static value µs to its dynamic value µd

as the shear rate γ̇ increases from 0 to a value γ̇d which may
depend on pressure. This branch of the constitutive relation
is obviously unstable as friction decreases when the velocity
increases, which results in an even higher velocity. For γ̇ above
γ̇d, friction increases and a stable situation is recovered. In a
stress-driven flow, this effect leads to the localization of shear
stress into a shear band separating a static region (γ̇ = 0) from
a moving region (γ̇ > γ̇d).

The generic stick-slip instability occurs when a frictional
system is driven into motion at a constant speed V , through a
coupling spring or any equivalent restoring mechanism. The
inertia of the system and the spring constant allow one to define
the length � needed to load the system to the static threshold µs,
starting from the dynamical threshold µd, and the frequency f0

of the oscillator. At low driving speeds, the time needed to load
the system is much larger than the time during which it moves.
The frequency f at which the system oscillates therefore scales
as �/V . At large driving speeds, the frequency is limited by
the frequency f0 of the oscillator.

It has been proposed by Mills and Chevoir [76] that stick-
slip could be the mechanism producing seismic vibrations in
booming avalanches, the restoring force being gravity. In order
to explain the order of magnitude of the emitted frequency f ,
this instability would occur at a spatial length scaled, so that the
frequency f would scale as

√
g/d. A stick-slip phenomenon

can indeed be observed in avalanches driven at a constant flow
rate or in plow experiments. However, it takes place at the
scale of the avalanche itself so that the pulsation frequency
is much lower than acoustical frequencies. It is difficult at
this early stage of theoretical development to propose further
experimental tests of this idea.

In the rotating pestle experiment, both stick-slip and
booming can occur at the same time, which shows their
difference of nature. In the plow experiment, which is driven
at a controlled velocity V , the expected proportionality of
the frequency f with V −1 was never observed. Finally, in
the impacting pestle experiment, stick-slip is associated with
the formation of multiple shear bands but the number of slip
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Figure 19. Schematic of the synchronization instability based on
the interaction between an elastic wave and granular collisions.
The unstable mode is a combination of an elastic wave and the
probability that a granular collision occurs in phase with the
vibration. Synchronized collisions reinforce vibration. In turn,
vibration increases the fraction of synchronized collisions.

layers does not correspond to the number of periods in the
emitted signal. Still, in that case, the emission frequency
corresponds to the frequency f0 of the oscillator constituted by
the pestle (mass) and the sand grains (spring). Our conclusion
is that the stick-slip phenomenon does not explain much of the
observations.

5.3. Synchronization instability

The third possible mechanism invoked to explain booming
dunes was initially proposed by Poynting and Thomson [91].
It is based on the idea that the avalanche needs to dilate to flow
[95]. Considering the motion of a single grain at the surface
of an array of grains, dilation and collision occur on average
at a frequency γ̇ [4, 5, 23]. It is then tempting to associate the
emission frequency f with the collision frequency γ̇ .

It was first noticed by Andreotti [4] that millions of grains
making individual collisions around the same frequency γ̇ , but
with a random phase, would not lead to a harmonious sound,
but to a noise. This noise can be perfectly heard in the rotating
pestle experiment, below the instability threshold. To obtain
a coherent sound at a frequency f � γ̇ , the grain collisions
must be partly synchronized. This raises two questions. What
is the nature of the coupling signal transmitted to the grains
to synchronize them on a large enough scale? What is the
dynamical mechanism leading to the grain synchronization ?

Reasoning on the motion of a single grain, Andreotti [4]
has shown that a coherent elastic wave can partly synchronize
the grain collisions (figure 19). Indeed, when subjected to a
vibration, the grains inside the shear layer tend to synchronize
with this vibration. In other words, the probability P(φ) of
observing a phase φ between collision and vibration is not
a constant, independent of φ, but presents a peak around
φ = 0 which increases with the vibration amplitude A.
More and more grains get synchronized as the vibration
amplitude increases. We now come to the positive feedback
mechanism, which explains the coherent vibration. Each
collision between two grains deform these grains. A fraction

of the translational kinetic energy is thus transferred to the
elastic energy stored inside the grains. Then, this energy is
radiated and dissipated. The acoustic signal emitted during
this elementary event can be decomposed into acoustic modes.
As previously remarked, some of these modes are localized
and involve only a few grains. Some other modes have a
large scale coherence and correspond to the effective medium
response. Therefore, a fraction of the translational energy is
transferred to coherent acoustic modes at the frequency γ̇ . If
the probability P(φ) is perfectly flat (P(φ) = 1/2π ), there
is a negative interference of the contributions of the different
grains. The resulting amplitude of vibration is thus null (A =
0). As soon as a fraction (even infinitesimal) of the collisions
are synchronized, these collisions reinforce the vibration in
phase, coherently (figure 19). This feedback loop can be
expressed more formally. The growth rate of the vibration
dA/dt due to collisions is proportional to

∫
P(φ) exp(iφ) dφ,

which is an increasing function of A. This leads to a linear
instability where the amplitude of the coherent acoustic mode
and the fraction of synchronized grains grow exponentially in
time. This stimulated acoustic emission which synchronizes
collision possesses a similarity to a laser.

The synchronization instability allows one to interpret
many observations, but not all. It is consistent with the
observation that the sand surface emits sound in the air like
the membrane of a loud speaker [4]. It explains the saturation
of the sound amplitude by the loss of the synchronization
power when the grains take off. This instability also presents
two thresholds [20]. As vibration is damped, there is a first
instability threshold controlled by the dissipation time scale: to
get an instability, energy gain due to the partial synchronization
of collisions must be larger than energy loss. The second
threshold results from the assumption that coherent elastic
waves can propagate in the system. For this, the height of
dry sand must be sufficiently large (figure 17), as observed in
the plow experiment (figure 7).

The synchronization instability was revisited by Douady
et al [39], with a different perspective on the instability
threshold. The claim is that the synchronization only takes
place if the coupling wave propagates across the flowing layer
height H faster than the duration between two collisions. The
instability threshold is thus given by the condition H = c/γ̇ .
As the product γ̇ H is the flow velocity V , this argument
predicts a threshold controlled by the ratio V/c. As the
minimal velocity V needed to obtain booming would be lower
than 1 m s−1, the propagation speed of the coupling wave
would also be lower than 1 m s−1, which is not consistent
with elastic waves. Although Douady et al [39] do not
discuss the precise nature of this low-velocity coupling wave,
it turns out that Bagnold’s non-elastic waves nicely match the
requirements. In particular, as they propagate across the layer
at a speed c ∝ √

gH , the parameter controlling the instability
becomes the Froude number V/

√
gH , as observed in the plow

experiment (figure 7).
A third variant of the synchronization instability was

proposed by Dagois-Bohy [34]. It assumes shear localization
and relates booming to the cooperative motion inside shear
bands (figure 20). Transient clusters are synchronized by the
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Figure 20. Schematic of the synchronization instability based on
the cooperative motion inside shear bands.

fact that they push on the same solid block (the plug flow above
the shear band). The coherence of the acoustic emission is then
controlled by the length over which the avalanche behaves like
a solid.

Tests. Each version of the synchronization instability
presents specific aspects that may be tested. The common
prediction is the relation between the emission frequency
f and the shear rate γ̇ , which is also the mean collision
frequency. The key test is thus to simultaneously measure
these two quantities. The rotating pestle experiment presented
in figure 9 is the only situation in which such measurements
have been performed; in this case at least, there is a two
decade discrepancy between f and γ̇ . In the linear plow
experiment, there are strong indications that shear is localized
in a layer whose thickness scales on the grain diameter d.
This means that γ̇ scales on V/d, which does not match the
dependence of f , which takes the form f = f0 + αV/H .
In the case of gravity-driven avalanches, the hypothesis of
an identity f = γ̇ whatever H and V would require the
presence of a wide shear band whose thickness adapts to keep
γ̇ constant. There is no known reason for why this would be
the case. Finally, how to explain, for certain dunes like Al
Ashkharah (J’alan) [34], that the emission spectrum presents
several frequencies f while there is no such possibility for γ̇ .
Although not definitive, our conclusion is that this hypothesis
must be set aside, unless one succeeds in performing
simultaneous measurements of f and γ̇ showing that they are
related.

5.4. Amplification of elastic waves by a sliding frictional
interface

The last explanation is based on a theory that assumes the
localization of shear in a band separating the avalanche from
the static dune [7]. Then, the system is similar to two
elastic blocks sliding with friction, one over the other. The
picture of a booming avalanche is then very similar to the
sand organ experiment, with two noticeable differences: the
upper and lower boundary conditions are a free surface and
an almost semi-infinite static sand pile, respectively. The
key effect was identified by Nosonovsky and Adams [81]
and by Caroli and Velicky [27], who showed that an acoustic
wave can be amplified coherently when reflected on a sliding
frictional interface. Indeed, with the system being open, the

energy of the incident plane wave is no longer conserved, the
work of the external driving force being partitioned between
frictional dissipation and gain of coherent acoustic energy.
A large value of the friction coefficient thus favours energy
gain. Therefore, the avalanche behaves as a wave guide whose
boundary presents an anomalous reflection. As in a laser, the
combination of a cavity with an acoustic amplifier results in a
spontaneous emission of coherent waves, if the energy loss is
sufficiently low.

Contrary to previous explanations, this effect can be
formalized theoretically into a well-posed problem, with one
central hypothesis: the avalanche is described as a plug
flow of thickness H separated from the static part of the
dune by an infinitely small frictional shear band. Under this
assumption, the linear stability analysis of a uniform flow can
been performed, whose predictions are the following [7].

• The steady homogeneous avalanche is unstable towards
elastic waves amplified by friction, above a threshold
which compares the dissipation time with the time needed
for a wave to propagate across the avalanche thickness H .

• The dispersion relation shows several maxima of the
growth rate with very close frequencies. In all these
modes, vibration is localized inside the avalanche and
drops by a large factor across the shear band. The first
mode presents a vibration node at mid-avalanche height;
the second mode presents two vibration nodes, etc.

• Close to the threshold, all the unstable modes propagate
up the dune. The instability is thus convective and leads
to the spatial amplification of a doublet whose frequency
scales with the inverse of the dissipation time.

• Far above the threshold, downward propagating modes
get amplified as well: the instability becomes absolute.
The frequencies associated with the maxima of the growth
rate scale as c/H , where c is the speed of sound under a
pressure ρgH .

This theory predicts and allows one to understand a large part
of the phenomenology of booming avalanches.

• Emission takes place around a well-defined frequency,
but with a tremolo that results from the superposition of
different modes (two at least) (figure 5).

• As the instability is convective, the vibration amplitude
is amplified exponentially in space, from the tip of the
avalanche to its core (figures 4 and 6).

• The emission frequency f is selected at the front of the
avalanche, around the place where the height H crosses
the threshold height Hth. f is thus not very sensitive to
the shape of the avalanche (figure 3).

• Sonic sands are not special except for their large friction
coefficient, as the amplification results from friction.

• Since the instability is limited by acoustic dissipation,
humidity increases the emission threshold.

• Vibration is localized inside the avalanche and drops by
a factor of ten when crossing the interface between the
avalanche and the dune. It presents a node at mid-
avalanche height (figure 6)
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Figure 21. Schematic showing the amplification of guided elastic
waves by reflection on the frictional interface separating the
avalanche from the dune.

Rather than entering the mathematical details, we will
describe here the principle of the instability mechanism in
terms of acoustic rays (figure 21). As shown in [27, 81], the
reflection of elastic waves on the frictional interface results
in energy pumping from shearing motion to coherent acoustic
waves. The maximum energy gain and thus the maximum
growth rate is obtained for a particular angle of incidence. As
the wave speed depends only on z, this condition determines
a single ray, whatever the wave number k. In the geometric
acoustics approximation (figure 21), guided modes are selected
by the condition of constructive interference between plane
waves as they bounce back and forth. Altogether, there is a
local maximum of the growth rate periodically in kH , for each
constructive interference. As in the sand organ experiment,
geometry selects the most amplified wave number.

Obtaining the corresponding frequencies f is then a non-
trivial issue. One needs to calculate normal modes using
continuum mechanics instead of using geometrical acoustics
[7]. Moreover, one needs to know both the acoustic dissipation
and the speed of sound c. The results of the sand organ
experiment show that c can be significantly different from the
expectation.

Tests. This theory is based on an idealized picture
of granular avalanches. However, even with shear band
localization, the granular motion is never a pure solid block
motion, but rather presents a diffuse shear profile. The
persistence of the amplification mechanism in that case
requires two properties that may be tested experimentally
or numerically. First, transverse waves should be able to
propagate through a granular layer fluidized by a shear band.
In other words, granular material must be visco-elastic close
to jamming. Second, the shear stress in a granular flow
must nonetheless increase with static pressure P but also be
modulated by the acoustic pressure p. In other words, the
same frictional behaviour must exist at the time scale of shear
γ̇ −1 and at the time scale of elastic waves f −1. Provided
that the shear stress (or equivalently the viscosity) increases
with the total pressure P + p, acoustic modes get coupled
to the mean flow and can consequently be amplified when
reflected by the (diffusive) shear band [43]. An important
theoretical test would be to perform the linear stability analysis
of a flowing visco-elastic material presenting a frictional
behaviour.

One of the strong, yet not verified, predictions of this
theory is the selective amplification of up-slope propagating
waves. This test is very easy to perform in the sand organ
experiment, as there is a single unstable mode. In the case
of booming dunes, one expects several unstable modes to
be superimposed, which makes the analysis more difficult to
perform. Indeed, in that case, one cannot simply use the phase
lag between two points of measurement, as done in [22, 33].

Although the principle of the instability—a cavity
bordered by a shear band amplifying elastic waves, thanks
to friction—is general, it must be carefully adapted to
each geometry to obtain reliable predictions. In the sand
organ experiment, this dynamical mechanism is validated by
several experimental characteristics (figure 12): the sound
emission results from a convective instability; the exponential
amplification of upward propagating waves is directly
observed; the wavelength scales on the tube radius. Contrary
to booming avalanches, the laboratory geometries (plow
experiment, rotating pestle experiment and jar experiment) are
characterized by an aspect ratio L/H of order 1. Therefore,
the instability cannot be convective and the cavity length L

should play an important role. It is reasonable to think that
these three experiments present a bounding shear band that
may amplify elastic waves. Experimental results are consistent
with a selection of the emission frequency f by the speed of
sound c and the sand pile geometry. In the plow experiment,
the selected frequency f decreases typically as the inverse of
the moving sand length L (figure 8); in the jar experiment, f

decreases with the thickness H (figure 11); in the rotating
pestle experiment, f does not depend on the shear rate γ̇

but increases with the applied pressure, which controls c

(figure 9). To achieve a complete validation, the linear stability
analysis must be performed case by case, in these confined
geometries.

6. Perspectives

Given the degree of controversy, a simple conclusion would
not be appropriate for the subject we have treated. Rather, we
would like to indicate possible future directions of research.

• We have emphasized throughout this review that
experimental tests are the only way to solve controversies.
Most results presented in this review need to be reproduced
independently to establish a base of consensual facts.

• A correct understanding of sand rheology close to the
jamming transition is still lacking. In particular, the direct
measurement of the velocity profile inside an avalanche
remains a major issue.

• Direct numerical simulations using discrete element
methods have proved their usefulness in understanding the
mechanical behaviour of granular matter. The numerical
reproduction of a spontaneous acoustic emission induced
by a granular shear flow would certainly help to analyse
the phenomenon in detail.

• One of the important aspects of the problem is the fact that,
due to friction, the compressibility of the material cannot
be neglected at a low Mach number, as it is coupled to the
shear flow. The principle of acoustic wave amplification
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can probably be generalized and further applied to any
thick interface inside which the shear stress increases
with pressure [43]. For instance, one can wonder if
instabilities observed in microfluidic flows of concentrated
colloidal suspensions [57] could originate from the same
fundamental mechanisms as sonic sands.

• The central issue of sonic sands is to understand how a
steady flow at a low Mach number can generate acoustic
waves. The reverse problem also looks promising. How
do vibrations affect a mean granular shear flow? In
particular, mechanical fluctuations in disordered athermal
systems could be a source of noise analogous to
temperature in thermal systems [94] activating motion
below the jamming point.
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